Transferência de Calor
|
|
|
- Cacilda Desconhecida Brezinski
- 8 Há anos
- Visualizações:
Transcrição
1 Transferência de Calor Condução em Superfícies Estendidas Filipe Fernandes de Paula Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz de Fora Engenharia Mecânica 1/36
2 Introdução 2/36
3 Introdução O termo superfícies estendidas é referente a um caso específico em que há condução de calor em um sólido e convecção nas fronteiras do mesmo; A transferência de calor em superfícies estendidas tem a peculiaridade de que a direção da transferência por condução é perpendicular à transferência por convecção; 2/36
4 Introdução Existem três maneiras de aumentar a transeferência de calor: Aumentar h; Aumentar Ts T ; Aumentar A através de aletas. 3/36
5 Introdução 4/36
6 Introdução 5/36
7 Introdução 6/36
8 Introdução 7/36
9 Equação da Aleta 8/36
10 Equação da Aleta Para encontrar a equação da aleta, é preciso fazer um balanço de energia em um elemento infinitesimal da seção transversal da aleta; 8/36
11 Equação da Aleta A forma geral para equação de distribuição de temperatura, é dada por: d 2 ( ) ( ) T 1 dx 2 + da c dt 1 A c dx dx h da s (T T ) = 0 (1) A c k dx 9/36
12 Aletas de Seção Transversal Uniforme 10/36
13 Aletas de Seção Transversal Uniforme A equação 1, para aletas de seção uniforme, pode ser simplificada para: d 2 T dx 2 hp ka c (T T ) = 0 (2) 10/36
14 Aletas de Seção Transversal Uniforme Para simplificar a equação, pode-se fazer as seguintes substituições: θ(x) = T (x) T (3) Então a equação 2 pode ser reescrita como: m 2 = hp ka c (4) d 2 θ dx 2 m2 θ = 0 (5) 11/36
15 Aletas de Seção Transversal Uniforme A equação 5 é uma equação diferencial ordinária de segunda ordem, homogênia de coeficientes constantes. Sua solução geral é dada por: θ(x) = C 1 e mx + C 2 e mx (6) As condições de contorno são dadas em θ(0) e θ(l); A condição em θ(l) (ponta da aleta) pode variar; θ(0) é igual para todos os casos, e vale: θ(0) = T b T = θ b (7) que resulta em: C 1 + C 2 = θ b (8) 12/36
16 Aletas de Seção Transversal Uniforme 13/36
17 Aletas de Seção Transversal Uniforme 14/36
18 Aletas de Seção Transversal Uniforme 15/36
19 Aletas de Seção Transversal Uniforme Para aletas longas, pode-se considerar L ; Para ml = 2, 65, 99% da máxima transferência de calor é atingida. Assim, pode-se considerar uma aleta infinita quando, L = 2, 65 m (9) 16/36
20 Comprimento Corrigido O comprimento corrigido é um artifício para se trabalhar com aletas que apresentam convecção como se fossem de ponta adiabática; O comprimento corrigido é dado por: L c = L + A c P (10) 17/36
21 Aletas de Seção Transversal Uniforme 18/36
22 Exemplo Exemplo 1 - Uma aleta é adicionada em uma superfície como experimento. É utilizada uma aleta circular de cobre (k = 396W /m K) com 0, 25cm de diâmetro. A base está a 95 C e o ar ambiente está a 25 C com h = 10W /m 2 K. Calcule a perda de calor assumindo, (a) A aleta é infinitamente longa. Qual o comprimento necessário para a aleta ser considerada infinitamente longa? (b) A aleta possui 2, 5cm de comprimento e a ponta está sobre o mesmo coeficiente convectivo que o corpo; 19/36
23 Desempenho de Aletas 20/36
24 Efetividade de Aletas Aletas são usadas para aumentar a taxa de transferência de calor aumentando a área superfícial. No entanto, aletas inserem uma resistência de condução na superfície original; Por isso, não existe garantia de aumento de transferência de calor. Uma maneira de avaliar o desempenho de uma aleta é a efetividade, que é definida como a razão entre a taxa de transferência com a aleta e taxa de transferência sem a aleta; ε f = q f ha c,b θ b (11) onde A c,b é a área da aleta na base; Normalmente, a utilização de aletas é justificada para ε aleta 2. 20/36
25 Efetividade de Aletas Para uma aleta que pode ser considerada infinita, a efetividade pode ser dada por: ( ) kp 1/2 ε = (12) ha c Analisando qualitativamente a equação 15, pode-se chegar as seguintes conclusões: A efetividade aumenta com a escolha de um material de elevado k; A efetividade aumenta quando P/Ac é elevado, isso significa aletas finas; A efetividade diminui quando o h é elevado, por isso o uso de aletas é indicado quando o fluido é um gás. 21/36
26 Efetividade de Aletas A efetividade de aletas também pode ser interpretada como uma razão entre a resistência de convecção da base e resistência da aleta; R t,f = θ b q f (13) R t,b = 1 ha c,b (14) ε f = R t,b R t,f (15) 22/36
27 Eficiência de Aletas É outra medida de desempenho de aletas; A máxima taxa de transferência de calor possível em uma aleta é quando toda aleta está a temperatura da base (T b ), resultando na maior variação de temperatura possível (θ b = T b T ); η f = q f q max = q f ha f θ b (16) onde Af é a área superfícial da aleta. 23/36
28 Exemplo Exemplo 2 - Considere uma aleta retangular de alumínio (k = 200W /m K) de 3mm de espessura, 75mm de comprimento e 1m de largura. A temperatura da base é de 300 C, a temperatura ambiente de 25 C e h = 20W /m 2 K. Calcule: (a) A taxa de calor e distribuição da temperatura na aleta, desprezando as perdas pela ponta; (b) A eficência da aleta em cada um dos casos. 24/36
29 Aletas de Seção Transversal Não-Uniformes 25/36
30 Aletas de Seção Transversal Não-Uniformes 25/36
31 Aletas de Seção Transversal Não-Uniformes 26/36
32 Aletas de Seção Transversal Não-Uniformes 27/36
33 Aletas de Seção Transversal Não-Uniformes 28/36
34 Aletas de Seção Transversal Não-Uniformes 29/36
35 Aletas de Seção Transversal Não-Uniformes 30/36
36 Eficiência Global de Aleta 31/36
37 Eficiência Global de Aleta A eficiência η o é referente a um conjunto de aletas e a base que elas estão fixadas; η o = q t = q t (17) q max ha t θ b 31/36
38 Eficiência Global de Aleta A área A t está associada às aletas e à área superfícial da base. É dada por: A t = NA f + A b (18) q t é a transferência total de calor em relação a área A t. Pode ser calculado com a seguinte expressão: q t = ha b θ b + Nq t (19) [ q t = ha t 1 NA ] f (1 η f ) θ b (20) A t 32/36
39 Eficiência Global de Aleta Substituindo a eq. 20 na eq. 17, tem-se η o = 1 NA f A t (1 η f ) (21) Também é possível escrever a resistência térmica de um conjunto de aleta como: R t,o = θ b = 1 (22) q t η o ha t 33/36
40 Eficiência Global de Aleta 34/36
41 Eficiência Global de Aleta No primeiro caso, a aleta é usinada diretamente na superfície da base; No segundo caso (mais comum), a aleta é presa à base, o que resulta em uma resistência de contato. Assim, R t,o(c) e η o(c) podem ser calculados como se segue, R t,o(c) = θ b q t = η o(c) = 1 NA f A t 1 η o(c) ha t (23) ( 1 η f C 1 = 1 + η f ha f ( R t,c A c,b C 1 ) ) (24) (25) Onde R t,c é a resistência térmica de contato. 35/36
42 Exemplo Exemplo 3 - Uma placa de cobre (k = 396W /mk) quadrada de 2, 25cm de lado, possui um conjunto 4X 4 de aletas ciĺındrica com D = 0, 25cm, L = 2, 5cm igualmente espaçadas a uma temperatura T = 95 C. Ar, com temperatura T = 25 C, escoa sobre a placa com aletas, proporcionando um h = 10W /m 2 K. Determine: (a) A taxa de troca de calor; (b) A eficiência; (c) A efetividade. 36/36
Aula 6 de FT II. Prof. Gerônimo
Aula 6 de FT II Prof. Gerônimo Transferência de calor em superfícies estendidas Superfície estendida é comumente usado para descrever um caso especial importante envolvendo a transferência de calor por
EP34D Fenômenos de Transporte
EP34D Fenômenos de Transporte Prof. Dr. André Damiani Rocha [email protected] Transferência de Calor em Superfícies Estendidas - Aletas 2 É desejável em muitas aplicações industriais aumentar a taxa
Transferência de Calor
Transferência de Calor Condução Unidimensional, em Regime Permanente com Geração Interna de Calor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica
Capítulo 8: Transferência de calor por condução
Capítulo 8: Transferência de calor por condução Aletas Condução de calor bidimensional Transferência de calor É desejável em muitas aplicações industriais aumentar a taxa de transferência de calor de uma
Transferência de Calor
Transferência de Calor Aletas e Convecção em Escoamento Interno e Externo Prof. Universidade Federal do Pampa BA000200 Campus Bagé 19 de junho de 2017 Transferência de Calor: Convecção 1 / 30 Convecção
Capítulo 3 CONDUÇÃO DE CALOR 1-D, REGIME PERMANENTE
Capítulo 3 CONDUÇÃO DE CALOR 1-D, REGIME PERMANENTE Parede plana T 1 T s1 T s2! x k T $ # &+! " x % y k T $ # &+! " y % z k T $ T # &+!q ρc p " z % t d " dx k dt % $ ' 0 q # dx & x ka dt dx cte T( x) ax
Transferência de Calor
Transferência de Calor Trocadores de Calor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz
Transmissão de calor
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano Prof. Doutor Engº Jorge Nhambiu 1 Aula 7 * 3.6 Superfícies Estendidas Balanço de energia para uma face Alhetas com secção
Transferência de Calor
Transferência de Calor Condução Bidimensional Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de
Transferência de Calor
Transferência de Calor Condução em Regime Transiente Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
Utilizado quando se necessita rejeitar calor a baixas temperaturas. O uso do AR como meio de resfriamento tem as seguintes vantagens:
TROCADORES DE CALOR ALETADOS E/OU COMPACTOS Utilizado quando se necessita rejeitar calor a baixas temperaturas. Pode-se utilizar como meios de resfriamento: ÁGUA ou AR O uso do AR como meio de resfriamento
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. 3º ano. Prof. Doutor Engº Jorge Nhambiu 1
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano Prof. Doutor Engº Jorge Nhambiu 1 Aula 7 * 3.6 Superfícies Estendidas Balanço de energia para uma face Alhetas com secção
Estudo do Comportamento e Desempenho de Aleta Tipo Pino
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA Estudo do Comportamento e Desempenho de Aleta Tipo Pino RELATÓRIO DE TRABALHO DE
ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa)
ENGENHARIA DE MATERIAIS Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] TRANSFERÊNCIA DE
Transferência de Calor
Transferência de Calor Escoamento Sobre uma Placa Plana Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
Formulário para Transferência de Calor e Massa I
Formulário para Transferência de Calor e Massa I Profs. Vicente/Santiago FEB/UNESP-Bauru Balanço de energia Ė Ac = Ėe Ės +ĖG para um corpo a temperatura uniforme: Ė Ac = ρ V c p T t ei de Fourier para
CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA
CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA 1) Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e gesso, conforme indicado na figura. Em um dia frio
Transferência de Calor Condução e Convecção de Calor
Transferência de Calor Condução e Material adaptado da Profª Tânia R. de Souza de 2014/1. 1 O calor transferido por convecção, na unidade de tempo, entre uma superfície e um fluido, pode ser calculado
Transferência de Calor
Transferência de Calor Condução Unidimensional, em Regime Permanente e Sem Geração Interna de Calor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica
Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados.
Condução de Calor Lei de Fourier A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados Considerações sobre a lei de Fourier q x = ka T x Fazendo Δx 0 q taxa de calor [J/s] ou
Transferência de Calor
Transferência de Calor Escoamento Interno - Parte 2 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
Condução de calor Transiente
Fenômenos de Transporte Capitulo 8 cont. Condução de calor Transiente Prof. Dr. Christian J. Coronado Rodriguez IEM - UNIFEI Condução de calor transitória Se as condições de contorno térmica são dependentes
EP34D Fenômenos de Transporte
EP34D Fenômenos de Transporte Prof. Dr. André Damiani Rocha [email protected] Transferência de Calor por Condução 2 Transferência de Calor por Condução Análise da Condução A análise da condução diz respeito
Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO EM REGIME TRANSIENTE
Os exercícios e figuras deste texto foram retirados de diversas referências bibliográficas listadas no programa da disciplina 1 FENÔMENOS DE TRANSPORTE Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO
Capitulo 8 Transferência de Calor por Condução
Fenômenos de Transporte Capitulo 8 Transferência de Calor por Condução Prof. Dr. Christian J. Coronado Rodriguez IEM - UNIFEI TRANSFERÊNCIA DE CALOR POR CONDUÇÃO Quando existe um gradiente de temperatura
Condução de Calor Unidimensional com Geração de Energia
Condução de Calor Unidimensional com Geração de Energia Equação geral (k constante) E Ac 1 T t E e Ė s = T x T y T z E G q k (.15) Regime Estacionário Fluxo de Calor ocorre em apenas uma direção (unidimensional)
Universidade Federal de Sergipe, Departamento de Engenharia Química 2
ELABORAÇÃO DE FERRAMENTA DE CÁLCULO PARA A DETERMINAÇÃO DO COEFICIENTE CONVECTIVO EM EXPERIMENTOS DE CONVECÇÃO FORÇADA AO REDOR DE UM CORPO SUBMERSO E ALETAS TORRES, F. C. O. 1, BARBOSA NETO, A. M. 2 1
PNV-2321 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR
PNV-31 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR TRANSMISSÃO DE CALOR 1) INTRODUÇÃO Sempre que há um gradiente de temperatura no interior de um sistema ou quando há contato de dois sistemas com temperaturas
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Condensadores Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de
FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO
FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO PROF.: KAIO DUTRA Convecção Térmica O modo de transferência de calor por convecção é composto por dois mecanismos. Além da transferência
Transferência de Calor
Transferência de Calor Escoamento Cruzado Sobre Matrizes Tubulares Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
29/11/2010 DEFINIÇÃO:
Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS TÉRMICAS AT-056 M.Sc. Alan Sulato de Andrade [email protected] 1 DEFINIÇÃO: Trocadores de calor são dispositivo utilizados
Exame de Transmissão de Calor Mestrado Integrado em Engenharia Mecânica e Engenharia Aeroespacial 30 de Janeiro de º Semestre
Eame de Transmissão de Calor Mestrado Integrado em Engenharia Mecânica e Engenharia Aeroespacial 30 de Janeiro de 2012 1º Semestre Observações: 1- Duração do eame: 3 h 2- Tempo aconselhado para a parte
ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa)
ENGENHARIA DE MATERIAIS Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] TRANSFERÊNCIA DE
1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar
CONDUÇÃO DE CALOR EM REGIME TRANSIENTE Condições variam com o tempo problema transiente ocorre quando as condições de contorno variam. ) Temperatura na superfície de um sólido é alterada e a temperatura
Coletores solares planos
Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica Coletores solares planos 2 º. semestre, 2015 Coletores planos 1 Coletores solares 3 Coletores solares 4 2
DETERMINAÇÃO EXPERIMENTAL DO COEFICIENTE DE TRANSFERÊNCIA DE CALOR POR CONVECÇÃO EXPERIMENTAL DETERMINATION OF THE CONVECTION HEAT TRANSFER COFFICIENT
DETERMINAÇÃO EXPERIMENTAL DO COEFICIENTE DE TRANSFERÊNCIA DE CALOR POR CONVECÇÃO E. J. P. Miranda Júnior 1, R. S. Gonçalves 2 ¹Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, IFMA, Campus
Convecção Forçada Interna a Dutos
Convecção Forçada Interna a Dutos Vicente Luiz Scalon Faculdade de Engenharia/UNESP-Bauru Disciplina: Transmissão de Calor Sumário Escoamento no interior de dutos Velocidade Média Região de Entrada Hidrodinâmica
GERAÇÃO DE CALOR UNIFORME EM SÓLIDOS. Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna.
GEAÇÃO DE CALO UNIFOME EM SÓLIDOS Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna. Se manifesta como um aumento da temperatura do meio. Exemplos:
Transferência de Calor
Transferência de Calor Condução em Paredes Planas e Cilíndricas Prof. Universidade Federal do Pampa BA000200 Campus Bagé 15 de maio de 2017 Transferência de Calor: Condução 1 / 28 Condução: Lei de Fourier
Transferência de Calor
Transferência de Calor Introdução à transferência de calor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano Aula 3 Equação diferencial de condução de calor Condições iniciais e condições de fronteira; Geração de Calor num Sólido;
Transferência de Calor
Transferência de Calor Escoamento Cruzado Sobre Cilindros e Esferas Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
Condições variam com o tempo. 1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar
Condução de calor em regime transiente Condições variam com o tempo ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar ) Passa-se algum tempo antes
EN 2411 Aula 13 Trocadores de calor Método MLDT
Universidade Federal do ABC EN 24 Aula 3 Trocadores de calor Método MLDT Trocadores de calor São equipamentos utilizados para promover a transferência de calor entre dois fluidos que se encontram sob temperaturas
Condensação
Condensação Condensação Condensação Condensação Condensação Condensação em Filme Tal como no caso de convecção forçada, a transferência de calor em condensação depende de saber se o escoamento é laminar
Transferência de Calor
Transferência de Calor Escoamento Interno - Parte 1 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
3ª Lista de Exercícios: TRANSFERÊNCIA DE CALOR (RESOLUCIONÁRIO)
UNIVESIDADE FEDEA FUMINENSE Escola de Engenharia HidroUFF aboratório de Hidráulica Disciplina: FENÔMENOS DE ANSPOE E HIDÁUICA Professores: Gabriel Nascimento (Depto. de Eng. Agrícola e Meio Ambiente) Elson
Coletores solares planos
Coletores solares planos Coletores solares planos desempenho instantâneo x longo prazo Comportamento instantâneo: curvas de desempenho do equipamento função de dados meteorológicos e dados operacionais
INSTITUTO SUPERIOR TÉCNICO UNIVERSIDADE TÉCNICA DE LISBOA. Guia do ensaio de laboratório para a disciplina: Transmissão de Calor
INSTITUTO SUPERIOR TÉCNICO UNIVERSIDADE TÉCNICA DE LISBOA Guia do ensaio de laoratório para a disciplina: Transmissão de Calor Análise da transferência de calor em superfícies com alhetas ou pinos. João
Classificação de Trocadores de Calor
Trocadores de Calor Trocadores de Calor Equipamento usados para implementar a troca de calor entre dois ou mais fluidos sujeitos a diferentes temperaturas são denominados trocadores de calor Classificação
Transferência de Calor
Transferência de Calor Convecção Natural - Parte 2 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
Introdução a radiação Térmica (Parte 2)
Fenômenos de Transporte Capitulo 9 cont. Introdução a radiação Térmica (Parte 2) Prof. Dr. Christian J. Coronado Rodriguez IEM - UNIFEI Seassuperfíciesforemcorposnegros,entãoε 1 =ε 2 = 1 ; α 1 = α 2 =
Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira
Capítulo 4 Condução Bidimensional em Regime Estacionário Prof. Dr. Santiago del Rio Oliveira 4. Considerações Gerais A distribuição de temperaturas é caracterizada por duas coordenadas espaciais, ou seja:
Aula 3 de FT II. Prof. Geronimo
Aula 3 de FT II Prof. Geronimo Raio crítico de isolamento O conceito de raio crítico de isolamento, é introduzido para geometrias onde a área de troca de calor varia com uma dimensão especificada. Por
Condução unidimensional em regime estacionário, Sistemas Radiais
Com freqüência, em sistemas cilíndricos e esféricos há gradientes de temperatura somente na direção radial, o que permite analisá-los como sistemas unidimensionais. Um exemplo comum é o cilindro oco, cujas
CAP 3 CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE EM PAREDES CILÍNDRICAS (SISTEMAS RADIAIS)
CAP 3 CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE EM PAREDES CILÍNDRICAS (SISTEMAS RADIAIS) Prof. Antonio Carlos Foltran EXEMPLOS DE APLICAÇÃO 2 Carregamento de forno LD em aciaria Fonte: Companhia Siderúrgica
ENG 3006 TRANSFERÊNCIA DE CALOR E MASSA 1 o SEMESTRE DE Capítulo 11 Trocadores de Calor
ENG 3006 TRANSFERÊNCIA DE CALOR E MASSA 1 o SEMESTRE DE 2015 Capítulo 11 Trocadores de Calor Tópicos Tipos de trocadores de calor; O coeficiente global de transferência de calor; Análise térmica de trocadores
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Energia 2 Energia Transferência de Energia por Calor Sempre que existir diferença de temperatura haverá transferência de calor. Se
Programa Analítico de Disciplina ENG278 Transferência de Calor e Massa
0 Programa Analítico de Disciplina ENG78 Transferência de Calor e Massa Departamento de Engenharia Agrícola - Centro de Ciências Agrárias Número de créditos: Teóricas Práticas Total Duração em semanas:
ESTUDO NUMÉRICO DA INFLUÊNCIA DA CONVECÇÃO FORÇADA E USO DE ALETAS PARA TROCA DE CALOR CONVECTIVA
ESTUDO NUMÉRICO DA INFLUÊNCIA DA CONVECÇÃO FORÇADA E USO DE ALETAS PARA TROCA DE CALOR CONVECTIVA Luciano Wotikoski Sartori ([email protected]). Aluno de graduação do curso Engenharia Mecânica.
Capítulo 8: Transferência de calor por condução
Capítulo 8: ransferência de calor por condução Condução de calor em regime transiente Condução de calor em regime transiente Até o momento só foi analisada a transferência de calor por condução em regime
Aula 4 de FT II. Prof. Gerônimo
Aula 4 de FT II Prof. Gerônimo Equação diferencial de Condução Vamos considerar a taxa de geração interna de calor q = E g. Coordenada x, y e z. Regime transiente. Considerando: q = q Volume de controle
TRANSMISSÃO DE CALOR resumo
TRANSMISSÃO DE CALOR resumo convecção forçada abordagem experimental ou empírica Lei do arrefecimento de Newton Taxa de Transferência de Calor por Convecção 𝑞"#$ ℎ𝐴 𝑇 𝑇 ℎ 1 𝐴 ℎ - Coeficiente Convectivo
Transferência de Calor 1
Transferência de Calor Guedes, Luiz Carlos Vieira. G94t Transferência de calor : um / Luiz Carlos Vieira Guedes. Varginha, 05. 80 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World
ESTE Aula 2- Introdução à convecção. As equações de camada limite
Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:
TRANSFERÊNCIA DE CALOR
UNIVERSIDADE DE SÃO PAULO Faculdade de Ciências Farmacêuticas FBT0530 - Física Industrial TRANSFERÊNCIA DE CALOR A maioria dos processos que acontecem nas indústrias farmacêutica e de alimentos envolve
ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa)
ENGENHARIA DE MATERIAIS Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] AULA 3 REVISÃO E
Resistências Térmicas em Paralelo 53 Exercícios 54 Exercícios recomendados 54 III. Transporte por convecção 55 Alguns fatos do cotidiano 55
SUMÁRIO I. Introdução Portfolio de Fenômenos de Transporte II 1 Algumas palavras introdutórias 2 Senso comum ciência 4 Uma pequena história sobre o nascimento da ciência 4 Das Verdades científicas 6 Tese
Transferência de Calor
Transferência de Calor Introdução à Convecção Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de
ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa)
ENGENHARIA DE MATERIAIS Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] AULA 5 CONDUÇÃO
Mecanismos de transferência de calor
Mecanismos de transferência de calor Condução Potência calor: Q cond A T 1 T x : condutibilidde térmica; A: área de transferência x: espessura ao longo da condução T 1 T : diferença de temperatura ifusividade
ESTE Aula 1- Introdução à convecção. A camada limite da convecção
Universidade Federal do ABC ESTE013-13 Aula 1- Introdução à convecção. A camada limite da convecção Convecção Definição: Processo de transferência de calor entre uma superfície e um fluido adjacente, quando
Aula 21 Convecção Natural
Aula 1 Convecção Natural UFJF/Departamento de Engenharia de Produção e Mecânica Prof. Dr. Washington Orlando Irrazabal Bohorquez Considerações Gerais A convecção natural tem lugar quando há movimento de
Transferência de Calor Condução de Calor
Transferência de Calor Condução de Calor Material adaptado da Profª Tânia R. de Souza de 2014/1. 1 Lei de Fourier A Lei de Fourier é fenomenológica, ou seja, foi desenvolvida a partir da observação dos
UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL
UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOM3083 e LOM3213 Fenômenos de Transporte Prof. Luiz T. F. Eleno Lista de exercícios 2 1. Considere uma parede aquecida por convecção de um
h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície
\CONVECÇÃO FORÇADA EXTERNA " Fluxo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taxa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência
Transferência de calor em superfícies aletadas
Transferência de calor em superfícies aletadas Por ue usar aletas? Interior condução Na fronteira convecção = ha(ts - T) Para aumentar : - aumentar o h - diminuir T - aumentar a área de troca de calor
3. CONVECÇÃO FORÇADA INTERNA
3. CONVECÇÃO FORÇADA INTERNA CONVECÇÃO FORÇADA NO INTERIOR DE TUBOS Cálculo do coeficiente de transferência de calor e fator de atrito Representa a maior resistência térmica, principalmente se for um gás
Prefácio... Abreviaturas e Definições... Simbologia...
Sumário Prefácio... Abreviaturas e Definições.................................................. Simbologia... VII XI XIII Capítulo 1 Características Termodinâmicas Preliminares de Ciclo Fechado com Turbina
EXCEL COMO FERRAMENTA NA RESOLUÇÃO DE PROBLEMAS QUE ENVOLVEM A TAXA DE TRANSFERÊNCIA DE CALOR EM ALETAS TIPO PINO
Instituto Federal Fluminense Búzios - RJ EXCEL COMO FERRAMENTA NA RESOLUÇÃO DE PROBLEMAS QUE ENVOLVEM A TAXA DE TRANSFERÊNCIA DE CALOR EM ALETAS TIPO PINO Daiane Ribeiro Dias 1 [email protected]
Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2
Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2 1. (Incropera et al., 6 ed., 7.2) Óleo de motor a 100ºC e a uma velocidade de 0,1 m/s escoa sobre as duas
Capítulo 7: Escoamento Interno
Capítulo 7: Escoamento Interno Trocadores de calor Temperatura de mistura Tm é a temperatura que se obtêm ao retirar uma amostra de fluido na seção transversal do duto, colocar em um copo e fazer uma mistura.
Lista de Exercícios para P2
ENG 1012 Fenômenos de Transporte II Lista de Exercícios para P2 1. Estime o comprimento de onda que corresponde à máxima emissão de cada de cada um dos seguintes casos: luz natural (devido ao sol a 5800
LABORATÓRIO DE ENGENHARIA QUÍMICA I
LABORATÓRIO DE ENGENHARIA QUÍMICA I Prof. Gerônimo Virgínio Tagliaferro FENÔMENOS DE TRANSPORTE EXPERIMENTAL Programa Resumido 1) Cominuição e classificação de sólidos granulares 2) Medidas de Vazão em
RESOLUÇÃO COMECE DO BÁSICO - FÍSICA
SOLUÇÃO CB1. RESOLUÇÃO COMECE DO BÁSICO - FÍSICA A curvatura da lâmina se dá devido aos diferentes coeficientes de dilatação dos metais que compõem a lâmina SOLUÇÃO CB2. A equação do calor sensível é:
h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície
CONVECÇÃO FORÇADA EXTERNA " Fluo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Revisão Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz de
5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera
5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera Nas Seções 5.5 e 5.6, foram desenvolvidas aproximações pelo primeiro termo para a condução
Q t. Taxa de transferência de energia por calor. TMDZ3 Processos de Transmissão de calor. Prof. Osvaldo Canato Jr
Taxa de transferência de energia por calor P Q t no SI : Q J; t s; P J / s W ( watt) Condução Para um bloco com corte transversal de área A, espessura x e temperaturas T 1 e T 2 em suas faces, têm-se:
Descrição Macroscópica de um Gás ideal
Descrição Macroscópica de um Gás ideal O gás não tem volume fixo ou uma pressão fixa O volume do gás é o volume do recipiente A pressão do gás depende do tamanho do recipiente A equação de estado relaciona
EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas
Universidade Federal do ABC EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas EN2411 Consideremos o escoamento de um fluido na direção normal do eixo de um cilindro circular,
Transferência de Energia
APLICAÇÃO DO FRIO NA CADEIA ALIMENTAR CTeSP em GASTRONOMIA, TURISMO E BEM-ESTAR Definição é a passagem/transmissão de energia, na forma de calor, de um ponto para outro. A transferência de calor efectua-se
Equação Geral da Condução
Equação Geral da Condução Para um sistema unidimensional demonstrouse: q x = k A T x x Para um sistema multidimensional o fluxo de calor é vetorial: q,, =q x,, i q y,, j q z,, k = k T i k T j k T k =k
