Unicamp - 2 a Fase (17/01/2001)
|
|
|
- Liliana Caiado Weber
- 9 Há anos
- Visualizações:
Transcrição
1 Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$ 1,0 a) Qual é o plano mais vantajoso para alguém que utilize minutos por mês? b) A partir de quantos minutos de uso mensal o plano A é mais vantajoso que os outros dois? De acordo com os tetos, temos: C A = 3 + 0,0. C B = 0 + 0,80. C C = 0 + 1,0. onde é o número de minutos de uso. Logo: a) para = : C A = 47,0 C B = 40,00 C C = 30,00 O plano mais vantajoso é o C. b) C A = C B C A = C C 3 + 0, = 0 + 0, , = 1,0 0,3 = 1 0,7 = 3 = 0 = 0 a partir de 0 minutos. Graficamente: 60 C (R$) C C C B C A (min) 1
2 UNICAMP a FASE 0. Um fio de 48cm de comprimento é cortado em duas partes, para formar dois quadrados, de modo que a área de um deles seja quatro vezes a área do outro. a) Qual deve ser o comprimento de cada uma das partes do fio? b) Qual será a área de cada um dos quadrados formados? a) 48 cm y 4 + 4y = 48 + y = 1 y I y II y < 1 e y < 1 y S I = 4 S II = 4y = 4 (1 ) = 4 ( ) = 0 ( 3) = 0 = 6 = = 8 4 = 3 cm y = 4 4y = 16 cm b) S I = = 8 = 64 cm S II = y = 4 = 16 cm 3 ± 16 = 4 ou = A figura abaio é a planificação de uma caia sem tampa: X/ X X/ X a) Encontre o valor de, em centímetros, de modo que a capacidade dessa caia seja de 0 litros. b) Se o material utilizado custa R$ 10,00 por metro quadrado, qual é o custo de uma dessas caias de 0 litros considerando-se apenas o custo da folha retangular plana?
3 a FASE UNICAMP 3 X/ X X/ X a) / b) V = S B. h =.. 3 = para V = 0 l = 0 dm 3 = cm 3 3 = = =. 10 = 0 cm +. = = = = 70 S = = 8400 cm 1 m 10 4 cm 8400 cm = custo m 10,00 0,84 C C = R$ 8,40 = 0,84 m
4 4 UNICAMP a FASE 04. O teorema fundamental da aritmética garante que todo número natural n > 1 pode ser escrito como um produto de números t t t primos. Além disso, se n = p 1 r 1 p... pr, onde p 1, p,..., p r são números primos distintos, então o número de divisores positivos de n é d (n) = (t 1 + 1) (t + 1)... (t r + 1). a) Calcule d (168), isto é, o número de divisores positivos de 168. b) Encontre o menor número natural que tem eatamente 1 divisores positivos. a) = Logo d (168) = (3 + 1) (1 + 1) (1 + 1) = 4.. = 16 divisores positivos b) para d (n) = 1 devemos ter 1 =. 3 = (4 + 1) ( + 1) O menor n natural será obtido com as menores bases associadas aos maiores epoentes. Assim: n = 4. 3 = = Considere três circunferências em um plano, todas com o mesmo raio r = cm e cada uma delas com centro em um vértice de um triângulo eqüilátero cujo lado mede 6 cm. Seja C a curva fechada de comprimento mínimo que tangencia eternamente as três circunferências. a) Calcule a área da parte do triângulo que está fora das três circunferências. b) Calcule o comprimento da curva C. A T (área do triângulo ABC) A A S (área do setor circular) B C a) A T = 36 3 = o 60 A S = o. 4π = π A 1 = 9 3 3π. 3 A1 = (9 3 π) cm b) C = πr + r = 3 r = 3 logo C = π ( 3 ) C = 4π ( 3 1) cm
5 a FASE UNICAMP 06. Uma empresa deve enlatar uma mistura de amendoim, castanha de caju e castanha-do-pará. Sabe-se que o quilo de amendoim custa R$,00, o quilo da castanha de caju, R$ 0,00 e o quilo de castanha-do-pará, R$ 16,00. Cada lata deve conter meio quilo da mistura e o custo total dos ingredientes de cada lata deve ser de R$,7. Além disso, a quantidade de castanha de caju em cada lata deve ser igual a um terço da soma das outras duas. a) Escreva o sistema linear que representa a situação descrita acima. b) Resolva o referido sistema, determinando as quantidades, em gramas, de cada ingrediente por lata. Sendo, amendoim caju y castanha-do-pará z a) + y + z = 0, (I) + 0y + 16z =,7 (II) + z y = + z = 3y (III) 3 b) (III) em (I), temos: 4y = 0, y = 0,1kg.( ) + z = 0, z = 3, 11z = 1,37 z = 0,1kg = 0,kg as quantidades são: 0 g de amendoim, 1 g de castanha-do-pará e 1 g de caju. 07. O sistema de numeração na base 10 utiliza, normalmente, os dígitos de 0 a 9 para representar os números naturais, sendo que o zero não é aceito como o primeiro algarismo da esquerda. Pergunta-se: a) Quantos são os números naturais de cinco algarismos formados por cinco dígitos diferentes? b) Escolhendo-se ao acaso um desses números do item a, qual a probabilidade de que seus cinco algarismos estejam em ordem crescente? a) Algarismos distintos = 7.16 números (regra do produto) b) Algarismos crescentes sob essa condição, é impossível considerar o algarismo zero em qualquer posição. Portanto o total de números com algarismos em ordem crescente é: C 9, = Logo a probabilidade pedida é: P = =
6 6 UNICAMP a FASE 08. Considere, no plano y, as retas y = 1, y = e y + = 0. a) Quais são as coordenadas dos vértices do triângulo ABC formado por essas retas? b) Qual é a área do triângulo ABC? (r) y = 1 (s) y = (t) y + = 0 a) A = (r) (s) y = 1 y = = 3; y = 1 A = (3, 1) B = (r) (t) y = 1 y+ = 0 C = (s) (t) y = y+ = 0 = 3; y = 1 B = ( 3, 1) = ; y = B = (, ) b) A = D = D, onde = 4 1 A = 4 = 1 A = As populações de duas cidades, A e B, são dadas em milhares de habitantes pelas funções A(t) = log 8 (1+t) 6 e B(t) = log (4t + 4) onde a variável t representa o tempo em anos. a) Qual é a população de cada uma das cidades nos instantes t = 1 e t = 7? b) Após certo instante t, a população de uma dessas cidades é sempre maior que a da outra. Determine o valor mínimo desse instante t e especifique a cidade cuja população é maior a partir desse instante. a) cidade A A (1) = log 8 6 = A (1) = 000 habitantes A (7) = log = 6 A (7) = 6000 habitantes cidade B B (1) = log 8 = 3 B (1) = 3000 habitantes B (7) = log 3 = B (7) = 000 habitantes
7 a FASE UNICAMP 7 b) A (t) = log (1 + t) A (t) =. log (1 + t) B (t) = log 4. (1 + t) B (t) = + log (1 + t) sendo, = log (1 + t) então, A (t) =. log (1 + t) A () = B (t) = + log (1 + t) B () = + y 1 B() A() O t da intersecção dos gráficos é: = + = log (1 + t) = t = 3 anos o instante mínimo é t = 3 anos e a cidade cuja população é maior a partir desse instante é A, como mostra o gráfico. 10. Considere a equação trigonométrica sen θ cos θ + 1 sen θ = 0. a) Mostre que não são soluções dessa equação os valores de θ para os quais cos θ = 0. b) Encontre todos os valores de cos θ que são soluções da equação. sen θ cos θ + 1 sen θ = 0 a) sen θ cos θ + senθ cosθ = 0 Se cosθ = 0 for solução, sen θ. 0 + senθ. 0 = 0 sen θ = 0, logo senθ = 0, o que é impossível, logo cosθ = 0 não é solução da equação. b) sen θ cos θ + senθ cosθ = 0, como cosθ 0 sen θ cos θ senθcosθ + cos θ cos θ cos θ = 0 tg θ + tgθ = 0 Seja tgθ = (I) + = 0 = (II) = 1 (III)
8 8 UNICAMP a FASE Substituindo (II) em (I) em: senθ tgθ = cosθ = senθ = cosθ sen θ + cos θ = 1 4 cos θ + cos θ = 1 cos θ = 1 cosθ = Substituindo (III) em (I) vem: senθ tgθ = 1 cosθ = 1 ± senθ = cosθ sen θ + cos θ = 1 cos θ = 1 cos θ = 1 cosθ = ± Portanto os valores de cosθ são: ± e ± 11. Considere o polinômio: p() = a) Verifique se o número compleo + 3i é raiz desse polinômio. b) Prove que p() > 0 para todo número real >. a) p() = Uma solução para este item é determinarmos as raízes inteiras. Como p( ) = 0, é uma das raízes, logo: = 0 = + 3i ou = 3i Logo + 3i é raiz b) p() = ( + ) 1443 ( ) f() g() Como g() > 0, C então os sinais de p() serão os mesmos de f(), isto é: + p() > 0, C / >
9 a FASE UNICAMP 9 1. A base de uma pirâmide é um triângulo eqüilátero de lado L = 6 cm e arestas laterais das faces A = 4 cm. a) Calcule a altura da pirâmide. b) Qual é o raio da esfera circunscrita à pirâmide? V Sejam L AM = MC = = 3 cm L. 3 BM = = 3 3 cm BM DM = = 3 3 cm H A = 4 cm A VM = m = 7 cm (Pitágoras em VAM) B VD = H =? D M L = 6 cm C a) Aplicando o Teorema de Pitágoras no VDM, temos: m = H + 3 H = cm b) Pela simetria de figura, o centro O da esfera pertence à reta suporte da altura H, podendo estar contida nela ou não. Supondo O H, temos: V R A = 4 R... é o raio da esfera (R < H) AD = n = 3 cm (Pitágoras no ADM) H = O R A H R B D n M Aplicando o Teorema de Pitágroas no AOD, temos: R = (H R) + n R = ( R) + ( ) 3 R = 4 cm C
10 10 UNICAMP a FASE Portanto O H e a figura correta é: V B P H D A R R H C O onde: BD = p = 3 cm Aplicando o Teorema de Pitágoras no BDO, temos: R = p + (R H) R = ( ) 3 + (R ) R = 4 cm
as provas de Matemática e Inglês da Unicamp 2ª fase
as provas de Matemática e Inglês da Unicamp ª fase - 00 Matemática ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. Não basta escrever apenas o resultado final: é
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
Exercícios de Aprofundamento Mat Geom Espacial
1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento
Vestibular Nacional Unicamp 2001
Vestibular Nacional Unicamp 2001 Provas da 2 ª Fase Inglês 1 INGLÊS Responda a todas as perguntas EM PORTUGUÊS 13. No diálogo apresentado no quadrinho abaixo, o que a mãe quer salientar para a criança
Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais. n(a B) = 23, n(b A) = 12, n(c A) = 10, n(b C) = 6 e n(a B C) = 4,
NOTAÇÕES N = {0, 1, 2, 3,...} i: unidadeimaginária;i 2 = 1 Z: conjuntodosnúmerosinteiros z : módulodonúmeroz C Q: conjuntodosnúmerosracionais z: conjugadodonúmeroz C R: conjuntodosnúmerosreais Re z: parterealdez
a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3
Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados
IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,
Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A.
Questão TIPO DE PROVA: A Sabe-se que o quadrado de um número natural k é maior do que o seu triplo e que o quíntuplo desse número k é maior do que o seu quadrado. Dessa forma, k k vale: a) 0 b) c) 6 d)
a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G
MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados
Exercícios de Revisão
Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D
Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração
começou a caminhar às 7h35min. gastou = 25 minutos. Então ele
MATEMÁTICA Caminhando sempre com a mesma velocidade, a partir do marco zero, em uma pista circular, um pedestre chega à marca dos 2 500 metros às 8 horas, e aos 000 metros às 8h5min. a) A que horas e minutos
1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}
1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)
Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162
0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5
CPV - especializado na ESPM
- especializado na ESPM ESPM JULHO/006 PROVA E MATEMÁTICA. Assinale a alternativa correspondente à epressão de menor valor: a) [( ) ] [ ] c) [( ) ] [ ] [ ] Calculando-se cada item, temos: a) [( ) ] = =
Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001
Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e
Questão 2. Questão 1. Questão 3. alternativa D. alternativa D. alternativa B
NOTAÇÕES C: conjunto dos números compleos. Q: conjunto dos números racionais. R: conjunto dos números reais. Z: conjunto dos números inteiros. N {0,,,,...}. N {,,,...}. 0: conjunto vazio. A \ B { A; B}.
(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500.
(UFRGS/), semanas corresponde a (A) dias e ora dias, oras e 4 minutos (C) dias, oras e 4 minutos (D) dias e oras (E) dias MATEMÁTICA (A) a + b c = a b c = (C) a + b + c = (D) a b + c = (E) a = b = c 5
Matemática B Extensivo V. 7
GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.
Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância
Prova Vestibular ITA 2000
Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar
1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c
Universidade Federal de Viçosa Centro de Ciências Eatas Departamento de Matemática a Lista MAT - Cálculo I 7/II. Verifique se as seguintes igualdades são válidas, seja por integração ou por derivação:
Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C]
Gabarito: Resposta da questão 1: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x r. Logo, os lados do triângulo medem r,
Matemática: Geometria Plana Vestibulares UNICAMP
Matemática: Geometria Plana Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y. Para cada número real t tal que 0 t, considere o triângulo T de vértices em (0, 0),
p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}.
MATEMÁTICA NOTAÇÕES = {0,,,,...} : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária; i = Izl: módulo do
Prova Vestibular ITA 1995
Prova Vestibular ITA 1995 Versão 1.0 ITA - 1995 01) (ITA-95) Seja A = n ( 1) n!. π + sen ; n ℵ n! 6 a) (- 1) n n. b) n. c) (- 1) n n. d) (- 1) n+1 n. e) (- 1) n+1 n. Qual conjunto abaixo é tal que sua
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
CPV - especializado na ESPM
- especializado na ESPM ESPM NOVEMBRO/006 PROVA E MATEMÁTICA 0. Entre as alternativas abaixo, assinale a de maior valor: a) 8 8 b) 6 c) 3 3 d) 43 6 e) 8 0 Das alternativas a) 8 8 = 3 3 b) 6 = 8 c) 3 3
3 de um dia correspondem a é
. (UFRGS/) Na promoção de venda de um produto cujo custo unitário é de R$ 5,75 se lê: Leve, pague. Usando as condições da promoção, a economia máima que poderá ser feita na compra de 88 itens deste produto
NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B
NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento
2a. Lista de Exercícios
UFPR - Universidade Federal do Paraná Departamento de Matemática Prof. José Carlos Eidam CM04 - Cálculo I - Turma C - 0/ a. Lista de Eercícios Teoremas do valor intermediário e do valor médio. Seja h()
NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.
R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante
REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO
REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D
TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada
84 x a + b = 26. x + 2 x
Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$ 96,00, e unidades do produto B, pagando R$ 84,00. Sabendo-se que o total de unidades compradas foi de 6 e que o preço
Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Teste Diagnóstico do módulo A1
Nome: Nº 10º IG 1ª Parte 1. Qual é o perímetro da estrela representada na figura ao lado, sabendo que é formada por quatro circunferências, cada uma com 5 cm de raio, um quadrado e quatro triângulos equiláteros?
Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (
Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD
Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1.
Simulado AFA 1. Uma amostra de estrangeiros, em que 18% são proficientes em inglês, realizou um exame para classificar a sua proficiência nesta língua. Dos estrangeiros que são proficientes em inglês,
a quantidade de minutos, após as 6 h, em que se iniciará o módulo musical de número n. a) Escreva uma expressão matemática para h n
MATEMÁTICA 1 A Rádio Sinfonia inicia sua programação às 6 h. A programação é formada por módulos musicais de 0 minutos, intercalados por mensagens comerciais de minutos. Em vista disso, o primeiro módulo
RESOLUÇÕES E RESPOSTAS
MATEMÁTICA GRUPO CV 0/00 RESOLUÇÕES E RESPOSTAS QUESTÃO a) No o 40 reservatório, há 600 (= 40 + 60) litros de mistura; em cada litro há L 600 de álcool. No o reservatório, há 40 (= 80 + 60) litros de mistura;
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. 5º Teste de avaliação versão A.
Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema III Trigonometria e Números Compleos 5º Teste de avaliação versão A Grupo I As cinco questões deste grupo são de escolha múltipla. Para
Resolução do Simulado Camiseta Preta
Resolução do Simulado amiseta Preta Questão 01 Vejamos a simulação da quantidade de partidas que um time deverá jogar em ambos os anos nesta competição. Primeiro Ano Primeira Fase 6 = 6 6 = 6 partidas
Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02
Questão 01 Um grupo de alunos de uma escola deveria visitar o Museu de Ciência e o Museu de História da cidade. Quarenta e oito alunos foram visitar pelo menos um desses museus. 20% dos que foram ao de
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e
a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n
ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0
Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2
MATEMÁTICA 20 Um objeto parte do ponto A, no instante t = 0, em direção ao ponto B, percorrendo, a cada minuto, a metade da distância que o separa do ponto B, conforme figura. Considere como sendo de 800
( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que
Se A, B, C forem conjuntos tais que ( B) =, n( B A) n A =, nc ( A) =, ( C) = 6 e n( A B C) 4 n B =, então n( A ), n( A C), n( A B C) nesta ordem, a) formam uma progressão aritmética de razão 6. b) formam
MATEMÁTICA. Questões de 05 a 12
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 05 a 12 05. Um dos vértices de um triângulo equilátero é o ponto P (0,1) do plano cartesiano e os outros dois estão sobre a reta r : x + y + 1 = 0. Faça o que
Prova da UFRGS
Prova da UFRGS - 2013 01. Um adulto humano saudável abriga cerca de 100 bilhões de bactérias, somente em seu trato digestivo. Esse número de bactérias pode ser escrito como a) 10 9. b) 10 10. c) 10 11.
1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:
7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.
Questão 1. alternativa A
NOTAÇÕES C: conjunto dos números compleos R: conjunto dos números reais Z: conjunto dos números inteiros N {0,,,, } N {,,, } z: conjugado do número z C i: unidade imaginária; i arg z: um argumento de z
PROVA DE MATEMÁTICA QUESTÃO 31 QUESTÃO 32. Sejam a, b e c números reais e positivos tais que. c. Então, é CORRETO afirmar que. A) a 2 = b 2 + c 2
PROVA DE MATEMÁTICA QUESTÃO 3 Sejam a, b e c números reais e positivos tais que. c Então, é CORRETO afirmar que A) a 2 = b 2 + c 2 B) b = a + c C) b 2 = a 2 + c 2 D) a = b + c QUESTÃO 32 Um carro, que
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO DA
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (9) -7 O ELITE RESOLVE IME 00 PORTUGUÊS/INGLÊS Você na elite das universidades! FUVEST 00 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (9) 5-0 O ELITE RESOLVE FUVEST
7. Calcule o valore de x + y z sabendo que as
. Considere as matrizes: A 3, B 3 e C 3 3. Assinale a alternativa que apresenta um produto ineistente: A) A B B) B A C) C A D) A t C E) B t C 3 3. Seja a matriz A =. 3 3 O termo 3 da matriz X = A é igual
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,
Questão 1 Questão 2. Resposta. Resposta
Questão 1 Questão Um jogo consiste num dispositivo eletrônico na forma de um círculo dividido em 10 setores iguais numerados, como mostra a figura. A figura mostra um sistema rotativo de irrigação sobre
01. (UFRGS-98) Se P é o produto de todos os números primos menores que 1000, o dígito que ocupa a casa das unidades de P é
01. (UFRGS-98) Se P é o produto de todos os números primos menores que 1000, o dígito que ocupa a casa das unidades de P é (A) 0 (B) 1 (C) 2 (D) 5 (E) 9 02. (UFRGS-98) A soma de dois números reais A e
Sólidos Inscritos e Circunscritos
Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal
Conteúdos Exame Final e Avaliação Especial 2017
Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..
MATEMÁTICA. A(6; 5) t IV) m t. c) Para 0 < θ <, resolva a equação: θ + cos θ + 1 =. sen 2 1
MATEMÁTICA A diferença entre dois números inteiros positivos é. Ao multiplicar um pelo outro, um estudante cometeu um engano, tendo diminuído em 4 o algarismo das dezenas do produto. Para conferir seus
Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.
GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c
1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria
1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.
1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)
ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE
www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE IME PORTUGUÊS/INGLÊS Você na elite das universidades! ITA MATEMÁTICA www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE ITA MATEMÁTICA GABARITO ITA
RESPOSTAS ESPERADAS MATEMÁTICA
RESPOSTS ESPERDS MTEMÁTI Questão 1 a) omo o ângulo de giro do ponteiro é diretamente proporcional à velocidade, podemos escrever 10 40km x 104 km Desse modo, x 104 10 / 40 91 Resposta: O ângulo mede 91º
as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2
MATEMÁTICA 19 c Sejam as funções f e g, de em, definidas, respectivamente, por f(x) = x e g(x) = x 1. Com relação à função gof, definida por (gof) (x) = g(f(x)), é verdade que a) a soma dos quadrados de
Lista de Exercícios 3 1
Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = + 7 2 5 b g = 7/ +
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2453 Cálculo Diferencial e Integral I Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores EXERCÍCIOS. Calcule
1 = 0,20, teremos um aumento percentual de 20% no gasto com
6ROXomR&RPHQWDGDURYDGH0DWHPiWLFD 0. Suponha que o gasto com a manutenção de um terreno, em forma de quadrado, seja diretamente proporcional à medida do seu lado. Se uma pessoa trocar um terreno quadrado
Matemática: Trigonometria Vestibulares UNICAMP
Matemática: Trigonometria Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. a) Para θ
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I
Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I TPC nº entregar no dia 25 02 201 1. Uma jovem, sentada num baloiço, é largada de uma certa altura.
IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
IME - 2003 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, em que n é um número inteiro positivo.
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
ITA18 - Revisão. LMAT9A - ITA 2016 (objetivas) Questão 1. Considere as seguintes armações:
ITA18 - Revisão LMAT9A - ITA 2016 (objetivas) Questão 1 Considere as seguintes armações: I. A função f(x) = log 10 é estritamente crescente no intervalo ]1, + [. II. A equação 2 x+2 = 3 x 1 possui uma
Colégio Militar de Porto Alegre 2/11
DE ENSINO BÁSICO, TÉCNICO E TECNOLÓGICO 013 Escolha a única resposta certa, assinalando-a com um X nos parênteses à esquerda QUESTÃO 1 O valor de 74 + 43 + 31+ 1+ 13 + 7 + 3 + 1 é igual a (A) 13 (B) 13
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
MATEMÁTICA. Conjunto dos números inteiros. Conjugado do número complexo z. Matriz transposta da matriz A. Matriz inversa da matriz A
MATEMÁTICA SÍMBOLO SIGNIFICAÇÃO Z Conjunto dos números inteiros z Conjugado do número complexo z A t Matriz transposta da matriz A A 1 Matriz inversa da matriz A u.c. unidade de comprimento u.a. unidade
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.
Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e
a) 6% b) 7% c) 70% d) 600% e) 700%
- MATEMÁTICA 01) Supondo-se que o número de vagas em um concurso vestibular aumentou 5% e que o número de candidatos aumentou 35%, o número de candidatos por vaga para esse curso aumentou: a) 8% b) 9%
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2453 Cálculo Diferencial e Integral I (Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores EXERCÍCIOS.
ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998
PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log
MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01
MATEMÁTICA - CEFET013 Professor Marcelo QUESTÃO 01 Em um plano, uma reta que passa pelo ponto P(8,10) tangencia a circunferência x +y 4x 6y 3 = 0 no ponto A. A medida do segmento PA, em unidades de comprimento,
Questão 1. Questão 2. Questão 3. Resposta. Resposta
Questão João entrou na lanchonete OG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0. Na mesa ao lado, algumas pessoas pediram 8 hambúrgueres, sucos de laranja e cocadas, gastando R$ 7,00.
MATEMÁTICA. Questões de 01 a 04
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,
UFRGS MATEMÁTICA
UFRGS 00 - MATEMÁTICA ) Alguns especialistas recomendam que, para um acesso confortável aos bebedouros por parte de crianças e usuários de cadeiras de rodas, a borda desses equipamentos esteja a uma altura
CPV O cursinho que mais aprova na fgv
O cursinho que mais aprova na fgv FGV economia a Fase 0/dezembro/00 MATEMÁTICA 0 Na parte sombreada da figura, as extremidades dos segmentos de reta paralelos ao eixo y são pontos das representações gráficas
