Prova de Aferição de Matemática
|
|
|
- Kátia Graça Santos
- 10 Há anos
- Visualizações:
Transcrição
1 PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A. Número convencional do Agrupamento Prova de Aferição de Matemática 2.º Ciclo do Ensino Básico 2008 PA Página 1/ 27
2
3 Instruções Gerais sobre a Prova Deves realizar a prova com caneta ou esferográfica de tinta azul ou preta, com excepção das questões em que te é indicado que resolvas a lápis. Podes usar borracha, apara-lápis, régua graduada e calculadora. Não podes usar transferidor. Lê e responde a todas as perguntas com a máxima atenção. Não risques os cálculos nem os esquemas que utilizares nas tuas respostas. Se precisares de alterar alguma resposta, risca-a e escreve a nova resposta. Em algumas questões, terás de colocar X no quadrado correspondente à resposta correcta. Se te enganares e puseres X no quadrado errado, risca esse quadrado e volta a colocar X no lugar que consideras certo. Se acabares antes do tempo previsto, deves aproveitar para rever a tua prova. A prova consta de duas partes. No fim da Primeira Parte, há um intervalo. Tens 50 minutos para responder a cada parte. PA Página 3 / 27
4 Parte A 1. O sólido representado na figura faz lembrar uma bola de futebol. Assinala, com X, o nome dos polígonos das faces deste sólido que estão visíveis na figura. Quadriláteros e hexágonos Hexágonos e pentágonos Pentágonos e triângulos Triângulos e octógonos 2. Escreve um número no, de forma a que as duas fracções sejam equivalentes. 6 = PA Página 4 / 27
5 3. Na primeira coluna da tabela seguinte, estão representados três prismas diferentes. Representação do prisma Nome do prisma Polígonos das faces do prisma Cubo Prisma triangular 3.1. Completa a tabela, de acordo com o exemplo dado na primeira linha. Utiliza o teu lápis e a tua régua Quantos vértices tem um prisma triangular? Resposta: PA Página 5 / 27
6 4. Na turma do Ricardo, os alunos construíram um pictograma com os dados relativos ao instrumento musical que gostariam de aprender a tocar. Cada aluno escolheu apenas um instrumento musical. Aprendizagem de um instrumento musical Legenda: = 2 alunos Instrumentos musicais Número de alunos Flauta Harpa Piano Violino Guitarra 4.1. Da turma do Ricardo, só duas raparigas gostariam de aprender a tocar piano. Quantos rapazes, da turma do Ricardo, gostariam de aprender a tocar piano? Resposta: PA Página 6 / 27
7 4.2. Utiliza a informação do pictograma anterior para completares o gráfico de barras seguinte: escreve o nome dos instrumentos e desenha as duas barras que faltam no gráfico. Utiliza o lápis e a régua. Aprendizagem de um instrumento musical Número de alunos Violino Harpa Instrumentos musicais 4.3. O Ricardo escreveu um relatório sobre os instrumentos que ele e os seus colegas gostariam de aprender a tocar. Completa, com números, os espaços do relatório assinalados com um traço, utilizando a informação do pictograma. Na nossa turma, disseram que gostariam de aprender a tocar guitarra alunos. Preferiam aprender a tocar violino alunos. Há alunos que gostavam de aprender a tocar flauta e que preferiam aprender a tocar piano. Só a Leonor é que disse que gostaria de aprender a tocar harpa. Concluímos que o instrumento musical que mais alunos gostariam de aprender a tocar é a guitarra. Ricardo PA Página 7 / 27
8 5. Observa o quadrilátero. Dos quadriláteros seguintes, assinala, com X, o que é geometricamente igual ao quadrilátero anterior. Quadrilátero A Quadrilátero B Quadrilátero C Quadrilátero D PA Página 8 / 27
9 6. Quando a mãe fez anos, o Ricardo ofereceu-lhe uma fotografia, numa moldura. A moldura, que está representada a seguir, é constituída por 4 cartões rectangulares, todos geometricamente iguais. 20 cm 30 cm Qual é, em cm 2, a área da fotografia que está visível na moldura? Explica como chegaste à tua resposta. Podes fazê-lo utilizando palavras, esquemas e cálculos. Resposta: cm 2. PA Página 9 / 27
10 7. Calcula o valor da seguinte expressão numérica e apresenta os cálculos que efectuares Resposta: 8. No rectângulo seguinte, está traçada uma diagonal. D C? A 50º B Quanto mede, em graus, o ângulo DAC? Resposta: º. PA Página 10 / 27
11 9. O Ricardo comprou três embalagens com 20 CD cada uma. Já utilizou 1 2 dos CD de uma embalagem, 1 4 dos CD de outra e 1 5 dos CD da terceira embalagem. Juntando os CD que sobraram nas três embalagens, quantos CD tem, ao todo, o Ricardo? Explica como chegaste à tua resposta. Podes fazê-lo utilizando palavras, esquemas ou cálculos. Resposta: PA Página 11 / 27
12 10. O Sr. Manuel, da loja de informática, está a decorar a montra. Já fez os três montes, com embalagens de CD, que observas na figura. 1.º monte 2.º monte 3.º monte Se o Sr. Manuel continuar a fazer montes, seguindo o mesmo padrão, de quantas embalagens precisa para fazer o 5.º monte da sequência? Resposta: 11. Calcula o valor da potência seguinte Resposta: PA Página 12 / 27
13 12. A embalagem de CD da figura tem a forma de um cilindro. Dentro da caixa, envolvendo completamente os CD, há uma tira de papel rectangular, com 4 cm de largura. Os CD têm a forma de um círculo com 12 cm de diâmetro. 12 cm Tira de papel rectangular 4 cm Dos quatro comprimentos seguintes, assinala, com X, o que corresponde ao valor mais aproximado do comprimento da tira de papel. 12 cm 24 cm 27 cm 37 cm PA Página 13 / 27
14
15 PÁRA AQUI! Não avances na prova até o professor dizer. Se acabaste antes do tempo previsto, deves aproveitar para rever a tua prova.
16
17 Parte B 13. Escreve, nos, os dois números que faltam na sequência. 0,2 0,2 0,2 0, Na figura, está representado um lado de um trapézio que só tem dois lados com o mesmo comprimento. Desenha os outros 3 lados do trapézio, utilizando o lápis e a régua. Os vértices do trapézio têm de coincidir com pontos da grelha. PA Página 17 / 27
18 15. A Leonor encheu 12 páginas do seu álbum com 18 fotografias. As fotografias são de dois tamanhos diferentes e, em cada página, só cabem duas fotografias pequenas ou uma grande, como mostra a figura. Quantas fotografias grandes e quantas pequenas colocou a Leonor no álbum? Explica como chegaste à tua resposta. Podes fazê-lo utilizando palavras, esquemas ou cálculos. Número de fotografias grandes: Número de fotografias pequenas: PA Página 18 / 27
19 16. Assinala, com X, o triângulo que é obtusângulo. Triângulo A Triângulo B Triângulo C Triângulo D PA Página 19 / 27
20 17. O Ricardo, a Leonor e o Luís querem comprar alguns CD. Na loja de informática viram a seguinte tabela de preços. Embalagens de CD com caixa 10 CD com caixa Embalagens de CD sem caixa 25 CD sem caixa Preço da embalagem 3,50 20 CD com caixa Preço da embalagem 6,75 50 CD sem caixa Preço da embalagem 6,50 Preço da embalagem 12, O Ricardo comprou uma embalagem de 25 CD sem caixa e uma embalagem de 50 CD sem caixa. Quanto pagou, em média, por cada um dos CD? Explica como chegaste à tua resposta. Podes fazê-lo utilizando palavras, esquemas ou cálculos. Resposta: PA Página 20 / 27
21 17.2. O Luís comprou uma embalagem de 25 CD sem caixa e recebeu de troco 13,25. Qual é o valor da nota que deu para pagar a embalagem? Resposta: A Leonor quer comprar o maior número possível de CD, com ou sem caixa, com os 16 euros que tem. Quantos CD conseguirá comprar? Explica como chegaste à tua resposta. Podes fazê-lo utilizando palavras, esquemas ou cálculos. Resposta: PA Página 21 / 27
22 18. Na aula, o professor disse: Um losango é um paralelogramo que tem todos os lados com o mesmo comprimento. O Ricardo disse: Há losangos com ângulos rectos. Desenha, no quadriculado abaixo, um quadrilátero, para mostrares que o Ricardo tem razão. PA Página 22 / 27
23 19. A figura representa o tampo de uma das mesas da ludoteca, que o Ricardo e os amigos estão a pintar. Na parte correspondente à sombreada já gastaram 15 centilitros de tinta. Vão continuar a pintar, gastando a mesma quantidade de tinta em superfícies iguais. Assinala, com X, a melhor estimativa para a quantidade de tinta que irão gastar para pintarem completamente o tampo da mesa. Entre 20 e 40 centilitros. Entre 50 e 70 centilitros. Entre 80 e 100 centilitros. Entre 110 e 130 centilitros. PA Página 23 / 27
24 20. Na loja de informática está afixado o seguinte cartaz. Na compra de 2 embalagens de 25 CD Tem de oferta 3 caixas vazias Quantas caixas vazias terá de oferta uma pessoa que compre 8 embalagens de 25 CD? Explica como chegaste à tua resposta. Podes fazê-lo utilizando palavras, esquemas ou cálculos. Resposta: PA Página 24 / 27
25 21. Na figura está representado um azulejo. Assinala, com X, a fracção que representa a parte do azulejo sombreada a cinzento PA Página 25 / 27
26 22. Na loja de informática, durante um dia, foram vendidas as embalagens de CD que faltam na caixa. Cada embalagem de CD custa 6,00. Quanto receberam pelas embalagens vendidas nesse dia? Explica como chegaste à tua resposta. Podes fazê-lo utilizando palavras, esquemas ou cálculos. Resposta: PA Página 26 / 27
27 23. Escreve um número inteiro, maior do que 100, que seja divisível por 7. Número: 24. Um polígono é regular se tiver todos os lados e todos os ângulos geometricamente iguais. Assinala, com X, o polígono que é regular. Polígono A Polígono B Polígono C Polígono D PA Página 27 / 27
Prova de Aferição de Matemática
PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A.
Prova de Aferição de Matemática
PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA
Matemática. Prova a de Aferição de. 1.º Ciclo do Ensino Básico. Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico. A preencher pelo Aluno
Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico A preencher pelo Aluno 2007 Nome: A preencher pela U.E. N.º convencional do aluno: N.º convencional da escola: N.º convencional do aluno: N.º
ESCOLA BÁSICA VASCO DA GAMA - SINES
ESCOLA BÁSICA VASCO DA GAMA - SINES ANO LECTIVO 2009/2010 FICHA DE TRABALHO MATEMÁTICA - 6º ANO Nome: N.º Turma: Data: 1. Observa o ângulo que se segue. Assinala a resposta correcta em cada caso. 2. Assinala
C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad.
PROVA DE AFERIÇÃO DO 1.º CICLO DO ENSINO BÁSICO Matemática/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome completo A PREENCHER PELO AGRUPAMENTO
Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2010 3.º iclo do Ensino ásico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro
Matemática. Prova a de Aferição de. 1.º Ciclo do Ensino Básico. A preencher pelo aluno (não escrevas o teu nome): idade sexo: F M.
A preencher pelo aluno (não escrevas o teu nome): idade sexo: F M A preencher pelo GAVE: n.º convencional da escola 2003 Prova a de Aferição de Matemática 1.º Ciclo do Ensino Básico A B C D E F Observações
Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,
Prova Final de Matemática
PROVA FINAL DO 2.º CICLO DO ENSINO BÁSICO Matemática/Prova 62/2.ª Chamada/2013 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI n.º
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:
Prova de Aferição de Matemática
PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A. Número convencional do Agrupamento
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de
Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO
151865 - AGRUPAMENTO DE ESCOLAS DE CINFÃES Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 1. A figura ao lado representa o polígono da
Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.
Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois
A classificação do teste deve respeitar integralmente os critérios gerais e os critérios específicos a seguir apresentados.
Teste Intermédio de Matemática Teste Intermédio Matemática Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 05.06.2012 2.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de
168 questões de provas de aferição
168 questões de provas de aferição mp.6 matemática para pensar Exclusivo do Professor 2.º Ciclo Organizado segundo os quatro temas do NPMEB - Números e Operações, Geometria, Álgebra e Organização e Tratamento
Identifica claramente, na folha de respostas, os números dos itens a que respondes.
Teste Intermédio de Matemática Teste Intermédio Matemática Duração do Teste: 90 minutos 31.01.2008 3.º Ciclo do Ensino Básico Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente, na folha de
Prova Final de Matemática. Caderno 2: 45 minutos. Tolerância: 15 minutos. 1.º Ciclo do Ensino Básico. Prova 42/2.ª Fase
Prova Final de Matemática 1.º Ciclo do Ensino Básico Prova 42/2.ª Fase/2014 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC
Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2011 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,
Canguru Matemático sem Fronteiras 2010
anguru Matemático sem Fronteiras 2010 Duração: 1h30min Destinatários: alunos dos 10 e 11 nos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. s
Sólidos geométricos (Revisões)
Curso de Educação e Formação Assistente Administrativo DISCIPLINA: Matemática Aplicada FICHA DE TRABALHO Nº 15 MÓDULO: 8 TURMA: A1/A2 DATA: 2006/2007 Sólidos geométricos (Revisões) Já conhecemos os nomes
Definição de Polígono
Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais
Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados?
cesse: http://fuvestibular.com.br/ o triângulo é uma das figuras mais importantes da Geometria, e também uma das mais interessantes. Na nossa vida diária, existem bons exemplos de aplicação de triângulos
Canguru Matemático sem Fronteiras 2009
Duração: 1h30min Destinatários: alunos do 1 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão agrupadas em três níveis: Problemas
Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras
Colégio Universitas06 Data: 7 Mai 2013 Professor(a): Adriana Santos Aluno(a): Nota: nº: Exercícios extras 1 Escreva se cada objeto desenhado dá ideia de sólido geométrico, região plana ou contorno. Em
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao
Explorando Poliedros
Reforço escolar M ate mática Explorando Poliedros Dinâmica 6 2ª Série 1º Bimestre Matemática Ensino Médio 2ª Geométrico Introdução à geometria espacial Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
935 MATEMÁTICA Prova escrita
935 MATEMÁTICA Prova escrita PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Duração: 120 minutos Ano: 2014 2ª fase - julho 11º e 12º anos Identifique claramente os grupos e os itens a que responde e apresente o seu
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM
Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 30.04.2009 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de
2. Na figura ao lado, tem-se que: 2.1 Prova que AC = 10m. . Resolução: 2.2 Mostra que os triângulos [ADC] e [DBC] são semelhantes.
ESCOLA SECUNDÁRIA C/3º CICLO DO ENSINO BÁSICO DE LOUSADA Teste de Avaliação do 8º ano de Escolaridade 3º Ciclo do Ensino Básico Duração do Teste: 90 minutos 13. 03. 09 Nome completo Nº Turma Classificação
Matemática. Prova a de Aferição de. 2.º Ciclo do Ensino Básico. A preencher pelo aluno (não escrevas o teu nome): idade sexo: F M.
A preencher pelo aluno (não escrevas o teu nome): idade sexo: F M A preencher pelo GAVE: n.º convencional da escola 2003 Prova a de Aferição de Matemática 2.º Ciclo do Ensino Básico A B C D E F Observações
Matemática. Prova a de Aferição de. 2.º Ciclo do Ensino Básico. Prova de Aferição de Matemática 2.º Ciclo do Ensino Básico. A preencher pelo Aluno
Prova de Aferição de Matemática 2.º Ciclo do Ensino Básico A preencher pelo Aluno 2007 Nome: A preencher pela U.E. N.º convencional do aluno: N.º convencional da escola: N.º convencional do aluno: N.º
MINISTÉRIO DA EDUCAÇÃO COLÉGIO PEDRO II DIRETORIA-GERAL SECRETARIA DE ENSINO EXAME DE SELEÇÃO E CLASSIFICAÇÃO DE CANDIDATOS PROVA DE MATEMÁTICA 2009
MINISTÉRIO DA EDUCAÇÃO COLÉGIO PEDRO II DIRETORIA-GERAL SECRETARIA DE ENSINO EXAME DE SELEÇÃO E CLASSIFICAÇÃO DE CANDIDATOS À MATRÍCULA NA 1ª SÉRIE DO ENSINO MÉDIO REGULAR DIURNO PROVA DE MATEMÁTICA 2009
CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS. Reconhecer a figura de uma circunferência e seus elementos em diversos objetos de formato circular.
CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS "Um homem pode imaginar coisas que são falsas, mas ele pode somente compreender coisas que são verdadeiras, pois se as coisas forem falsas, a noção delas não é compreensível."
RodoMat Matemático 2015. Versão 1
RodoMat Matemático 2015 Versão 1 Nome: Ano: Turma: Instruções da Prova A prova tem início às 15H30 e tem a duração de uma hora. Não é permitido sair antes da hora. Não podes usar calculadora. Há apenas
Canguru Matemático sem Fronteiras 2015
anguru Matemático sem Fronteiras 205 http://www.mat.uc.pt/canguru/ ategoria: adete Destinatários: alunos do 9. o ano de escolaridade Duração: h 30min ome: Turma: anguru Matemático. Todos os direitos reservados.
Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2014 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC
5 a Série (6 o Ano) Avaliação Diagnóstica Matemática (Entrada) Ensino Fundamental. Gestão da Aprendizagem Escolar. Nome da Escola.
Gestão da Aprendizagem Escolar Avaliação Diagnóstica Matemática (Entrada) 5 a Série (6 o Ano) Ensino Fundamental Nome da Escola Cidade Estado Nome do Aluno Idade Sexo feminino masculino Classe Nº 1. Durante
Sequência (Níveis) na medida de área
Sequência (Níveis) na medida de área Comparação A: Decalques da mão Rectângulo e triângulo Sobreposição das mãos Unidades não Estandardizadas Unidades Estandardizadas Concreto Representacional Símbólico
Canguru Matemático sem Fronteiras 2015
anguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ ategoria: Benjamim Destinatários: alunos dos 7. o e 8. o anos de escolaridade ome: Turma: Duração: 1h 30min anguru Matemático. Todos
ESCOLA SECUNDÁRIA DE JÁCOME RATTON
ESCOLA SECUNDÁRIA DE JÁCOME RATTON 8º Ano MATEMÁTICA Setembro/2010 Tópico de Aprendizagem Semelhanças Tarefa nº2 Razão de semelhança Nome Razão de semelhança Observa as seguintes figuras, em que uma fotografia
AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A
AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero
Canguru sem fronteiras 2007
Duração: 1h15mn Destinatários: alunos dos 10 e 11 anos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão
GEOMETRIA NO PLANO. Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico a uma dimensão).
GEOMETRIA NO PLANO 1 Noções Elementares Ponto O objecto geométrico mais elementar (sem dimensão). Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico
PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA
PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA 5º ano 2012/2013 UNIDADE: Números e Operações 1 - NÚMEROS NATURAIS OBJECTIVOS GERAIS: - Compreender e ser capaz de usar propriedades dos números inteiros
COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Final. 2ª Etapa 2013. Ano: 6 Turma: 61
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 2ª Etapa 203 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 6 Turma: 6 Caro aluno, você está recebendo o conteúdo de recuperação.
Atividade extra. Exercício 1. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 O Tangram é um quebra cabeças com 7 peças de diferentes tamanhos, e com elas podemos montar mais de 1400 figuras, como exemplos, temos as figuras abaixo. Fonte: fundacaobunge.org.br
MATEMÁTICA PARA CONCURSOS II
1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma
Prof. Jorge. Estudo de Polígonos
Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem
Unidade didáctica: circunferência e polígonos. Matemática 9º ano
Unidade didáctica: circunferência e polígonos Matemática 9º ano POLÍGONOS. Ângulos de um polígono DEFINIÇÃO: Um polígono é uma superfície plana limitada por uma linha poligonal fechada. Em qualquer polígono
UM MÓDULO DE ATIVIDADES PARA O ENSINO-APRENDIZAGEM DAS FÓRMULAS DE ÁREA DOS PRINCIPAIS POLÍGONOS CONVEXOS
UM MÓDULO DE ATIVIDADES PARA O ENSINO-APRENDIZAGEM DAS FÓRMULAS DE ÁREA DOS PRINCIPAIS POLÍGONOS CONVEXOS Cristiane Fernandes de Souza, Ms. UFRN [email protected] Introdução O estudo
Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.
Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/11 Págs. Duração da prova: 150
Organização e tratamento d. e dados
Organização e tratamento d e dados Proposta de cadeia de tarefas para o 7.º ano - 3.º ciclo Equações Setembro de 2009 Equações Página 1 Índice Introdução Proposta de planificação Tarefas 1A Balanças 1B
Sequências de tarefas para a multiplicação de racionais.
Sequências de tarefas para a multiplicação de racionais. O exemplo ao lado surgiu numa das provas de aferição do 6º ano. - Resolva a tarefa. 2 - Tendo como ponto de partida a situação anterior, invente
Escola Básica de Santa Catarina
Escola Básica de Santa Catarina Matemática Assunto Sólidos geométricos. Áreas e Volumes. 9º ano Nome: Nº. Turma: data / / GRUPO I 1. 2. 3. 4. 1 5. 6. 7. 8. 9. 10. GRUPO II 2 GRUPO II (Exame Nacional de
Intruções gerais sobre a prova
Matemática Nome: Intruções gerais sobre a prova A prova deve ser realizada com caneta ou esferográfica de tinta azul ou preta, com excepção das questões em que te é indicado que resolvas a lápis. Podes
Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e
Escola Secundária de Lousada Matemática do 8º ano FT nº15 Data: / / 013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Apresentação dos Conteúdos e Objetivos para o 3º Teste de Avaliação de
Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein)
Escola Básica Integrada c/ Jardim de Infância da Malagueira Teste de Avaliação Matemática 9ºB Nome: Nº: Data: 25 3 11 Classificação: A prof: O Enc. Educação: Se A é o sucesso, então é igual a X mais Y
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Áreas de alguns quadriláteros Nuno Marreiros Recorda Área do retângulo Para todo e qualquer retângulo de base (b) e altura (h), pode-se escrever: Área do Retângulo
PROVA MODELO 2015. Duração da prova: 120 minutos
Página 1 de 8 Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 3 anos, Decreto-Lei n.º 64/006, de 1 de março AVALIAÇÃO DA CAPACIDADE
Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 06.05.2011 10.º no de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,
Desenho Técnico. Desenho Projetivo e Perspectiva Isométrica
Desenho Técnico Assunto: Aula 3 - Desenho Projetivo e Perspectiva Isométrica Professor: Emerson Gonçalves Coelho Aluno(A): Data: / / Turma: Desenho Projetivo e Perspectiva Isométrica Quando olhamos para
Unidade 4 Formas geométricas planas
Sugestões de atividades Unidade 4 Formas geométricas planas 6 MTMÁTI 1 Matemática 1. O relógio, representado abaixo, indica exatamente 8 horas. TracieGrant/Shutterstock c) um ângulo de 120 ; d) um ângulo
Geometria Área de Quadriláteros
ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos
Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares
A UU L AL A Figuras geométricas Se olhar ao seu redor, você verá que os objetos têm forma, tamanho e outras características próprias. As figuras geométricas foram criadas a partir da observação das formas
Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.
1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação
Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:
ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero
NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007
EXAME DO ENSINO SECUNDÁRIO DE RESUMOS.TK Prova Escrita de Matemática A 10.ºAno de Escolaridade Prova MAT10 14 páginas Duração da Prova: 120 minutos. Tolerância: 30 minutos. Autor: Francisco Cubal, como
! "#! #" $ % & $ % '! " #"!' ((() ((() (((((( '
!"#! #"$ % &$ %'! " #"!'((()((()(((((( ' *+"","+*" &!"' " "-'. *+"","+*" " ' /0"1"*" /0"+1 *+"","+*""+"! + '1"!"#! #$% $ #$%& /02 3 &$ # 4 56 $ *+"","+*" 4 +% 1"+6 4 56"#*"+"! 0"# $ *+"","+*" " % Dispões
Perspectiva isométrica de modelos com elementos diversos
Perspectiva isométrica de modelos com elementos diversos Introdução Algumas peças apresentam partes arredondadas, elementos arredondados ou furos, como mostram os exemplos abaixo: parte arredondada furo
Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC
CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ
CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?
É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva:
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Leia e resolva: a) No início do
Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma
Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns
Bingo 12. Material: tabuleiro (anexo), fichas de fixar (que não deslizem) ou lápis e dois dados.
I Bingo 12 Material: tabuleiro (anexo), fichas de fixar (que não deslizem) ou lápis e dois dados. Como jogar: cada jogador lança os dois dados na sua vez e, em seguida, coloca na sua parte do tabuleiro
13. Assinala com X o número que deves adicionar ao número 797,95 para obteres o número inteiro mais próximo.
Prova Final de Matemática 1.º Ciclo do Ensino Básico Prova 42/Época Especial/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno
Solução da prova da 1 a fase OBMEP 2008 Nível 1
OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,
SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK)
000 IT_023672 As balanças podem ser utilizadas para medir a massa dos alimentos nos supermercados. A reta numérica na figura seguinte representa os valores, em quilograma, de uma balança. 0 1 2 3 A partir
PROGRAMA PAINT: APRENDE A PINTAR
AGRUPAMENTO DE ESCOLAS D. JOÃO II Tutoriais para alunos PROGRAMA PAINT: APRENDE A PINTAR Equipa da BE Ano Lectivo 2010/2011 1º Passo: Entrar no Programa Para entrar neste programa faz um clique com o botão
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/12 Págs. Duração da prova: 150
A Geometria nas Provas de Aferição
Escola E.B. 2 e 3 de Sande Ficha de Trabalho de Matemática 6.º Ano A Geometria nas Provas de Aferição Nome: N.º Turma: 1. Assinala com um x a figura em que os triângulos representados são simétricos em
REGINA APARECIDA DE OLIVEIRA ASSESSORIA PEDAGÓGICA DE MATEMÁTICA LONDRINA, SETEMBRO DE 2011.
REGINA APARECIDA DE OLIVEIRA ASSESSORIA PEDAGÓGICA DE MATEMÁTICA LONDRINA, SETEMBRO DE 2011. 2 Planejamento de aula abordando alguns conteúdos de Geometria. Sugestão para: Educação Infantil e 1º ano. Tema
Canguru Matemático sem Fronteiras 2011
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 5. e 6. anos de escolaridade Nome: Turma: Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões
O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.
TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm
AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?
Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de
1 COMO ESTUDAR GEOMETRIA
Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:
