Transferência de Calor
|
|
|
- Jonathan Carreiro Pereira
- 7 Há anos
- Visualizações:
Transcrição
1 Transferência de Calor Condução Unidimensional, em Regime Permanente e Sem Geração Interna de Calor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz de Fora Engenharia Mecânica 1/28
2 Introdução 2/28
3 Introdução Para problemas unidimensinais e em que se pode considerar o regime permanente, a equação do calor pode ser simplifica da seguinte forma: ( d k dt ) + q = 0 (1) dx dx Inicialmente vamos assumir que não há geração interna de energia no sistema e a condutividade térmica é constante. Dessa forma, a equação do calor toma a seguinte forma: k d 2 T dx 2 = 0 (2) 2/28
4 A Parede Plana 3/28
5 A Equação do Calor para Parede Plana Para condução unidimensional em uma parede plana, temperatura é função da coordenada x, e calor é transferido apenas nessa direção; Calor é transferido por: Convecção de um fluido a temperatura T,1 para uma superfície da parede; Condução na parte interna da parede; Convecção da outra superfície da parede para um fluido a temperatura T,2. 3/28
6 A Equação do Calor para Parede Plana A distribuição de temperatura na parede pode ser encontrada resolvendo a seguinte EDO de segunda ordem Resolvendo a equação 3, tem-se k d 2 T dx 2 = 0 (3) T (x) = (T s,2 T s,1 ) x L + T s,1 (4) Da equação 4 podemos perceber que para condução unidimensional, em regime permanente, em uma parede plana, condutividade térmica constante e sem geração interna de calor, a temperatura varia linearmente com x. 4/28
7 A Equação do Calor para Parede Plana Utilizando a Lei de Fourier e a equação 4, é possível obter a taxa de transferência de calor e o fluxo de calor; q x = ka dt dx = ka L (T s,1 T s,2 ) (5) q x = q x A = k L (T s,1 T s,2 ) (6) 5/28
8 A Equação do Calor para Parede Plana 6/28
9 Resistência Térmica 7/28
10 Resistência Térmica Para o caso unidimensional, sem geração interna de calor e propriedades constantes, um importante conceito é sugerido pela equação 5, a idéia de resistência térmica; Como resistência elétrica está associada à condução de energia elétrica, a resistência térmica está associada à transferência de calor, nos seguintes sentidos, Energia fluindo; Uma força motriz que mantém o fluxo; Uma resistência ao fluxo; Utilizando a equação 5 podemos definir a resistência térmica de condução como R t,cond T s,1 T s,2 q x = L ka [K/W ] (7) 7/28
11 Resistência Térmica Utilizando a definição de taxa de troca de calor dada em função da resistência térmica, q = T s,1 T s,2 R t (8) é possível escrever uma relação para resistência térmica de convecção. R t,conv = 1 ha (9) 8/28
12 Resistência Térmica 9/28
13 A Parede Composta 10/28
14 Parede Composta É uma parede formada por camadas de diferentes materiais; Pode-se analisar tais estruturas como várias resistências térmicas em paralelo e em série; Assim, a taxar de calor pode ser escrita como q x = T Rt (10) Onde T é a diferença global de temperatura. 10/28
15 Parede Composta 11/28
16 Parede Composta Em termos de sistemas compósitos, é útil trabalhar com o coeficiente global de transferência de calor U, que é definido em termos da seguinte equação, q x UA T (11) R tot = R t = T q = 1 UA (12) 12/28
17 Parede Composta Utilizando o conceito de parede composta, pode-se tratar problemas como os da figura abaixo; Apesar de o fluxo de calor ser bidimensinal, pode-se assumir unidimensionalidade; No caso a assumi-se que as superfícies normais à direção x, são isotérmicas; No caso b assumi-se que as superfícies paralelas à direção x, são adiabáticas; 13/28
18 Parede Composta Os resultados para R tot serão diferentes; Os valores de q a e q b diferem entre si e entre o valor real de transferência de calor; A medida que o valor de kf k g aumenta, essas diferenças aumentam. 14/28
19 Resistência de Contato 15/28
20 Resistência de Contato Apesar de ignorada até o momento, a queda de temperatura entre as interfaces das camadas de uma parede composta pode assumir valores consideráveis; Essa queda de temperatura é devido à resistência de contato, que e definida como, R t = T A T B q x (13) Alguns métodos podem ser utilizados para diminuir a resistência de contato: Para sólidos com condutividade térmica maior que a do fluido interfacial, pode-se aumentar a área de contato do sólido, aumentando a pessão de contato e/ou diminuindo a rugosidade superficial; Também é possivel utilizar fluidos interfaciais de alta condutividade térmica. 15/28
21 Resistência de Contato 16/28
22 Exemplo Exemplo 1 - Um fino circuito integrado (chip) de siĺıcio e um substrato de alumínio de 8 mm de espessura estão separados por uma junta de 0, 02 mm de epoxy. O chip e o substrato possuem 10 mm de lado e suas superfícies expostas são resfriads a ar, com um coeficiente de convecção 100 W /m 2 K. Se o chip dissipa 10 4 W /m 2 em condições normais, ele irá operar abaixo da temperatura máxima permitida de 85 C? 17/28
23 Exemplo 18/28
24 Exemplo Exemplo 2 - Uma casa possui uma parede compósita de madeira (k m = 0, 12W /m K), isolamento de fibra de vidro (k f = 0, 038W /m K) e placa de gesso (k g = 0, 17W /m K). Em um inverno gelado, os coeficientes de convecção são h o = 60W /m 2 K e h i = 30W /m 2 K. A área total da parede é 350m 2. (a) Determine uma expressão simbólica para a resistência térmica total do sistema; (b) Determine o perda de calor pela parede; (c) Se o dia está com ventos fortes, aumentando h o para 300W /m 2 K, determine a porcentagem de aumento da perda de calor; 19/28
25 Sistemas Radiais 20/28
26 Coordenadas Ciĺındricas Para um sistema em coordenadas ciĺındricas, a equação do calor unidimensional, sem geração interna de calor fica na seguinte forma, ( 1 d kr dt ) = 0 (14) r dr dr Resolvendo a EDO 19 tem-se, T (r) = T ( ) s,1 T s,2 r ln(r 1 /r 2 ) ln + T s,2 (15) r 2 q r = 2πLk(T s,1 T s,2 ) ln(r 2 /r 1 ) R t,cond = ln(r 2/r 1 ) 2πLk (16) (17) 20/28
27 Coordenadas Ciĺındricas 21/28
28 Coordenadas Ciĺındricas 22/28
29 Coordenadas Esféricas As equações para coordenadas esféricas são, q r = 4πk(T s,1 T s,2 ) 1 1 (18) r 1 r 2 R t,cond = 1 4πk ( 1 r 1 1 r 2 ) (19) 23/28
30 Exemplo Exemplo 3 - Uma tubulação é composta de duas camadas de meteriais com k A e k B, que são separados por um fino aquecedor elétrico em que a resistência de contato é despresível. Líquido é bombeado pelo tubo a uma temperatura T,i e com h i. A superfície externa está a T,o e com h o. Em condições de regime permanente, o aquecedor dissipa q h. (a) Desenhe o circuito térmico do sistema e expresse todas as resistências em termos das variáveis relevantes; (b) Obtenha uma expressão que pode ser usada para determinar a temperatura do aquecedor; (c) Obtenha uma expressão para q o /q. i 24/28
31 Resumo dos Resultados para Condução Unidimensional 25/28
32 Resumo dos Resultados 25/28
33 Raio Crítico de Isolamento 26/28
34 Raio Crítico de Isolamento Um cilindro que dissipa calor sujeito a convecção externa e envolto por um isolante térmico pode apresentar comportamentos diferente dependendo da espessura do isolamento: Um isolamento muito com alta espessura pode aumentar a troca de calor por convecção devido ao aumento da área superficial; O aumento do isolamento pode diminuir a transferência de calor. 26/28
35 Raio Crítico de Isolamento dr tot dr R tot = R cond + Rconv (20) R tot = ln(r/r i) 2πkL + 1 2πrLh (21) = 1 2πkrL + 1 2πr 2 Lh = 0 (22) r cr = k h (23) 27/28
36 Raio Crítico de Isolamento 28/28
Transferência de Calor
Transferência de Calor Condução em Paredes Planas e Cilíndricas Prof. Universidade Federal do Pampa BA000200 Campus Bagé 15 de maio de 2017 Transferência de Calor: Condução 1 / 28 Condução: Lei de Fourier
CAP 3 CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE EM PAREDES CILÍNDRICAS (SISTEMAS RADIAIS)
CAP 3 CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE EM PAREDES CILÍNDRICAS (SISTEMAS RADIAIS) Prof. Antonio Carlos Foltran EXEMPLOS DE APLICAÇÃO 2 Carregamento de forno LD em aciaria Fonte: Companhia Siderúrgica
CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA
CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA 1) Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e gesso, conforme indicado na figura. Em um dia frio
Aula 3 de FT II. Prof. Geronimo
Aula 3 de FT II Prof. Geronimo Raio crítico de isolamento O conceito de raio crítico de isolamento, é introduzido para geometrias onde a área de troca de calor varia com uma dimensão especificada. Por
FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO
FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO PROF.: KAIO DUTRA Convecção Térmica O modo de transferência de calor por convecção é composto por dois mecanismos. Além da transferência
CONDUÇÃO DE CALOR PÁTRICIA KUERTEN GUIZONI SUELI ALBERTON SALVALAGIO
CONDUÇÃO DE CALOR PÁTRICIA KUERTEN GUIZONI SUELI ALBERTON SALVALAGIO CONTEÚDO TRANSFERÊNCIA DE CALOR CONDUÇÃO LEI DE FOURIER CONDUTIVIDADE TÉRMICA DIFUSIVIDADE TÉRMICA CONDUÇÃO DE CALOR UNIDIMENSIONAL
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano Aula 3 Equação diferencial de condução de calor Condições iniciais e condições de fronteira; Geração de Calor num Sólido;
UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL
UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOM3083 e LOM3213 Fenômenos de Transporte Prof. Luiz T. F. Eleno Lista de exercícios 2 1. Considere uma parede aquecida por convecção de um
GERAÇÃO DE CALOR UNIFORME EM SÓLIDOS. Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna.
GEAÇÃO DE CALO UNIFOME EM SÓLIDOS Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna. Se manifesta como um aumento da temperatura do meio. Exemplos:
Transferência de Calor Condução de Calor
Transferência de Calor Condução de Calor Material adaptado da Profª Tânia R. de Souza de 2014/1. 1 Lei de Fourier A Lei de Fourier é fenomenológica, ou seja, foi desenvolvida a partir da observação dos
Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados.
Condução de Calor Lei de Fourier A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados Considerações sobre a lei de Fourier q x = ka T x Fazendo Δx 0 q taxa de calor [J/s] ou
Exercícios e exemplos de sala de aula Parte 3
Introdução à transferência de calor PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 3 1- Uma placa de alumínio, com 4mm de espessura,
Capítulo 8: Transferência de calor por condução
Capítulo 8: Transferência de calor por condução Aletas Condução de calor bidimensional Transferência de calor É desejável em muitas aplicações industriais aumentar a taxa de transferência de calor de uma
Condições variam com o tempo. 1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar
Condução de calor em regime transiente Condições variam com o tempo ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar ) Passa-se algum tempo antes
Transmissão de calor
UNIVESIDADE EDUADO MONDLANE Faculdade de Engenharia Transmissão de calor 3º Ano 1 Aula 6 Aula Prática- Condução em regime permanente Problema -6.1 (I) Uma janela tem dois vidros de 5 mm de espessura e
Lista de Exercícios para P1
ENG 1012 Fenômenos de Transporte II - 2015.2 Lista de Exercícios para P1 Problema 1. Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e placa de gesso, como
Mecanismos de transferência de calor
Mecanismos de transferência de calor Condução Potência calor: Q cond A T 1 T x : condutibilidde térmica; A: área de transferência x: espessura ao longo da condução T 1 T : diferença de temperatura ifusividade
CONSTRUÇÃO DE MODELO PARA AVALIAÇÃO DA CONDUTIVIDADE TÉRMICA EM ISOLANTES
CONSTRUÇÃO DE MODELO PARA AVALIAÇÃO DA CONDUTIVIDADE TÉRMICA EM ISOLANTES Claudio Antunes Junior 1 Marilise Cristine Montegutti 2 Tiago Luis Haus 3 INTRODUÇÃO A condutividade térmica, a difusividade térmica
Aula 6 de FT II. Prof. Gerônimo
Aula 6 de FT II Prof. Gerônimo Transferência de calor em superfícies estendidas Superfície estendida é comumente usado para descrever um caso especial importante envolvendo a transferência de calor por
Transferência de Calor Condução e Convecção de Calor
Transferência de Calor Condução e Material adaptado da Profª Tânia R. de Souza de 2014/1. 1 O calor transferido por convecção, na unidade de tempo, entre uma superfície e um fluido, pode ser calculado
Transferência de Calor
Transferência de Calor Introdução e Modos de Transferência Prof. Universidade Federal do Pampa BA000200 Campus Bagé 08 de maio de 2017 Transferência de Calor: Introdução 1 / 29 Introdução à Transferência
25/Mar/2015 Aula /Mar/2015 Aula 9
20/Mar/2015 Aula 9 Processos Politrópicos Relações politrópicas num gás ideal Trabalho: aplicação aos gases perfeitos Calor: aplicação aos gases perfeitos Calor específico politrópico Variação de entropia
Volume III. Curso Técnico Módulo 2 INSTITUTO FEDERAL DE SANTA CATARINA ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR METODOLOGIA PARA O CÁLCULO DA ESPESSURA DE ISOLANTE NECESSÁRIA A UMA APLICAÇÃO Volume III Curso
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. 3º Ano. Prof. Dr. Engº Jorge Nhambiu & Engº Paxis Roque 1
UNIVESIDADE EDUADO MONDLANE Faculdade de Engenharia Transmissão de calor 3º Ano 1 Aula 6 Aula Prática- Condução em regime permanente Problema -6.1 (I) Umajanelatémdoisvidrosde5mmdeespessuraeáreade 1,8
PNV-2321 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR
PNV-31 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR TRANSMISSÃO DE CALOR 1) INTRODUÇÃO Sempre que há um gradiente de temperatura no interior de um sistema ou quando há contato de dois sistemas com temperaturas
Transmissão de calor
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia ransmissão de calor 3º ano Prof. Doutor Engº Jorge Nhambiu Aula 5 * 3.Condução em regime permanente em uma parede plana Condução em regime permanente
ANÁLISE COMPARATIVA DA EFICIÊNCIA DE ISOLANTES TÉRMICOS
ANÁLISE COMPARATIVA DA EFICIÊNCIA DE ISOLANTES TÉRMICOS Claudio Antunes Junior 1 Marilise Cristine Montegutti 2 Tiago Luis Haus 3 INTRODUÇÃO A condutividade térmica, a difusividade térmica e o calor específico,
Profa.. Dra. Ana Maria Pereira Neto
5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto [email protected] Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Condensadores Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de
Lista de Exercícios Aula 04 Propagação do Calor
Lista de Exercícios Aula 04 Propagação do Calor 1. (Halliday) Suponha que a barra da figura seja de cobre e que L = 25 cm e A = 1,0 cm 2. Após ter sido alcançado o regime estacionário, T2 = 125 0 C e T1
Equação Geral da Condução
Equação Geral da Condução Para um sistema unidimensional demonstrouse: q x = k A T x x Para um sistema multidimensional o fluxo de calor é vetorial: q,, =q x,, i q y,, j q z,, k = k T i k T j k T k =k
Lista de exercícios Caps. 1, 2 e 3 TM-114 Transferência de Calor e Massa (Turma B) 2008/1
Lista de exercícios Caps. 1, 2 e 3 TM-114 Transferência de Calor e Massa (Turma B) 2008/1 1. (Incropera, 6ed, 1.7) Um circuito integrado (chip) quadrado de silício (k = 150 W/m K) possui w = 5 mm de lado
Transferência de Calor: Origens Físicas F Equações de Taxas de Transferência
Transferência de Calor: Origens Físicas F e Euações de Taxas de Transferência Transferência de Calor e Energia Térmica O ue é a transferência de calor? A transferência de calor éo trânsito de energia térmica
Condução de Calor Bidimensional
Condução de Calor Bidimensional Soluções analíticas para condução térmica em casos 2D requer um esforço muito maior daquelas para casos 1D. Há no entanto inúmeras soluções baseadas em técnicas da Física-Matemática,
FENÔMENOS DE TRANSPORTES
FENÔMENOS DE TRANSPORTES AULA 11 FUNDAMENTOS DE TRANSFERÊNCIA DE CALOR PROF.: KAIO DUTRA Transferência de Calor Transferência de calor (ou calor) é a energia em trânsito devido a uma diferença de temperatura.
5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera
5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera Nas Seções 5.5 e 5.6, foram desenvolvidas aproximações pelo primeiro termo para a condução
CONDUÇÃO DE CALOR APLICADO AO ESTUDO DE CONCEITOS MATEMÁTICOS DO ENSINO MÉDIO. Douglas Gonçalves Moçato*** Luiz Roberto Walesko*** Sumário
CONDUÇÃO DE CALOR APLICADO AO ESUDO DE CONCEIOS MAEMÁICOS DO ENSINO MÉDIO Douglas Gonçalves Moçato*** Luiz Roberto Walesko***. Introdução. Conceitos de transmissão de calor. Convecção. Radiação.3 Condução
Lista de Exercícios para P2
ENG 1012 Fenômenos de Transporte II Lista de Exercícios para P2 1. Estime o comprimento de onda que corresponde à máxima emissão de cada de cada um dos seguintes casos: luz natural (devido ao sol a 5800
Capítulo 8: Transferência de calor por condução
Capítulo 8: ransferência de calor por condução Condução de calor em regime transiente Condução de calor em regime transiente Até o momento só foi analisada a transferência de calor por condução em regime
TRANSMISSÃO DE CALOR resumo
TRANSMISSÃO DE CALOR resumo convecção forçada abordagem experimental ou empírica Lei do arrefecimento de Newton Taxa de Transferência de Calor por Convecção 𝑞"#$ ℎ𝐴 𝑇 𝑇 ℎ 1 𝐴 ℎ - Coeficiente Convectivo
Exercício 1. Exercício 2.
Exercício 1. Como resultado de um aumento de temperatura de 32 o C, uma barra com uma rachadura no seu centro dobra para cima (Figura). Se a distância fixa for 3,77 m e o coeficiente de expansão linear
1ª Lista de Exercícios. Unidade Curricular: FNT22304 Fenômenos dos Transportes CONDUÇÃO
1ª Lista de Exercícios Unidade Curricular: FNT22304 Fenômenos dos Transportes CONDUÇÃO 1.8 Um recipiente de baixo custo para comida e bebida é fabricado em poliestireno (isopor) de 25 mm de espessura (0,023
EP34D Fenômenos de Transporte
EP34D Fenômenos de Transporte Prof. Dr. André Damiani Rocha [email protected] Introdução à Transferência de Calor 2 Introdução à Transferência de Calor O que é Transferência de Calor? Transferência de
Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica
Termodinâmica: estuda a energia térmica. Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica O que é temperatura: mede o grau de agitação das moléculas. Um pedaço de metal a 10 o C e
2ª Lista de Exercícios Fenômenos de Transporte
2ª Lista de Exercícios Fenômenos de Transporte 1. Um modelo de avião é construído na escala 1:10. O modelo decola à velocidade de 50Km/h. Desprezando o efeito da viscosidade dinâmica, calcular a velocidade
Entre sistemas a temperaturas diferentes a energia transfere-se do sistema com temperatura mais elevada para o sistema a temperatura mais baixa.
Sumário Do Sol ao Aquecimento Unidade temática 1. Mecanismos de transferência de calor: a radiação, a condução e a convecção. O coletor solar e o seu funcionamento. Materiais condutores e isoladores do
UNIVERSIDADE DE RIO VERDE FACULDADE DE ENGENHARIA DE PRODUÇÃO PROGRAMA DE DISCIPLINA
UNIVERSIDADE DE RIO VERDE FACULDADE DE ENGENHARIA DE PRODUÇÃO PROGRAMA DE DISCIPLINA Disciplina: LOGÍSTICA E DISTRIBUIÇÃO II Código da Disciplina: EPD016 Curso: Engenharia de Produção Semestre de oferta
ESZO Fenômenos de Transporte
Universidade Federal do ABC ESZO 001-15 Fenômenos de Transporte Profa. Dra. Ana Maria Pereira Neto [email protected] Bloco A, torre 1, sala 637 Mecanismos de Transferência de Calor Calor Calor pode
Q t. Taxa de transferência de energia por calor. TMDZ3 Processos de Transmissão de calor. Prof. Osvaldo Canato Jr
Taxa de transferência de energia por calor P Q t no SI : Q J; t s; P J / s W ( watt) Condução Para um bloco com corte transversal de área A, espessura x e temperaturas T 1 e T 2 em suas faces, têm-se:
PROPRIEDADES TÉRMICAS DA MADEIRA
PROPRIEDADES TÉRMICAS DA MADEIRA Introdução As propriedades térmicas da madeira podem ser observadas quando se fornece ou se remove Energia (calor) ao material. Transferência de calor A transferência de
Fenômenos de transporte AULA 5. Transporte de Calor. Professor Alberto Dresch Webler
Fenômenos Resistências de dos Transporte Materiais - Aula 5 Fenômenos de transporte AULA 5 Transporte de Calor Professor Alberto Dresch Webler Veremos Transporte de calor Condução, Convecção, Radiação.
Transferência de calor
Transferência de calor 1.1 Calor: Forma de energia que se transmite espontaneamente de um corpo para o outro quando entre eles existir uma diferença de temperatura. O calor é uma energia em trânsito provocada
Propriedades Físicas da Matéria
Propriedades Físicas da Matéria Condutividade Térmica k Massa Específica ρ Calor Específico a Pressão Constante cp Difusividade Térmica α Viscosidade Cinemática (ν) ou Dinâmica (μ) Coeficiente de Expansão
Transmissão de Calor
Transmissão de Calor Revisão de Conceitos da Termodinâmica 11/08/2006 Referência: capítulos 7, 8 e 10 do livro de H. Moysés Nussenzveig, Curso de Física Básica 2 Fluidos. Oscilações e Ondas. Calor. 4 ed.
Resistências Térmicas em Paralelo 53 Exercícios 54 Exercícios recomendados 54 III. Transporte por convecção 55 Alguns fatos do cotidiano 55
SUMÁRIO I. Introdução Portfolio de Fenômenos de Transporte II 1 Algumas palavras introdutórias 2 Senso comum ciência 4 Uma pequena história sobre o nascimento da ciência 4 Das Verdades científicas 6 Tese
Mecanismos de Transferência de Calor. Gustavo Dalpian
Mecanismos de Transferência de Calor Gustavo Dalpian Monitoria Segunda: 14 18hs (Sala 405, disponível a par8r de 26/10) 14 16 hs Luiz Felipe Lopes 16 18 hs Felipe Marcilio Terca: 10 12hs Mariana Barbosa
Condução Unidimensional em Regime Permanente
Condução Unidimensional em Regime Pemanente Num sistema unidimensional os gadientes de tempeatua existem somente ao longo de uma única coodenada, e a tansfeência de calo ocoe exclusivamente nesta dieção.
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Energia 2 Energia Transferência de Energia por Calor Sempre que existir diferença de temperatura haverá transferência de calor. Se
LABORATÓRIO DE ENGENHARIA QUÍMICA I
LABORATÓRIO DE ENGENHARIA QUÍMICA I Prof. Gerônimo Virgínio Tagliaferro FENÔMENOS DE TRANSPORTE EXPERIMENTAL Programa Resumido 1) Cominuição e classificação de sólidos granulares 2) Medidas de Vazão em
29/11/2010 DEFINIÇÃO:
Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS TÉRMICAS AT-056 M.Sc. Alan Sulato de Andrade [email protected] 1 DEFINIÇÃO: Trocadores de calor são dispositivo utilizados
ESTE Aula 2- Introdução à convecção. As equações de camada limite
Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:
3.4. Condutividade térmica
3.4. Condutividade térmica Condução térmica Mecanismo de transferência de calor que exige o contacto entre os sistemas. Aquecimento de um objeto metálico A extremidade que não está em contacto direto com
Aula-6 Corrente e resistência. Curso de Física Geral F o semestre, 2008
Aula-6 Corrente e resistência Curso de Física Geral F-328 1 o semestre, 2008 Corrente elétrica e resistência a) A condição para que exista uma corrente elétrica através de um condutor é que se estabeleça
Universidade Estadual do Sudoeste da Bahia
Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 3 Termologia Física II Prof. Roberto Claudino Ferreira Prof. Roberto Claudino 1 ÍNDICE 1. Conceitos Fundamentais;
Problemas. Os problemas para este capítulo estão organizados por assunto, como segue.
50 Capítulo 1 Modos Básicos de Transferência de Calor Problemas Os problemas para este capítulo estão organizados por assunto, como segue. 1.1 A superfície externa de uma parede de concreto com 0,2 m de
Vibrações e Dinâmica das Máquinas Aula Momento de Inércia. Professor: Gustavo Silva
Vibrações e Dinâmica das Máquinas Aula Momento de Inércia Professor: Gustavo Silva 1 1.Momento de Inércia A massa m representa a resistência de um corpo à aceleração a. F = m a Força Massa Do mesmo modo,
Capítulo 7: Escoamento Interno
Capítulo 7: Escoamento Interno Trocadores de calor Temperatura de mistura Tm é a temperatura que se obtêm ao retirar uma amostra de fluido na seção transversal do duto, colocar em um copo e fazer uma mistura.
TRANSFERÊNCIA DE CALOR POR CONVECÇÃO
RANSFERÊNCIA DE CALOR POR CONVECÇÃO ransferência de energia entre uma superfície e um fluido em movimento sobre essa superfície Fluido em movimento, u, s > A convecção inclui a transferência de energia
Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap.
Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap. 17 17.65) Suponha que a barra da figura seja feita de cobre, tenha 45,0
Transmissão de Calor e Permutadores
CONCURSO PETROBRAS ENGENHEIRO(A) DE PROCESSAMENTO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PROCESSAMENTO QUÍMICO(A) DE PETRÓLEO JÚNIOR Transmissão de Calor e Permutadores Questões Resolvidas QUESTÕES RETIRADAS
O raio crítico. Problema motivador 01: Problema motivador 02: Problema motivador 03: Portfolio de:
Problema motivador 01: qual a função da camada de material polimérico colocada sobre fios elétricos de cobre ou de alumínio? Problema motivador 02: qual a espessura da camada de tijolos de uma parede de
Curso: a) 24 b) 12 c) 6,5 d) 26,5 e) 97
IST / DEQ Mestrado Integrado em Engenharia Química Mestrado Integrado em Engenharia Biológica Mestrado em Engenharia e Gestão da Energia Fenómenos de Transferência I 2014-2015 1º Semestre 1º Exame / 15.01.2015
Modelagem Matemática de Sistemas Térmicos
Modelagem Matemática de Sistemas Térmicos INTODUÇÃO Sistemas térmicos são sistemas nos quais estão envolvidos o armazenamento e o fluxo de calor por condução, convecção ou radiação A rigor, sempre estão
7. Exercício 1 (resolver em sala)
7. Exercício (resolver em sala) A parede externa de uma casa é composta por uma camada de 20cm de espessura de tijolo comum e uma camada de 5cm de gesso. Qual a taxa de transferencia de calor por unidade
TROCADOR DE CALOR BITUBULAR
UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E PETRÓLEO INTEGRAÇÃO I TROCADOR DE CALOR BITUBULAR Alunos : Rodrigo da Silva Rosa Adriano Matielo Stulzer Niterói,
Prof. Felipe Corrêa Maio de 2016
Prof. Felipe Corrêa Maio de 2016 IMPORTÂNCIA Praticamente todos os sistemas envolvidos na engenharia estão direta ou indiretamente ligados com a transferência de calor. Portanto, para que estes sistemas
Apresentação: Eng. André Dickert
Apresentação: Eng. André Dickert T 1 > T 2 T 1 T 2 Q ISOLANTE TÉRMICO (Baixa Condutividade ) FIBROSOS lã de vidro, lã de rocha, fibra cerâmica e etc. GRANULARES concretos, tijolos, silicato de cálcio,
PROGRAMA DE DISCIPLINA
PROGRAMA DE DISCIPLINA Disciplina Transporte de Calor e Massa Código da Disciplina: NDC 179 Curso: Engenharia Civil Semestre de oferta da disciplina: 5 Faculdade responsável: Núcleo de Disciplinas Comuns
PIR - Projetos de Instalações de Refrigeração
PIR - Projetos de Instalações de Refrigeração Prof. Mauricio Nath Lopes ([email protected]) Objetivo geral: Capacitar os alunos na execução de projetos de câmaras frigoríficas de pequeno porte.
EN Escoamento interno. Considerações fluidodinâmicas e térmicas
Universidade Federal do ABC EN 411 - Escoamento interno. Considerações fluidodinâmicas e térmicas Considerações fluidodinâmicas Escoamento laminar dentro de um tubo circular de raio r o, onde o fluido
Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica
Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,
h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície
CONVECÇÃO FORÇADA EXTERNA " Fluo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência
Unidade 9 Transferência de Calor. Introdução Condução Fluxo de calor Convecção Irradiação
Unidade 9 Transferência de Calor Introdução Condução Fluxo de calor Convecção Irradiação Introdução Você já reparou que as colheres utilizadas para misturar alimentos em panelas costumam ser feitas de
1. Um feixe permamente de partículas alfa (q = +2e) deslocando-se com energia cinética constante de 20MeV transporta uma corrente de 0, 25µA.
1. Um feixe permamente de partículas alfa (q = +2e) deslocando-se com energia cinética constante de 20MeV transporta uma corrente de 0, 25µA. (a) Se o feixe estiver dirigido perpendicularmente a uma superfície
Volume de um sólido de Revolução
Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1
PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria
defi departamento de física
defi departamento de física aboratórios de Física www.defi.isep.ipp.pt Condutividade térmica Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida, 431
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano
UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia ransmissão de calor 3º ano 4. ransmissão de Calor em Regime ransiente Introdução Sistemas Concentrados Condução de Calor em regime ransiente com Efeitos
Prof. MSc. David Roza José 1/26
1/26 Mecanismos Físicos A condensação ocorre quando a temperatura de um vapor é reduzida para abaixo da temperatura de saturação. Em equipamentos industriais o processo normalmente decorre do contato entre
TRANSFERÊNCIA DE CALOR E MASSA
UNIVERSIDADE DE SANTA CRUZ DO SUL DEPARTAMENTO DE ENGENHARIA, ARQUITETURA E CIÊNCIAS AGRÁRIAS CURSO DE ENGENHARIA MECÂNICA TRANSFERÊNCIA DE CALOR E MASSA Atualizado por: Prof. Anderson Fávero Porte Santa
Mecanismos de transferência de calor. Anjo Albuquerque
Mecanismos de transferência de calor 1 Mecanismos de transferência de calor Quando aquecemos uma cafeteira de alumínio com água ao lume toda a cafeteira e toda a água ficam quentes passado algum tempo.
Termodinâmica Aplicada. (PF: comunicar eventuais erros para Exercícios 6
Termodinâmica Aplicada (PF: comunicar eventuais erros para [email protected]) Exercícios 6 1. Um mole de um gás de van der Waals sofre uma expansão isotérmica (à temperatura ) entre um volume inicial
Exercícios Terceira Prova de FTR
Exercícios Terceira Prova de FTR 1) Existe uma diferença de 85 o C através de uma manta de vidro de 13cm de espessura. A condutividade térmica da fibra de vidro é 0,035W/m. o C. Calcule o calor transferido
Processo de Fabricação de Chips PSI2613_A01-1
Processo de Fabricação de Chips PSI2613_A01-1 Encapsulamento Eletrônico (Packaging) Define-se como a Tecnologia de Interconexão de Componentes Eletrônicos. Esta tecnologia permite definir e controlar o
Nota: Campus JK. TMFA Termodinâmica Aplicada
TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização
Fenômenos de Transporte I. Prof. Gerônimo Virgínio Tagliaferro
Fenômenos de Transporte I Prof. Gerônimo Virgínio Tagliaferro Ementa 1) Bases conceituais para o estudo dos Fenômenos de transporte 2) Propriedades gerais dos fluidos 3) Cinemática dos fluidos:. 4) Equações
EN 2411 Aula 13 Trocadores de calor Método MLDT
Universidade Federal do ABC EN 24 Aula 3 Trocadores de calor Método MLDT Trocadores de calor São equipamentos utilizados para promover a transferência de calor entre dois fluidos que se encontram sob temperaturas
CADERNO DE EXERCÍCIOS 3D
CADERNO DE EXERCÍCIOS 3D Ensino Fundamental Ciências da Natureza Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Materiais Isolantes Térmicos H55, H56 2 Processos de Troca de Calor H55 3 Transformação
