Nota: Campus JK. TMFA Termodinâmica Aplicada
|
|
|
- Lucas Gabriel Camarinho Estrela
- 9 Há anos
- Visualizações:
Transcrição
1 TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização Pressão Temperatura ou Título Saída do gerador de vapor 2 MPa 300 C Entrada da turbina 1,9 MPa 290 C Saída da turbina, entrada do 15 KPa 90% condensador Saída do condensador, 14 KPa 45 C entrada da bomba Trabalho da bomba = 4kJ/kg Determine as seguintes quantidades (por kg de fluido que escoa através da unidade): a) Calor transferido na linha de vapor entre o gerador de vapor e a turbina. b) Trabalho da turbina. c) Calor transferido no condensador. d) Calor transferido no gerador de vapor. 2) Um gás percorre um ciclo termodinâmico que consiste em três processos: Processo 1-2: compressão com pv=constante, de p 1 = 1 bar, V 1 = 1,6 m 3, U 2 - U 1 = 0. Processo 2-3: pressão constante até V 3 =V 1 Processo 3-1: volume constante, U 1 - U 3 = kj. Não há variações significativas na energia cinética ou potencial. Determine a transferência de calor e o trabalho para o Processo 2-3, em kj. 3) A seguinte tabela fornece dados, em kj, para um sistema que percorre um ciclo termodinâmico que consiste em quatro processos em série. Para o ciclo, os efeitos das energias cinética e potencial podem ser desprezados. Determine os dados que faltam na tabela, todos em kj.
2 Processo U Q W ) Meio quilograma de água executa um ciclo de potência de Carnot. Durante a expansão isotérmica, a água é aquecida até a condição de vapor saturado a partir de um estado inicial onde a pressão é de 15 bar e o título é de 25%. O vapor então se expande adiabaticamente até uma pressão de 1bar, enquanto realiza 403, 8 kj/kg de trabalho. a) Esboce o ciclo em coordenadas p-v. b) Estime o calor e o trabalho para cada processo, em kj. 5) Um inventor afirma ter desenvolvido um ciclo de potência capaz de fornecer uma saída líquida de trabalho de 410kJ através de uma entrada de energia por transferência de calor de 1000kJ. O sistema percorrendo o ciclo recebe a transferência de calor de gases quentes à temperatura de 500K e descarrega energia por transferência de calor para atmosfera a 300K. Avalie esta afirmação. 6) Pela circulação em regime permanente de um refrigerante a uma baixa temperatura através de passagens nas paredes do compartimento do congelador, um refrigerador mantém o compartimento do congelador a -5oC quando a temperatura do ar circundando o refrigerador é de 22ºC. A taxa de transferência de calor entre o compartimento do congelador e o refrigerante é 8000kJ/h e a potência de entrada necessária para operar o refrigerador é de 3200kJ/h. Determine o coeficiente de desempenho do refrigerador e compare com o coeficiente de desempenho de um ciclo de refrigeração reversível operando entre reservatórios às mesmas temperaturas. 7) Durante operação em regime permanente, uma caixa de redução recebe 60kW através do eixo de entrada e fornece potência através do eixo de saída. Para a caixa de redução considerada como sistema, a taxa de transferência de energia por convecção é,
3 onde h = 0,171kW/m2K é o coeficiente de transferência de calor, A = 1m2 é a área a superfície exterior da caixa de redução, Tb = 300K é a temperatura da superfície externa e Tf = 293 é a temperatura da vizinhança afastada das imediações da caixa de engrenagens. Para a caixa de engrenagens, calcule a taxa de transferência de calor e a potência fornecida através do eixo de saída, ambas em kw. 8) Uma turbina a vapor opera em regime permanente com condições de entrada de p1 = 5bar, T1 = 320oC. Vapor deixa a turbina a uma pressão de 1bar. Não ocorre transferência de calor significativa entre a turbina e a vizinhança, e variações de energia cinética e potencial entre a admissão e a descarga poder ser desprezadas. Se a eficiência isoentrópica da turbina é de 75%, determine o trabalho produzido por unidade de massa de vapor escoando na turbina, kj/kg. 9) Com o fornecimento de energia para uma residência à taxa de 8 kw, uma bomba de calor mantém a temperatura da residência em 21ºC quando o ar exterior está a -2ºC. Se a eletricidade custa 26 centavos por kwh, determine o custo de operação mínimo teórico por dia de operação.
4 TMFA dos Fluidos Aplicada 10) A distância entre duas estações de bombeamento d água é de 1 km. Este trecho é totalmente horizontal e água escoa a uma vazão de 3,0 m 3 /s. O diâmetro interno do tubo é de 1,25m e sua rugosidade é equivalente a do concreto (e=0,375mm). Para essas condições, qual a potência que deve ser fornecida na estação de bombeamento considerando-se uma bomba com 75% de eficiência. Para a determinação do fator de atrito, f, utilize a Equação de Haaland (1983). (Dados: = 997 kg/m 3 e µ = 8, N.s/m 2 ) 3 11) Óleo cru a 60ºC ( 8436N/m ) é bombeado horizontalmente numa tubulação de aço que apresenta diâmetro e comprimento iguais a 1219 mm e 1286 km. A vazão de óleo na tubulação é 3,31 m 3 /s, ou seja, a velocidade média do escoamento, é 2,84 m/s. Determine a potência necessária para bombear o óleo nesta tubulação. Dado: f = 0, ) Uma prensa hidráulica é acionada por uma bomba remota de alta pressão. A pressão na saída da bomba é de 20 MPa, enquanto que a pressão requerida para a prensa é de 19MPa, a uma vazão de 0,160 m3/min. A prensa e a bomba são interligadas por meio de um tubo de ferro forjado com diâmetro interno de 0,015m. O fluido de trabalho é o óleo SAE 10W a 40 C ( = 920 kg/m3 e µ = 3, N.s/m2). Determine o comprimento mínimo do tubo que pode ser utilizado. Para a determinação do fator de atrito, f, utilize a Equação de Swamee & Jain (1976).
5 13) Um sistema de água é utilizado em um laboratório para estudar escoamento num tubo liso. Para atender uma faixa razoável, o Número de Reynolds no tubo deve ser O sistema é suprido a partir de um tanque elevado de carga constante. O sistema consiste de uma entrada de bordas vivas, dois cotovelos comuns de 90, dois cotovelos comuns de 180 e uma válvula gaveta totalmente aberta, sendo que todas as conexões são rosqueadas. O diâmetro interno do tubo é de 25 mm e seu comprimento é de 9,8m. Calcule a altura mínima do nível do tanque alimentador acima da descarga do sistema de tubo necessária para alcançar o Número de Reynolds desejado. (Dados: = 997 kg/m 3, µ = 8, N.s/m 2 e g = 9,81 m/s 2 ). 14) Considere uma instalação hidráulica que possui 20 anos de vida. Descreva passo-a-passo como você, especialista em dos Fluidos, faria para determinar a rugosidade desse tubo. Quais as variáveis que envolvem essa análise. Faça um esquema da montagem experimental. 15) Água para resfriamento de perfuratrizes de rocha é bombeada de um reservatório para um canteiro de obras (aberto para atmosfera), usando o sistema de tubos mostrado. A vazão deve ser de 3,8x10-3m3/s e a água deve deixar o bocal de resfriamento a 36,6m/s (V3). Esse bocal expande o fluido até a pressão atmosférica. Calcule a mínima pressão necessária na saída da bomba. Estime a potência de acionamento requerida, se a eficiência da bomba é 70%.
6 QUESTÕES PARA PENSAR 1. A eficiência térmica de uma instalação de potência a vapor pode ter valores diferentes no inverno e no verão? Explique. 2. Pense em algumas maneiras de aproveitar a água de arrefecimento que sai do condensador de uma grande usina de potência. 3. Que efeitos sobre a ecologia de um rio podem resultar do uso da água para arrefecimento do condensador de uma instalação de potência? 4. Por que a água é o fluido de trabalho mais utilizado em usinas de potência a vapor? 5. Qual a sua opinião sobre a utilização de energia solar para gerar eletricidade?
LOQ Fenômenos de Transporte I
LOQ 4083 - Fenômenos de Transporte I FT I 1 EXERCÍCIOS Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como roteiro de
ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ DIRETORIA DE GESTÃO DE PESSOAS COMISSÃO COORDENADORA DE CONCURSOS CONCURSO PÚBLICO PROFESSOR EFETIVO EDITAL Nº 10/DGP-IFCE/2010 ÁREA DE ESTUDO:
Lista de Exercícios Solução em Sala
Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão
PME 3344 Exercícios - Ciclos
PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.
3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:
1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total
PME 3344 Exercícios - Ciclos
PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.
Dispositivos com escoamento em regime permanente
Dispositivos com escoamento em regime permanente Bocais e difusores Os bocais e difusores normalmente são utilizados em motores a jato, foguetes, ônibus espaciais e até mesmo em mangueiras de jardim. Um
Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot
Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot Processos Reversíveis e Irreversíveis Nenhuma máquina térmica pode ter eficiência 100% de acordo
Capítulo 5: Análise através de volume de controle
Capítulo 5: Análise através de volume de controle Segunda lei da termodinâmica Conversão de energia EM-54 Fenômenos de Transporte Variação de entropia em um sistema Num sistema termodinâmico a equação
Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular
Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular 1. (Petrobrás/2010) Um oleoduto com 6 km de comprimento e diâmetro uniforme opera com um gradiente de pressão de 40 Pa/m transportando
Módulo I Ciclo Rankine Ideal
Módulo I Ciclo Rankine Ideal Sistema de Potência a Vapor As usinas de potência a vapor são responsáveis pela produção da maior parte da energia elétrica do mundo. Porém, para o estudo e desenvolvimento
Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos
Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos 1ª. Questão (1 ponto) Considere uma bomba centrífuga de 20 kw de potência nominal, instalalada em uma determinada planta
LISTA DE EXERCÍCIOS 3
LISTA DE EXERCÍCIOS 3 ANÁLISE VOLUME DE CONTROLE 1) Óleo vegetal para cozinha é acondicionado em um tubo cilíndrico equipado com bocal para spray. De acordo com o rótulo, o tubo é capaz de fornecer 560
Escoamento Interno Viscoso
Escoamento Interno Viscoso Escoamento Laminar e Turbulento Número de Reynolds Re VD ρ --> massa específica ou densidade V --> velocidade D --> comprimento característico μ --> viscosidade numero de Reynolds
Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle.
Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle. Balanço de Entropia para Sistemas Fechados O balanço de entropia é uma expressão da segunda lei conveniente
Disciplina: Sistemas Fluidomecânicos. Cavitação e Altura de Carga de Sucção Positiva Disponível 3ª Parte
Disciplina: Sistemas Fluidomecânicos Cavitação e Altura de Carga de Sucção Positiva Disponível 3ª Parte Exercício 10.68 (8ª Edição) Uma bomba no sistema mostrado retira água de um poço e lança-a num tanque
Cap. 4: Análise de Volume de Controle
Cap. 4: Análise de Volume de Controle AR Ar+Comb. www.mecanicavirtual.org/carburador2.htm Cap. 4: Análise de Volume de Controle Entrada, e Saída, s Conservação da Massa em um Sistema dm dt sist = 0 Conservação
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 1-3 TERMODINÂMICA APLICADA AS MÁQUINAS TÉRMICAS PROF.: KAIO DUTRA Diagrama de Fases Estado líquido Mistura bifásica líquido-vapor Estado de vapor Conservação
Exercício 136 Dado: Exercício 137
Exercício 136: O trecho da instalação de bombeamento representado a seguir, transporta óleo com uma vazão de 19,6 m³/h. Na temperatura de escoamento o óleo apresenta massa específica igual a 936 kg/m³;
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor
Termodinâmica Ciclos motores a vapor 1 v. 1.1 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo
Exercícios sugeridos para Ciclos de Refrigeração
Exercícios sugeridos para Ciclos de Refrigeração 11-13 (Cengel 7ºed) - Um ciclo ideal de refrigeração por compressão de vapor que utiliza refrigerante R134a como fluido de trabalho mantém um condensador
Exercícios e exemplos de sala de aula Parte 1
PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 1 Propriedade das substâncias puras: 1- Um tanque rígido com volume de 1m 3 contém
Análise Energética para Sistemas Abertos (Volumes de Controles)
UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) Princípios de Termodinâmica para Engenharia Capítulo 4 Parte III Análise de Volumes de Controle em Regime Permanente
Profa.. Dra. Ana Maria Pereira Neto
Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto [email protected] Segunda ei da Termodinâmica 1 Segunda ei da Termodinâmica Comparação com a 1ª ei da Termodinâmica;
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada Aula de exercícios 01 1 v. 1.3 Exercício 01 Considere o conjunto mostrado na figura. O pistão pode mover-se sem atrito entre os dois conjuntos de batentes. Quando o pistão
MECÂNICAS DOS FLUIDOS PROFESSOR: WAGNER A. S. CONCEIÇÃO 3º BIMESTRE LISTA 1
MECÂNICAS DOS FLUIDOS PROFESSOR: WAGNER A. S. CONCEIÇÃO 3º BIMESTRE LISTA 1 1- Um fluido a 20ºC escoa a 850cm 3 /s por um tubo de 8 cm de diâmetro. Verifique se o escoamento é laminar ou turbulento, determine
Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica
Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica SIMULAÇÃO DE CICLO TÉRMICO COM DUAS CALDEIRAS EM PARALELO: COMBUSTÃO EM GRELHA E EM LEITO FLUIDIZADO Herson
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 11) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,
Problema 1 Problema 2
1 Problema 1 7ª Edição Exercício: 2.42 / 8ª Edição Exercício: 1.44 A área da seção transversal da válvula do cilindro mostrado na figura abaixo é igual a 11cm 2. Determine a força necessária para abrir
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 12) Ciclos de Refrigeração 1 v. 3.0 Ciclos de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de
A 1 a lei da termodinâmica para um sistema transiente é:
TT011 - Termidinâmica - Engenharia Ambiental - UFPR Gabarito - Avaliação Final Data: 15/07/2016 Professor: Emílio G. F. Mercuri Antes de iniciar a resolução leia atentamente a prova e verifique se a mesma
PME/EP/USP. Prof. Antonio Luiz Pacífico
Exercícios PME 3230 - Mecânica dos Fluidos I PME/EP/USP Prof. Antonio Luiz Pacífico 2 Semestre de 2016 PME 3230 - Mecânica dos Fluidos I (EP-PME) Exercícios 2 Semestre de 2016 1 / 20 Conteúdo da Aula 1
Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q
Eficiência em Processos Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: η térmica W resultante Q H Entretanto, para um processo a definição de eficiência envolve uma comparação
LISTA DE EXERCÍCIOS 2
LISTA DE EXERCÍCIOS 2 Questão 1. O escoamento no tubo na figura abaixo enche um tanque de armazenagem cilíndrico conforme mostrado. No tempo t = 0, a profundidade da água é 30 cm. Calcule o tempo necessário
Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5
Termodinâmica 10) Ciclos motores a vapor 1 v. 2.5 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 4-5 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 10) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Análise Integral (Volume de Controle) 2 ou 1ª Lei da Termodinâmica A 1ª Lei da Termodinâmica para um Sistema Fechado é dada por,
Resumo de exercícios de bombas. Exercício 1
Resumo de exercícios de bombas Exercício 1 Considere uma bomba centrífuga cuja geometria e condições de escoamento são : Raio de entrada do rotor = 37,5 mm, raio de saída = 150 mm, largura do rotor = 12,7
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho [email protected] Juiz de Fora -MG
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE ATIVIDADE SEGUNDA AVALIAÇÃO
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE ATIVIDADE SEGUNDA AVALIAÇÃO 1 1) Considere o escoamento de ar em torno do motociclista que se move em
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
Disciplina: Fenômenos de Transportes 1 Código:ME35R Turma:M51/E61/A41 Curso: Engenharias Mecânica, Elétrica e Automação e Controle Prof. Rubens Gallo SEGUNDA LISTA DE EXERCÍCOS E SEGUNDA APS 1.) Quando
Disciplina : Termodinâmica. Aula 14 Segunda Lei da Termodinâmica
Disciplina : Termodinâmica Aula 14 Segunda Lei da Termodinâmica Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução a segunda lei da termodinâmica Uma xícara de café quente deixado em uma sala mais fria,
Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Engenharia de Alimentos
UNIVERSIDADE DE SÃO PAULO Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Engenharia de Alimentos 1 a Lista de Exercícios (2014) ZEA 0466 TERMODINÂMICA Profa. Alessandra Lopes de Oliveira
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Ciclo de Refrigeração por Compressão de Vapor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia
LOQ Fenômenos de Transporte I
LOQ 4083 - Fenômenos de Transporte I FT I 09 Primeira Lei da Termodinâmica Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir
Aula 6 de laboratório. Segundo semestre de 2012
Aula 6 de laboratório Segundo semestre de 2012 1. Um fluido escoa por um tubo à velocidade média de 3m/s. A pressão no eixo do tubo é de 0,350 kgf/cm 2 e sua altura sobre a referência adotada é de 4,5
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 SISTEMAS DE POTÊNCIA A VAPOR 2 SIST. POTÊNCIA A VAPOR Diferente do ciclo de potência a gás, no ciclo de potência
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Introdução aos Ciclos Refrigeração por Compressão de Vapor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade
Exercício 9 Água escoa do reservatório 1 para o 2 no sistema mostrado abaixo. Sendo:
1 a LIST DE EXERCÍCIOS DE SISTEMS FLUIDO MECÂNICOS 014 Referências: 1) Giles, Evett & Liu - Mecânica dos Fluidos e Hidráulica Coleção Schaum, a edição, Makron ooks, 1997. ) Fox e McDonald Introdução à
LISTA DE EXERCÍCIOS - FENÔMENO DE TRANSPORTES II. Revisão Conservação de Energia e Massa
LISTA DE EXERCÍCIOS - FENÔMENO DE TRANSPORTES II Revisão Conservação de Energia e Massa 1) Determinar a velocidade do jato de líquido no orifício do tanque de grande dimensões da figura abaixo. Considerar
MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA
MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em variações das instalações
SELEÇÃO DE BOMBAS HIDRÁULICAS
SELEÇÃO DE BOMBAS HIDRÁULICAS Prof. Jesué Graciliano da Silva https://jesuegraciliano.wordpress.com/aulas/mecanica-dos-fluidos/ 1- EQUAÇÃO DE BERNOULLI A equação de Bernoulli é fundamental para a análise
MÁQUINAS TÉRMICAS
UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA EXERCÍCIOS DAS AULAS PRÁTICAS MÁQUINAS TÉRMICAS 2010-2011 DOCENTES RESPONSÁVEIS DEM Fernando Neto DEM João Oliveira DISCIPLINA Código 40544 Ano
BOMBAS. Bombas CLASSIFICAÇÃO BOMBAS ALTERNATIVAS APLICAÇÕES 06/04/2011 BOMBAS DE DESLOCAMENTO POSITIVO
BOMBAS Bombas Para deslocar um fluido ou mantê-lo em escoamento é necessário adicionarmos energia, o equipamento capaz de fornecer essa energia ao escoamento do fluido é denominamos de Bomba. CLASSIFICAÇÃO
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS DE POTÊNCIA A VAPOR Prof. Dr. Ramón Silva - 2015 O objetivo dessa aula é relembrar os conceitos termodinâmicos do ciclo Rankine e introduzir aos equipamentos que
Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia.
Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia. Desigualdade de Clausius Aplicável para qualquer ciclo reversível ou irreversível. Ela foi desenvolvida pelo físico alemão R. J. E. Clausius
Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado.
Exergia Introdução 1ª Lei da Termodinâmica conservação da energia (energia não pode ser criada nem destruída). Serve como ferramenta para contabilizar a energia durante um processo 2ª Lei da Termodinâmica
Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine
Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine Ciclo Rankine Real Esses ciclos diferem do ideal devido às irreversibilidades presentes em vários componentes.
Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação.
Nome: Curso: RA: Instituto de Ciências Exatas e Tecnológicas Campus Indianópolis SUB Termodinâmica Básica Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz
Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2
Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2 1. (Incropera et al., 6 ed., 7.2) Óleo de motor a 100ºC e a uma velocidade de 0,1 m/s escoa sobre as duas
1ª Lei da Termodinâmica lei da conservação de energia
1ª Lei da Termodinâmica lei da conservação de energia É de bastante interesse em análises termodinâmicas conhecer o balanço energético dos sistemas, principalmente durante trocas de estado A 1ª Lei da
Termodinâmica e Estrutura da Matéria (MEFT)
Termodinâmica e Estrutura da Matéria (MEFT) 2014-2015 Vasco Guerra Carlos Augusto Santos Silva [email protected] Versão 1.0 24-1-2014 1. Um inventor diz que desenvolveu uma máquina
Fluidodinâmica. Carlos Marlon Santos
Fluidodinâmica Carlos Marlon Santos Fluidodinâmica Os fluidos podem ser analisados utilizando-se o conceito de sistema ou de volume de controle O sistema é definido quando uma certa quantidade de matéria
Físico-Química I. Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz. Máquinas Térmicas. Segunda Lei da Termodinâmica. Ciclo de Carnot.
Físico-Química I Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz Máquinas Térmicas Segunda Lei da Termodinâmica Ciclo de Carnot Refrigeração Máquina Térmica Uma máquina térmica converte parte da energia
Aluno: Matrícula: Data: CC76D HIDRÁULICA TRABALHO DE CASA #1
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CURSO DE ENGENHARIA CIVIL PR Aluno: Matrícula: Data: CC76D HIDRÁULICA TRABALHO DE CASA #1 Orientações: A entrega será individual na aula do dia 07/05 (turma S51)
Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica
Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica A segunda lei da termodinâmica Máquinas térmicas e bombas de calor Ciclos reversíveis Ciclo de Carnot A segunda lei da termodinâmica O que
Energética Industrial
Universidade do Minho Departamento de Engenharia Mecânica Energética Industrial Problemas propostos José Carlos Fernandes Teixeira 1) 1.5 kg de gelo à temperatura de 260 K, funde-se, à pressão de 1 bar,
Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016
Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2 prof. Daniela Szilard 23 de maio de 2016 1. Julgue os itens: verdadeiro ou falso. ( ) A lei de Stevin é válida para qualquer
Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica
Capítulo 4: Análise de Sistemas: ª e ª eis da ermodinâmica Revisão Exercícios Primeira lei da termodinâmica O balanço de energia pode ser escrito na forma diferencial: de δ - δw Como energia E é uma propriedade
Conceitos- Vazão, movimento e regime de escoamento. 1) Determine o regime de escoamento sabendo que o tubo tem um diâmetro de 75 mm e
Lista de exercícios- Hidráulica I Conceitos- Vazão, movimento e regime de escoamento 1) Determine o regime de escoamento sabendo que o tubo tem um diâmetro de 75 mm e transporta água (ν=10 6 m 2 /s) com
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 2 a Lei da Termodinâmica v. 2.2 Introdução A 1ª lei da termodinâmica não estabelece restrições no sentido da interação de calor ou trabalho. De nossa experiência sabemos
Disciplina: Sistemas Fluidomecânicos. Cavitação e Altura de Carga de Sucção Positiva Disponível 1ª Parte
Disciplina: Sistemas Fluidomecânicos Cavitação e Altura de Carga de Sucção Positiva Disponível 1ª Parte Cavitação e Altura de Carga A cavitação ocorre quando a pressão estática de um líquido decair para
LISTA DE EXERCÍCIOS 1 Máquinas de Fluxo
LISTA DE EXERCÍCIOS 1 Máquinas de Fluxo 1- Água escoa em uma tubulação de 50 mm de diâmetro a uma vazão de 5 L/s. Determine o número de Reynolds nestas condições, informe se o escoamento é laminar ou turbulento.
Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores.
Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores. Processos Isentrópicos O termo isentrópico significa entropia constante. Eficiência de Dispositivos
Capítulo 3 A Segunda Lei da Termodinâmica
Capítulo 3 A Segunda Lei da Termodinâmica 3.1 Enunciados da Lei 3.2 Máquinas Térmicas 3.3 Escalas de Temperaturas Termodinâmicas 3.4 Entropia 3.5 Variações da Entropia de um Gás Ideal 3.6 A Terceira Lei
Transferência de Calor
Transferência de Calor Escoamento Interno - Parte 2 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
Lista de Exercícios - Máquinas Térmicas
DISCIPLINA: MÁQUINAS TÉRMICAS - 2017/02 PROF.: MARCELO COLAÇO PREPARADO POR GABRIEL ROMERO ([email protected]) 4. Motores de combustão interna: Os calores específicos são constantes para todos os exercícios
Uma caneca de café quente não fica mais quente se for colocada numa sala fria
SUMÁRIO Focámos, nos capítulos anteriores, a nossa atenção na Primeira Lei da Termodinâmica, que nos diz que a energia é conservada durante um processo. Neste capítulo abordaremos a Segunda Lei da Termodinâmica,
3. CONVECÇÃO FORÇADA INTERNA
3. CONVECÇÃO FORÇADA INTERNA CONVECÇÃO FORÇADA NO INTERIOR DE TUBOS Cálculo do coeficiente de transferência de calor e fator de atrito Representa a maior resistência térmica, principalmente se for um gás
Capítulo 4 Equação da energia para escoamento permanente
Capítulo 4 Equação da energia para escoamento permanente ME4310 e MN5310 23/09/2009 OBJETIVO DA AULA DE HOJE: RESOLVER O EXERCÍCIO A SEGUIR: Determine a carga mecânica total na seção x do escoamento representada
LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas
- 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.
Introdução. ücalor transferido a um dispositivo(caldeira ou compressor); ütrabalho feito por um objeto ( bomba ou turbina);
Equação da Energia Introdução Muitos problemas envolvendo o movimento dos fluidos exigem que a primeira lei da termodinâmica, também chamada equação da energia, seja usada para relacionar as quantidades
Mecânica dos Fluidos. Aula 18 Exercícios Complementares. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 18 Exercícios Complementares Tópicos Abordados Nesta Aula. Exercícios Complementares. 1) A massa específica de uma determinada substância é igual a 900kg/m³, determine o volume ocupado por uma massa
ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)
ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] MECÂNICA DOS FLUIDOS ENGENHARIA FÍSICA AULA 7 ESCOAMENTO
LISTA DE EXERCÍCIOS Máquinas Hidráulicas
LISTA DE EXERCÍCIOS Máquinas Hidráulicas 1- Água escoa em uma tubulação de 50 mm de diâmetro a uma vazão de 5 L/s. Determine o número de Reynolds nestas condições, informe se o escoamento é laminar ou
Curso: a) 24 b) 12 c) 6,5 d) 26,5 e) 97
IST / DEQ Mestrado Integrado em Engenharia Química Mestrado Integrado em Engenharia Biológica Mestrado em Engenharia e Gestão da Energia Fenómenos de Transferência I 2014-2015 1º Semestre 1º Exame / 15.01.2015
Classificação de Trocadores de Calor
Trocadores de Calor Trocadores de Calor Equipamento usados para implementar a troca de calor entre dois ou mais fluidos sujeitos a diferentes temperaturas são denominados trocadores de calor Classificação
b A eficiência térmica de um ciclo é medida pela relação entre o trabalho do ciclo e o calor que nele é adicionado.
1) As usinas de potência (termoelétricas e nucleares) precisam retornar ao meio ambiente uma determinada quantidade de calor para o funcionamento do ciclo. O retorno de grande quantidade de água aquecida
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I Máquinas Térmicas I "Existem três tipos de pessoas: as que sabem e as que não sabem contar...
Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração.
Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração. Primeira Lei da Termodinâmica A única maneira de variar a energia de um sistema fechado é por meio de calor ou trabalho.
2ª Lei da Termodinâmica. Prof. Matheus Fontanelle Pereira
2ª Lei da Termodinâmica Prof. Matheus Fontanelle Pereira Introdução Trabalho poderia ser obtido. Oportunidades de gerar trabalho Qual é o máximo valor teórico do trabalho que poderia ser obtido? Quais
Aula 6 Vapor e ciclos combinados
Universidade Federal do ABC P O S M E C Aula 6 Vapor e ciclos combinados MEC202 Ciclos de vapor Consideramos os ciclos de alimentação de vapor, em que o fluido de trabalho é alternativamente vaporizado
TM-182 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO. Prof. Dr. Rudmar Serafim Matos
Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica TM-82 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO Prof. Dr. Rudmar Serafim Matos 2.5 EXEMPLOS ILUSTRATIVOS Procedimentos para
GABARITO - QUESTÕES DE MULTIPLA ESCOLHA
Instituto de Ciências Exatas e Tecnológicas P2 Termodinâmica Básica Nome: Curso: RA: Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação. É
Sistemas de Refrigeração Parte I
Sistemas de Refrigeração Parte I 1 Tópicos da Aula de Hoje Introdução / definições sobre sistemas de refrigeração Ciclo de refrigeração por compressão Fatores que influenciam o desempenho do sistema de
UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I
UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I Profa. Lívia Chaguri E-mail: [email protected] Conteúdo Bombas Parte 1 - Introdução - Classificação - Bombas sanitárias - Condições
