PISM 3 QUESTÕES FECHADAS GABARITO
|
|
|
- Helena Alves Raminhos
- 8 Há anos
- Visualizações:
Transcrição
1 PISM 3 QUESTÕES FECHADAS GABARITO 1ª Questão: Duas amigas vão se matricular em academias de ginástica. Na cidade onde moram há oito academias. Cada uma escolhe aleatoriamente a academia em que irá se matricular. Qual a probabilidade de essas amigas se matricularem em academias diferentes? A) 0,125 B) 0, C) 0,25 D) 0,5 E) 0,875 Qualquer que seja a academia escolhida por uma das amigas, a probabilidade da outra amiga escolher a mesma academia é 1. Portanto, a probabilidade das amigas se matricularem em 8 academias diferentes é , Gabarito: E
2 2ª Questão: Pedro vai viajar pela Europa e pretende visitar cinco países: França, Portugal, Espanha, Itália e Grécia. De quantas maneiras diferentes Pedro pode planejar a ordem das visitas a esses cinco países, visitando cada país uma única vez, se deseja começar sua viagem por Portugal e não quer terminar sua viagem pela Grécia? A) 5 B) 6 C) 18 D) 24 E) 120 Para definir a ordem das visitas, Pedro deve tomar cinco decisões, que serão os países a serem visitados. Chamemos de D1 a 1ª decisão a ser tomada, de D2 a 2ª decisão a ser tomada,..., por D5 a 5ª decisão a ser tomada. Note que o 1º país a ser visitado e o último são decisões mais restritivas. Portanto o melhor é começar por essas decisões. Assim designaremos por: D1: o 1º país a ser visitado. D2: o último país a ser visitado. D3: o 2º país a ser visitado. D4: o 3º país a ser visitado. D5: o 4º país a ser visitado. Tem-se que a decisão D1 pode ser tomada de uma única forma (Portugal). Tomada a decisão D1, a decisão D2 pode ser tomada de 3 formas diferentes (pois das 5 opções não se pode escolher nem Portugal e nem Grécia). Tomada a decisão D2, a decisão D3 pode ser tomada de 3 formas diferentes (dos 5 países deve-se excluir Portugal e o país escolhido como o último a ser visitado, que foi escolhido na decisão D2). Tomada a decisão D3, a decisão D4 pode ser tomada de 2 formas diferentes (dos 5 países deve-se excluir Portugal e o país escolhido como o último a ser visitado, que foi escolhido na decisão D2, e o 2º país a ser visitado, que foi escolhido na decisão D3). Tomada a decisão D4, a decisão D5 pode ser tomada de uma única forma, que é o país que não foi escolhido em nenhuma das 4 decisões iniciais. Pelo Princípio Fundamental da Contagem, o total de maneiras que se pode tomar o conjunto das 5 decisões é dado por: Gabarito: C
3 3ª Questão: Considere os polinômios px, q x e r x cujos graus serão denotados por gr p, gr r, respectivamente, com gr p gr q gr r. O grau gr h do polinômio h x 3 p x q x r x é igual a: A) gr p gr q B) 3 gr p gr q gr r C) 3 gr p gr q D) gr p gr q E) gr p Tem-se que Agora, sendo gr p q gr r Gabarito: A gr p q gr p gr q gr p gr q gr r., tem-se que 3 3 gr h gr p q r gr p q gr p q gr p gr q gr q e
4 4ª Questão: Uma empresa de transporte possui 5 veículos. Cada veículo comporta 14 passageiros, incluindo aqueles que viajam em pé. O preço da passagem para os que viajam em pé é R$ 1,20 e para os que viajam sentados é R$ 2,00. Em um certo dia, saíram 2 veículos com lotação máxima e 3 veículos com todos os assentos ocupados e sem passageiros em pé, transportando um total de 55 passageiros. Quanto a empresa arrecadou nesse dia? A) R$ 98,00 B) R$ 102,00 C) R$ 104,40 D) R$ 104,80 E) R$ 106,00 1ª solução: Sejam x o número máximo de passageiros que podem viajar assentados e y o número máximo de passageiros que podem viajar em pé em um veículo. Das informações do enunciado tem-se 5x 2y 55 x y 14 Da segunda equação obtém-se y 14 x. Substituindo essa expressão na 1ª equação do sistema: Daí segue que y Portanto nesse dia a empresa arrecadou: 5x 2 14 x 55 5x 28 2x 55 3x 27 x 9 59R$2,00 25R$1,20 R$102,00. 2ª solução: Nos dois veículos que saíram com lotação máxima, havia 28 pessoas. Logo, nos outros três veículos havia = 27 pessoas. Como nesses três veículos não havia pessoa em pé, todos os assentos estavam ocupados. Pode-se concluir que cada veículo comportava pessoas sentadas e, portanto, comportava pessoas em pé. Portanto nesse dia a empresa arrecadou: Gabarito: B 59R$2,00 25R$1,20 R$102,00.
5 5ª Questão: A equação da reta que passa pela origem e tangencia a circunferência 2 2 x y ponto de coordenadas positivas é: A) 3y 3x 0 B) 3y 3x 0 C) 3y 3x 0 D) 3y 3x 0 E) 3y 3x 0 Seja t a reta que passa pela origem e tangencia a circunferência. Seja P o ponto de tangência entre a reta t e a circunferência. Veja ilustração ao lado. O coeficiente angular da reta t é dado por r m tg t OP sendo r = 2. Para determinar OP, basta aplicar o Teorema de Pitágoras ao triângulo OPC: 4 4 em um OC OP PC 4 OP OP 12 OP 2 3 O coeficiente angular da reta t é dado por: m t Logo a equação da reta t é dada por: 3 y x ou, equivalentemente, 3y 3x 0. 3 Gabarito: A
Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções
Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1)
UFJF MÓDULO III DO PISM TRIÊNIO 01-01 PROVA DE MATEMÁTICA Questão 1 Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel
Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1)
UFJF MÓDULO III DO PISM TRIÊNIO 0-0 PROVA DE MATEMÁTICA Questão Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel é igual
Plano cartesiano, Retas e. Alex Oliveira. Circunferência
Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é
MATEMÁTICA Professores: Andrey, Cristiano e Julio
MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5
O problema proposto possui alguma solução? Se sim, quantas e quais são elas?
PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas
A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0
MATEMÁTICA FUVEST Na figura abaixo, a reta r tem equação y = x + no plano cartesiano Oxy. Além disso, os pontos B 0, B, B, B 3 estão na reta r, sendo B 0 = (0,). Os pontos A 0, A, A, A 3 estão no eixo
( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015.
Resposta da questão : [B] É fácil ver que a equação da reta s é = 3. Desse modo, a abscissa do ponto de interseção das retas p e s é tal 8 que 3 = + 3 =. 7 8 7 8 7 Portanto, temos = 3 = e a resposta é,.
Teste Intermédio 2012
Teste Intermédio 01 1. Uma escola básica tem duas turmas de 9. ano: a turma e a turma. Os alunos da turma distribuem-se, por idades, de acordo com o seguinte diagrama circular. Idades dos alunos da turma
CPV 82% de aprovação na ESPM
8% de aprovação na ESPM ESPM NOVEMBRO/00 Prova E MATemática. Assinale a alternativa cujo valor seja a soma dos valores das demais: a) 0 + b) 5% c) d) 75% de 3 e) log 0,5 a) 0 + + 3,5 5 b) 5 % 5 00 0 0,5
Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA
DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS
Matemática B Extensivo V. 7
GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros
3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº
º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles
CPV O cursinho que mais aprova na fgv
O cursinho que mais aprova na fgv FGV economia a Fase 0/dezembro/00 MATEMÁTICA 0 Na parte sombreada da figura, as extremidades dos segmentos de reta paralelos ao eixo y são pontos das representações gráficas
Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é
QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.
OBMEP NA ESCOLA Soluções
OBMEP NA ESCOLA 016 - Soluções Q1 Solução item a) A área total do polígono da Figura 1 é 9. A região inferior à reta PB é um trapézio de área 3. Isso pode ser constatado utilizando a fórmula da área de
COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROVA DE MATEMÁTICA É com grande satisfação que, se comparada com os anos anteriores, constatamos que a prova de matemática está tecnicamente melhor. Enunciados impecáveis, nível das questões
VESTIBULAR DA UFBA- FASE 2/ PROVA DE MATEMÁTICA. Resolução e comentários pela professora Maria Antônia C. Gouveia. QUESTÕES DE 01 A 06.
VESTIBULAR DA UFBA- FASE / 00-0- PROVA DE MATEMÁTICA Resolução e comentários pela professora Maria Antônia C. Gouveia. UESTÕES DE 0 A 06. LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA UESTÃO, FORMULE SUAS RESPOSTAS
Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette
Lista de Estudo para a Prova de 1º Ano Prof. Lafayette 1. Um triângulo ABC é retângulo em A e os ângulos em B e C são, respectivamente, de 30 e 60. A hipotenusa mede 4. a) Faça um desenho representativo.
Solução Comentada Prova de Matemática
18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão
Matriz de Referência da área de Matemática Ensino Médio
Matriz de Referência da área de Matemática Ensino Médio C1 Utilizar o conhecimento sobre números e suas representações em situações relacionadas a operações matemáticas, grandezas e unidades de medidas.
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano
Aula 7 Equação Vetorial da Reta e Equação Vetorial do plano Prof Luis Carlos As retas podem estar posicionadas em planos (R 2 ) ou no espaço (R 3 ). Retas no plano possuem pontos com duas coordenadas,
3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano
Resoluções de Exercícios
Resoluções de Exercícios MATEMÁTICA IV Co Capítulo 04 Ângulos entre Retas; Inequações no Plano; Circunferência 0 D Analisando o gráfico, tem-se que as coordenadas dos estabelecimentos são: 01 A) 03 C Assim,
Ponto 1) Representação do Ponto
Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria
Sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C a P(dCP) é o raio dessa circunferência.
Prof : André Costa. Equação da circunferência; Sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C a P(dCP) é o raio dessa circunferência. Então: Portanto, (x - a) 2
Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Polinômios de Taylor Aula 24 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Os polinômios
NÚMEROS COMPLEXOS
NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i
Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil
Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o
Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3
01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular
CPV - especializado na ESPM
- especializado na ESPM ESPM NOVEMBRO/006 PROVA E MATEMÁTICA 0. Entre as alternativas abaixo, assinale a de maior valor: a) 8 8 b) 6 c) 3 3 d) 43 6 e) 8 0 Das alternativas a) 8 8 = 3 3 b) 6 = 8 c) 3 3
Matemática Unidade I Álgebra Série 14 - Progressão aritmética. a 2 = 2 + a 1 = 3 a 3 = 3 + a 2 = 6 a 4 = 4 + a 3 = 10 a 5 = 5 + a 4 = 15.
01 a 2 = 2 + a 1 = 3 a 3 = 3 + a 2 = 6 a 4 = 4 + a 3 = 10 a 5 = 5 + a 4 = 15 Resposta: C 1 02 a 3 = a 2 + a 1 = 2 a 4 = a 3 + a 2 = 3 a 5 = a 4 + a 3 = 5 Resposta: D 2 03 O que Ronaldo percebeu é que a
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula discutiremos como obter as equações das retas tangentes a uma curva planar que é o gráfico de uma função. 1. Introdução
Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162
0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
Processo Seletivo Disciplina: MATEMÁTICA
1) Gabarito oficial definitivo - Questão 1 Denotando por S, R e C os salários de um supervisor, um repositor e um caixa, respectivamente, segue as seguintes relações: S = 2R C = S - 600 2S + 20C + 38R
UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0.
UFSC Matemática (Violeta) 1) Resposta: 8 01. Incorreta. f(0, ) = f(0, ) = 0 0. Correta. m < 0 m 1 < 0 1 Logo, f m = m 1 m 1 < m 1 < m 0. Correta. Pela função f(x) = x x z 08. Incorreta. Im(f) = z 16. Incorreta.
GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS
GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do
A solução do sistema de equações lineares. x 2y 2z = 1 x 2z = 3. 2y = 4. { z = 1. x = 5 y = 2. y = 2 z = 1
MATEMÁTICA e A solução do sistema de equações lineares y z = z = 3 é: y z = a) = 5, y = e z =. b) = 5, y = e z =. c) = 5, y = e z =. d) = 5, y = e z =. e) = 5, y = e z =. y z = z = 3 y z = y z = y = z
VESTIBULAR CEFET 2º SEMESTRE 2009 MATEMÁTICA
VESTIBULAR CEFET 2º SEMESTRE 2009 MATEMÁTICA QUESTÃO 01 O projeto de um avião de brinquedo, representado na figura abaixo, necessita de alguns ajustes em relação à proporção entre os eixos AB e CD. Para
GABARITO IME. Matemática
GABARITO IME Matemática Sistema ELITE de Ensino IME - 04/05 Questão 0 GABARITO COMENTADO Os inteiros a, a, a,..., a 5 estão em PA com razão não nula. Os termos a, a e a 0 estão em PG, assim como a 6, a
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),
Aula 5 Exercícios e Aplicações de Funções Quadráticas. Fabio Licht
Aula 5 Exercícios e Aplicações de Funções Quadráticas Fabio Licht Construção do gráfico da função do 2.º grau Passo a passo 1º passo: determinar as raízes da função 2º passo: estudo da concavidade 3º passo:
MATEMÁTICA ELEMENTAR II:
Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer
Medida de Ângulos em Radianos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Medida de Ângulos
XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO
XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. e 9º. anos) GABARITO GABARITO NÍVEL 1) B 6) D 11) B 16) C 1) A ) E 7) E 1) B 17) D ) D 3) B 8) B 13) D 18) C 3) D 4) B 9) E 14) D 19) C
Ordenar ou identificar a localização de números racionais na reta numérica.
Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando
GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).
GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d
Posição relativa entre retas e círculos e distâncias
4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no
2ª série do Ensino Médio
2ª série do Ensino Médio Geometria Plana Cálculo de Áreas e Relações na Circunferência. Polígonos Regulares, Polígonos Inscritos na Circunferência e Trigonometria. Relações Métricas no Triângulo Retângulo
Resolução de questões de provas específicas de
4.11.016 Resolução de questões de provas específicas de 4.11.016 #6 - Resoluções de Questões Específicas de Matemática 1. Em um triângulo equilátero de perímetro igual a 6 cm, inscreve-se um retângulo
QUESTÃO 16 (OBM) Ana começou a descer uma escada no mesmo instante em que Beatriz começou a
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 05 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (OBM) Ana começou a descer uma escada no
Proposta de Teste Intermédio Matemática A 11.º ano
GRUPO I. Vamos calcular o valor da função objetivo, L, em cada um dos vértices da região admissível. Vértice L O 0 0 L = 0 + 0 = 0 0 L = + 0 = L = + = C L = + = D 0 L = 0 + = função objetivo atinge o máimo,
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º
A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido
IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,
Matemática B Extensivo v. 8
Matemática B Etensivo v. 8 Eercícios y = Eio real = a = a = C = A + B ( = ( + B B = a y b = D C y = y = 6 9 Daí, a = 6 e b = 9 c = a + b c = 9 + 6 c = c = c = Portanto, a distância focal é dada por: c
Tecnologia em Construções de Edifícios
1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até
Instituto Nacional de Matemática Pura e Aplicada Atualizado em 16/06/2011. Resumo Geral dos Vídeos do PAPMEM por PROFESSOR
Instituto Nacional de Matemática Pura e Aplicada Atualizado em 16/06/2011 Resumo Geral dos Vídeos do PAPMEM por PROFESSOR ANO MÊS DIA PROFESSOR ASSUNTO 2007 JANEIRO 25 Homenagem ao Prof. Morgado Matemática
Instituto Nacional de Matemática Pura e Aplicada Atualizado em 16/06/2011. Resumo Geral dos Vídeos do PAPMEM por ASSUNTO
Instituto Nacional de Matemática Pura e Aplicada Atualizado em 16/06/2011 Resumo Geral dos Vídeos do PAPMEM por ASSUNTO ANO MÊS DIA PROFESSOR ASSUNTO 2008 JULHO 22 Prof. Eduardo Wagner Aplicações da Geometria
RESOLUÇÕES E RESPOSTAS
MATEMÁTICA GRUPO CV 0/00 RESOLUÇÕES E RESPOSTAS QUESTÃO a) No o 40 reservatório, há 600 (= 40 + 60) litros de mistura; em cada litro há L 600 de álcool. No o reservatório, há 40 (= 80 + 60) litros de mistura;
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de
Unicamp - 2 a Fase (17/01/2001)
Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$
Exercícios de Aprofundamento Matemática Geometria Analítica
1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
Unidade 7 - Bases e dimensão. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013
MA33 - Introdução à Álgebra Linear Unidade 7 - Bases e dimensão A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Nesta unidade introduziremos dois conceitos
Retas e círculos, posições relativas e distância de um ponto a uma reta
Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo
Matemática 1 a QUESTÃO
Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =
QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)
Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.
Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício
Resolução Lista 2 - Cálculo I
Resolução Lista 2 - Cálculo I Exercício 2 - página 35: Sabendo que = 0 e 1. encontre os valores de, Para solucionar este exercício, basta substituir os valores de s que foram pedidos no enunciado na função
MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01
MATEMÁTICA - CEFET013 Professor Marcelo QUESTÃO 01 Em um plano, uma reta que passa pelo ponto P(8,10) tangencia a circunferência x +y 4x 6y 3 = 0 no ponto A. A medida do segmento PA, em unidades de comprimento,
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano
84 x a + b = 26. x + 2 x
Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$ 96,00, e unidades do produto B, pagando R$ 84,00. Sabendo-se que o total de unidades compradas foi de 6 e que o preço
GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.
GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.
(a) R$ 2000,00. (b) R$ 1500,00. (c) R$ 2500,00. (d) R$ 1000,00. (e) R$ 3000,00. (f) I. R.
1) Um investidor tem 2/5 do seu dinheiro empregado em títulos, que lhe asseguram um rendimento a juros simples de 0,5% por mês, e o restante em ações, que lhe proporcionam 30% de lucro ao ano. Qual foi
o anglo resolve a prova de Matemática do ITA
o anglo resolve a prova de Matemática do ITA Código: 858005 É trabalho pioneiro. Prestação de serviços com tradição de confiabilidade. Construtivo, procura colaborar com as Bancas Examinadoras em sua tarefa
Resolução do Simulado Camiseta Preta
Resolução do Simulado amiseta Preta Questão 01 Vejamos a simulação da quantidade de partidas que um time deverá jogar em ambos os anos nesta competição. Primeiro Ano Primeira Fase 6 = 6 6 = 6 partidas
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão
POLINÔMIOS. Nível Básico
POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é
Conteúdo Provas Discursivas. 9 A/B ano Data Disciplina Conteúdo Narrativa a partir de música Redação 13/02 Capítulo 1 A Rússia e a CEI - pg 8 19/02
9 A/B ano Narrativa a partir de música Capítulo 1 A Rússia e a CEI - pg 8 a 19. Anotações do caderno. Ciências/Química Razão e proporção; segmentos proporcionais; Teorema de Tales. Conceitos da poesias,
Geometria Analítica - Aula
Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola
1. As funções tangente e secante As expressões para as funções tangente e secante são
CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
TESTE DIAGNÓSTICO DE MATEMÁTICA DO 10.º ANO. Informações Gerais. TDmat 10.º ano
TESTE DIAGNÓSTICO DE MATEMÁTICA DO 10.º ANO Informações Gerais TDmat 10.º ano Objetivo Quem pode participar Averiguar os conhecimentos dos alunos acerca de alguns conteúdos de Matemática que foram tratados
Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados.
17 Equações Diferenciais de Segunda Ordem Copyright Cengage Learning. Todos os direitos reservados. 17.2 Equações Lineares Não Homogêneas Copyright Cengage Learning. Todos os direitos reservados. Equações
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.
PROVA DE MATEMÁTICA II
PROVA DE MATEMÁTCA 0. Em uma determinada prova, um professor observou que 0% dos seus alunos obtiveram nota exatamente igual a, % obtiveram média 6,, e a média m do restante dos alunos foi suficiente,
A equação da circunferência
A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada
2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº
º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Na resposta a cada um dos itens deste grupo, selecione a única opção correta.
Exame Nacional exame nacional do ensino secundário Decreto Lei n. 9/0, de de julho Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos
GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA
GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 6 de outubro de 010 Questão 01 GABARITO DISCURSIVA A base de um prisma reto ABCA 1 B 1 C 1 é um triângulo com o lado AB igual ao lado
MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75
MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MTEMÁTI - 3o ciclo 01 - a hamada Proposta de resolução aderno 1 1. 1.1. omo o ponto de coordenadas (,) pertence ao gráfico de f, então f() = 1.. omo a função f é uma função de proporcionalidade
MATEMÁTICA 3 GEOMETRIA PLANA
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 13 Circunferência e Círculo Circunferência é o lugar geométrico dos pontos do plano cujas distâncias a um ponto fixo (centro) são iguais a uma
