MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
|
|
|
- Patrícia Amaro Azenha
- 8 Há anos
- Visualizações:
Transcrição
1 MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 1-3 TERMODINÂMICA APLICADA AS MÁQUINAS TÉRMICAS PROF.: KAIO DUTRA
2 Diagrama de Fases Estado líquido Mistura bifásica líquido-vapor Estado de vapor
3 Conservação da Massa Para Um Volume de Controle
4 Conservação da Massa Para Um Volume de Controle Formulação Geral: Regime Permanente:
5 Exemplo 1 Um aquecedor de água operando em regime permanente possui duas entradas e uma saída, conforme ilustrado na figura abaixo. Determine a vazão mássica na entrada 2 e na saída, em Kg/s, e a velocidade na entrada 2, em m/s.
6 Exemplo 1
7 Conservação da Energia para um Volume de Controle
8 Balanço de Energia Para Regime Permanente
9 Balanço de Energia Bocais e Difusores Um bocal é um duto com área de seção reta varável na qual a velocidade de um gás ou líquido aumenta na direção do escoamento. Em um difusor, o líquido ou gás se desacelera na direção do escoamento.
10 Balanço de Energia Bocais e Difusores
11 Balanço de Energia Turbina Uma turbina é um dispositivo que produz trabalho em função da passagem de um gás ou líquido escoando através de uma série de pás colocadas em um eixo que se encontra livre para girar.
12 Balanço de Energia Turbina - Exemplo Vapor de água entra em uma turbina operando em regime permanente. A turbina desenvolve uma potência de 1000KW. Para uma mistura liquido-vapor de x=0,9, calcule a taxa de transferência de calor entre a turbina e a vizinhança em KW.
13 Balanço de Energia Turbina - Exemplo
14 Balanço de Energia Compressores e Bombas Compressores são dispositivos nos quais o trabalho é realizado sobre o gás que atravessa de modo a elevar a pressão. Nas bombas o trabalho é usado para mudar o estado do líquido e proporcionar seu fluxo em um circuito.
15 Balanço de Energia Compressores e Bombas - Exemplo Um compressor opera conforme com gás ideial nas condições mostrada na figura ao lado. Sabendo que sua taxa de resfriamento é de 180KJ/min, determina a protência necessária para sua operação.
16 Balanço de Energia Trocadores de Calor Os dispositivos que transferem energia entre fluidos de diferentes temperaturas através dos modos de transmissão de calor são denominados trocadores de calor.
17 Balanço de Energia Trocadores de Calor - Exemplo Um trocador de calor, contracorrente, opera conforme ilustrado na figura ao lado. Destermine: A) A relação entre os fluxos de massa; B) A taxa de calor trocado por unidade de massa.
18 Balanço de Energia Dispositivos de Estrangulamento Quando um escoamento em uma válvula ou em outra restrição é idealizado, o processo é chamado de processos de estrangulamento.
19 Balanço de Energia Exemplo O esquema ao lado mostra um circuido de geração de potencia composto por um trocado de calor e uma turbina. Para os parâmetros de operação mostrados na figura, determine a potência gerada pela turbina, adimita que não exista perda de calor para o ambiente.
20 A Segunda Lei da Termodinâmica Enunciados Kelvin-Planck: É impossível para qualquer sistema operar em um ciclo termodinâmico e fornecer uma quantidade líquida de trabalho para as suas vizinhanças enquanto recebe energia por transferência de calor de um único reservatório térmico. Clausius: É impossível para qualquer sistema operar de maneira que o único resultado seria a transferência de energia sob a forma de calor de um corpo mais frio para um corpo mais quente.
21 A Segunda Lei da Termodinâmica Processos Irreversíveis Um processo é chamado de irreversível se o sistema e todas as partes que compõem suas vizinhanças não puderem ser restabelecidos exatamente aos seus respectivos estados iniciais após o processo ter ocorrido. O processo é reversível se tanto o sistema quanto as vizinhanças puderem retornar aos seus estados iniciais.
22 A Segunda Lei da Termodinâmica Processos Irreversíveis Ciclo de Carnot A eficiência térmica de um ciclo de potência irreversível é sempre menor do que a eficiência térmica de um ciclo de potência reversível quando cada um opera entre os mesmos dois reservatórios térmicos. Todos os ciclos de potência reversíveis operando entre os mesmo dois reservatórios térmicos possuem a mesma eficiência térmica.
23 A Segunda Lei da Termodinâmica Utilizando a Entropia A desigualdade de Clausius estabelece que: A equação também pode ser escrita da seguinte forma:
24 A Segunda Lei da Termodinâmica Balanço de Entropia Por definição a variação de entropia em um processo irreversível é dada por: Para um processo real, a geração de entropia é adicionada a equação:
25 A Segunda Lei da Termodinâmica Balanço de Entropia O balanço diferencial de entropia em um volume de controle pode ser escrito da seguinte forma:
26 A Segunda Lei da Termodinâmica Processos Isentrópicos O termo isentrópico denota entropia constante:
27 A Segunda Lei da Termodinâmica Eficiência Isoentrópica Turbinas A eficiência isoentrópica consiste na comparação entre o desempenho real de um equipamento e o desempenho que seria atingido em condições idealizadas para o mesmo estado inicial e a mesma pressão de saída.
28 A Segunda Lei da Termodinâmica Eficiência Isoentrópica Turbinas
29 A Segunda Lei da Termodinâmica Eficiência Isoentrópica Compressores
30 A Segunda Lei da Termodinâmica Eficiência Isoentrópica Exercício Uma turbina a vapor opera em regime permanente com condições de entrada de P1=5 bar, T1=320 C. Vapor deixa a turbina a uma pressão de 1 bar. Não ocorre transferência significativa de calor. Se a eficiência isoentrópica da turbina é de 75%, determine o trabalho produzido por unidade de massa de vapor, em KJ/Kg.
31 A Segunda Lei da Termodinâmica Eficiência Isoentrópica Exercício O sistema de refrigeração ilustrado na figura ao lado opera com R22, determine a eficiência isoentrópica do compressor.
Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q
Eficiência em Processos Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: η térmica W resultante Q H Entretanto, para um processo a definição de eficiência envolve uma comparação
2ª Lei da Termodinâmica. Prof. Matheus Fontanelle Pereira
2ª Lei da Termodinâmica Prof. Matheus Fontanelle Pereira Introdução Trabalho poderia ser obtido. Oportunidades de gerar trabalho Qual é o máximo valor teórico do trabalho que poderia ser obtido? Quais
Dispositivos com escoamento em regime permanente
Dispositivos com escoamento em regime permanente Bocais e difusores Os bocais e difusores normalmente são utilizados em motores a jato, foguetes, ônibus espaciais e até mesmo em mangueiras de jardim. Um
Capítulo 3 A Segunda Lei da Termodinâmica
Capítulo 3 A Segunda Lei da Termodinâmica 3.1 Enunciados da Lei 3.2 Máquinas Térmicas 3.3 Escalas de Temperaturas Termodinâmicas 3.4 Entropia 3.5 Variações da Entropia de um Gás Ideal 3.6 A Terceira Lei
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Análise Integral (Volume de Controle) 2 ou 1ª Lei da Termodinâmica A 1ª Lei da Termodinâmica para um Sistema Fechado é dada por,
PME 3344 Exercícios - Ciclos
PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.
Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores.
Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores. Processos Isentrópicos O termo isentrópico significa entropia constante. Eficiência de Dispositivos
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 2 a Lei da Termodinâmica v. 2.2 Introdução A 1ª lei da termodinâmica não estabelece restrições no sentido da interação de calor ou trabalho. De nossa experiência sabemos
PME 3344 Exercícios - Ciclos
PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.
Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação.
Nome: Curso: RA: Instituto de Ciências Exatas e Tecnológicas Campus Indianópolis SUB Termodinâmica Básica Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 12) Ciclos de Refrigeração 1 v. 3.0 Ciclos de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de
Capítulo 5. Ciclos de Refrigeração
Capítulo 5 Ciclos de Refrigeração Objetivos Estudar o funcionamento dos ciclos frigoríficos por compressão de vapor idealizados e reais Apontar as distinções entre refrigeradores e bombas de calor 5.1.
Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica
Capítulo 4: Análise de Sistemas: ª e ª eis da ermodinâmica Revisão Exercícios Primeira lei da termodinâmica O balanço de energia pode ser escrito na forma diferencial: de δ - δw Como energia E é uma propriedade
Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia.
Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia. Desigualdade de Clausius Aplicável para qualquer ciclo reversível ou irreversível. Ela foi desenvolvida pelo físico alemão R. J. E. Clausius
Módulo I Ciclo Rankine Ideal
Módulo I Ciclo Rankine Ideal Sistema de Potência a Vapor As usinas de potência a vapor são responsáveis pela produção da maior parte da energia elétrica do mundo. Porém, para o estudo e desenvolvimento
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Ciclo de Refrigeração por Compressão de Vapor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia
GABARITO - QUESTÕES DE MULTIPLA ESCOLHA
Instituto de Ciências Exatas e Tecnológicas P2 Termodinâmica Básica Nome: Curso: RA: Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação. É
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Segunda Lei da Termodinâmica. v. 1.0
Termodinâmica Segunda Lei da Termodinâmica 1 v. 1.0 Introdução Leis da termodinâmica são a expressão matemática de observações da processos da natureza. Lei Zero - Equilíbrio Térmico 1a Lei - Relaciona
Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot
Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot Processos Reversíveis e Irreversíveis Nenhuma máquina térmica pode ter eficiência 100% de acordo
Cap. 4: Análise de Volume de Controle
Cap. 4: Análise de Volume de Controle AR Ar+Comb. www.mecanicavirtual.org/carburador2.htm Cap. 4: Análise de Volume de Controle Entrada, e Saída, s Conservação da Massa em um Sistema dm dt sist = 0 Conservação
Exercícios sugeridos para Ciclos de Refrigeração
Exercícios sugeridos para Ciclos de Refrigeração 11-13 (Cengel 7ºed) - Um ciclo ideal de refrigeração por compressão de vapor que utiliza refrigerante R134a como fluido de trabalho mantém um condensador
Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle.
Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle. Balanço de Entropia para Sistemas Fechados O balanço de entropia é uma expressão da segunda lei conveniente
Lista de Exercícios Solução em Sala
Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão
LISTA DE EXERCÍCIOS 3
LISTA DE EXERCÍCIOS 3 ANÁLISE VOLUME DE CONTROLE 1) Óleo vegetal para cozinha é acondicionado em um tubo cilíndrico equipado com bocal para spray. De acordo com o rótulo, o tubo é capaz de fornecer 560
A 1 a lei da termodinâmica para um sistema transiente é:
TT011 - Termidinâmica - Engenharia Ambiental - UFPR Gabarito - Avaliação Final Data: 15/07/2016 Professor: Emílio G. F. Mercuri Antes de iniciar a resolução leia atentamente a prova e verifique se a mesma
Capítulo 5: Análise através de volume de controle
Capítulo 5: Análise através de volume de controle Segunda lei da termodinâmica Conversão de energia EM-54 Fenômenos de Transporte Variação de entropia em um sistema Num sistema termodinâmico a equação
Profa.. Dra. Ana Maria Pereira Neto
Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto [email protected] Segunda ei da Termodinâmica 1 Segunda ei da Termodinâmica Comparação com a 1ª ei da Termodinâmica;
Análise Energética para Sistemas Abertos (Volumes de Controles)
UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) Princípios de Termodinâmica para Engenharia Capítulo 4 Parte III Análise de Volumes de Controle em Regime Permanente
Conteúdo. 1 Introdução e Comentários Preliminares, Propriedades de uma Substância Pura, 53
Conteúdo 13 Conteúdo 1 Introdução e Comentários Preliminares, 21 1.1 O Sistema Termodinâmico e o Volume de Controle, 23 1.2 Pontos de Vista Macroscópico e Microscópico, 24 1.3 Estado e Propriedades de
Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica
Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica A segunda lei da termodinâmica Máquinas térmicas e bombas de calor Ciclos reversíveis Ciclo de Carnot A segunda lei da termodinâmica O que
Capítulo 1. Introdução à Termodinâmica Aplicada
Capítulo Introdução à Termodinâmica Aplicada Objetivos Na disciplina de Fundamentos da Termodinâmica, você aprendeu inúmeros conceitos físicos importantes. O objetivo da disciplina de Termodinâmica Aplicada
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Introdução aos Ciclos Refrigeração por Compressão de Vapor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade
Nota: Campus JK. TMFA Termodinâmica Aplicada
TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização
Disciplina : Termodinâmica. Aula 17 Processos Isentrópicos
Disciplina : Termodinâmica Aula 17 Processos Isentrópicos Prof. Evandro Rodrigo Dário, Dr. Eng. Processos Isentrópicos Mencionamos anteriormente que a entropia de uma massa fixa pode variar devido a (1)
b A eficiência térmica de um ciclo é medida pela relação entre o trabalho do ciclo e o calor que nele é adicionado.
1) As usinas de potência (termoelétricas e nucleares) precisam retornar ao meio ambiente uma determinada quantidade de calor para o funcionamento do ciclo. O retorno de grande quantidade de água aquecida
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 4-5 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em
Disciplina : Termodinâmica. Aula 14 Segunda Lei da Termodinâmica
Disciplina : Termodinâmica Aula 14 Segunda Lei da Termodinâmica Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução a segunda lei da termodinâmica Uma xícara de café quente deixado em uma sala mais fria,
Disciplina : Termodinâmica. Aula 16 Entropia
Disciplina : Termodinâmica Aula 16 Entropia Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução A segunda lei leva à definição de uma nova propriedade chamada entropia. Essa propriedade é um tanto abstrata,
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 11) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor
Termodinâmica Ciclos motores a vapor 1 v. 1.1 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS DE POTÊNCIA A VAPOR Prof. Dr. Ramón Silva - 2015 O objetivo dessa aula é relembrar os conceitos termodinâmicos do ciclo Rankine e introduzir aos equipamentos que
MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA
MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em variações das instalações
Entropia e Segunda Lei da termodinâmica
Entropia e Segunda Lei da termodinâmica Todas as Leis física estudadas até agora são leis de conservação : energia, momento linear, momento angular, etc Segunda Lei da Termodinâmica (inequação) O calor
Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine
Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine Ciclo Rankine Real Esses ciclos diferem do ideal devido às irreversibilidades presentes em vários componentes.
ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ DIRETORIA DE GESTÃO DE PESSOAS COMISSÃO COORDENADORA DE CONCURSOS CONCURSO PÚBLICO PROFESSOR EFETIVO EDITAL Nº 10/DGP-IFCE/2010 ÁREA DE ESTUDO:
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada Aula de exercícios 01 1 v. 1.3 Exercício 01 Considere o conjunto mostrado na figura. O pistão pode mover-se sem atrito entre os dois conjuntos de batentes. Quando o pistão
Enunciados da Segunda lei da Termodinâmica. Enunciado de Kelvin e Planck ( referente a motor térmico)
Enunciados da Segunda lei da ermodinâmica Enunciado de Kelvin e Planck ( referente a motor térmico) " É impossível a um motor térmico operar trocando calor com uma única fonte de calor Universidade " Santa
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho [email protected] Juiz de Fora -MG
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 SISTEMAS DE POTÊNCIA A VAPOR 2 SIST. POTÊNCIA A VAPOR Diferente do ciclo de potência a gás, no ciclo de potência
1ª Lei da Termodinâmica lei da conservação de energia
1ª Lei da Termodinâmica lei da conservação de energia É de bastante interesse em análises termodinâmicas conhecer o balanço energético dos sistemas, principalmente durante trocas de estado A 1ª Lei da
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 10) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos de Refrigeração. v. 2.0
Termodinâmica Ciclos de Refrigeração 1 v. 2.0 Ciclo de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de refrigeração; Equipamentos
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 9-11 SISTEMAS DE POTÊNCIA A GÁS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 9-11 SISTEMAS DE POTÊNCIA A GÁS PROF.: KAIO DUTRA Instalação de Potência com Turbinas a Gás As turbinas a gás tendem a ser mais leves e mais compactas que as
TM-182 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO. Prof. Dr. Rudmar Serafim Matos
Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica TM-82 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO Prof. Dr. Rudmar Serafim Matos 2.5 EXEMPLOS ILUSTRATIVOS Procedimentos para
CICLOS MOTORES A VAPOR. Notas de Aula. Prof. Dr. Silvio de Oliveira Júnior
CICLOS MOTORES A VAPOR Notas de Aula Prof. Dr. Silvio de Oliveira Júnior 2001 CICLO RANKINE ESQUEMA DE UMA CENTRAL TERMELÉTRICA A VAPOR REPRESENTAÇÃO ESQUEMÁTICA DA TERMELÉTRICA DIAGRAMAS DO CICLO IDEAL
Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012
Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012 http://en.wikipedia.org/wiki/steam_car Caldeira de carro a vapor de 1924. Populares até a década de 1930, perderam prestígio com a popularização
Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente.
Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente. Bocais e Difusores São normalmente utilizados em motores
Componentes dos ciclos termodinâmicos
Componentes dos ciclos termodinâmicos Componentes dos ciclos termodinâmicos Quais podem ser os componentes de um ciclo termodinâmico? Turbinas, válvulas, compressores, bombas, trocadores de calor (evaporadores,
Ciclos de Produção de Frio
Ciclos de Produção de Frio Prof. José R. Simões Moreira EPUSP/PME/SISEA E-mail: [email protected] www.pme.poli.usp.br/sisea Julho/2003 COGEN Cogeração, auto-produção e produção independente Pressão Princípio
Lista de Exercícios - Máquinas Térmicas
DISCIPLINA: MÁQUINAS TÉRMICAS - 2017/02 PROF.: MARCELO COLAÇO PREPARADO POR GABRIEL ROMERO ([email protected]) 4. Motores de combustão interna: Os calores específicos são constantes para todos os exercícios
Escola Politécnica da Universidade de São Paulo. Termodinâmica. 2 a Lei da Termodinâmica. v. 2.1
Termodinâmica 2 a Lei da Termodinâmica v. 2.1 Introdução 1ª lei da termodinâmica não estabelece restrições no sentido da interação de calor ou trabalho. De nossa experiência sabemos que há um único sentido
Sistemas de Refrigeração Parte I
Sistemas de Refrigeração Parte I 1 Tópicos da Aula de Hoje Introdução / definições sobre sistemas de refrigeração Ciclo de refrigeração por compressão Fatores que influenciam o desempenho do sistema de
2ª Lei da Termodinâmica Máquinas Térmicas Refrigeradores
2ª Lei da Termodinâmica Máquinas Térmicas 2 a Lei da Termodinâmica 2 a Lei da Termodinâmica O que determina o sentido de certos fenômenos da natureza? Exemplo: Sistema organizado Sistema desorganizado
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a ar
Termodinâmica Ciclos motores a ar 1 v. 1.2 Ciclo padrão a ar Trata-se de um modelo simplificado para representar alguns sistemas de potência com processos complexos. Exemplos: Motores de combustão interna
Aula 4 A 2ª Lei da Termodinâmica
Universidade Federal do ABC P O S M E C Aula 4 A 2ª Lei da Termodinâmica MEC202 As Leis da Termodinâmica As leis da termodinâmica são postulados básicos aplicáveis a qualquer sistema que envolva a transferência
Fís. Monitor: Caio Girão
Professor: Leonardo Gomes Monitor: Caio Girão Máquinas térmicas 05 jul RESUMO O que é uma máquina térmica? Máquinas térmicas são dispositivos usados para converter calor em energia mecânica. Como assim?
Exercícios e exemplos de sala de aula Parte 1
PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 1 Propriedade das substâncias puras: 1- Um tanque rígido com volume de 1m 3 contém
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho [email protected] Juiz de Fora -MG
3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:
1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total
Geração de Energia Elétrica
Geração de Energia Elétrica Geração Termoelétrica a Joinville, 6 de Abril de 202 Escopo dos Tópicos Abordados Ciclos térmicos; Configurações emodelos de Turbinas a : Modelos dinâmicos de turbinas a vapor;
LOQ Fenômenos de Transporte I
LOQ 4083 - Fenômenos de Transporte I FT I 09 Primeira Lei da Termodinâmica Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir
Uma caneca de café quente não fica mais quente se for colocada numa sala fria
SUMÁRIO Focámos, nos capítulos anteriores, a nossa atenção na Primeira Lei da Termodinâmica, que nos diz que a energia é conservada durante um processo. Neste capítulo abordaremos a Segunda Lei da Termodinâmica,
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 9) a Lei da Termodinâmica para Volume de Controle 1 v.. Introdução Estenderemos o balanço de entropia desenvolvido para considerar entrada e saída de massa. Não nos ocuparemos
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 6-8 MELHORANDO O DESEMPENHO PROF.: KAIO DUTRA Superaquecimento Como não estamos restritos a ter vapor saturado na entrada da turbina, uma energia adicional
Professor Dr. Evandro Rodrigo Dário Curso: Engenharia Mecânica Disciplina: Termodinâmica. Processos reversíveis e Irreversíveis
Processos reversíveis e Irreversíveis Um processo reversível é definido como um processo que pode ser invertida sem deixar nenhum vestígio no ambiente. Ou seja, tanto o sistema e o ambiente são devolvidos
Termodinâmica II. Tecnologia e Processos
Termodinâmica II Tecnologia e Processos Geral Estudadas nos gases Propriedades termodinâmicas A temperatura (T) A pressão (P) O volume (V) A densidade ( ) = m / V O calor específico a volume constante
QUÍMICA PROFº JAISON MATTEI
QUÍMICA PROFº JAISON MATTEI 1. Em uma máquina térmica ideal que opere em ciclos, todos os processos termodinâmicos, além de reversíveis, não apresentariam dissipação de energia causada por possíveis efeitos
Geração de Energia Elétrica
Geração de Energia Elétrica Geração Termoelétrica a Joinville, 11 de Abril de 2012 Escopo dos Tópicos Abordados Conceitos básicos de termodinâmica; Centrais Térmicas a : Descrição de Componentes (Caldeira+Turbina);
Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado.
Exergia Introdução 1ª Lei da Termodinâmica conservação da energia (energia não pode ser criada nem destruída). Serve como ferramenta para contabilizar a energia durante um processo 2ª Lei da Termodinâmica
Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica
Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica SIMULAÇÃO DE CICLO TÉRMICO COM DUAS CALDEIRAS EM PARALELO: COMBUSTÃO EM GRELHA E EM LEITO FLUIDIZADO Herson
Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5
Termodinâmica 10) Ciclos motores a vapor 1 v. 2.5 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo
PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 2017 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico
PME3398 Fundamentos de Termodinâmica e Transferência de Calor 1 o semestre / 017 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico Gabarito da Prova 1 Questão 1: Uma catapulta a vapor é muito utilizada
Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos
Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos 1ª. Questão (1 ponto) Considere uma bomba centrífuga de 20 kw de potência nominal, instalalada em uma determinada planta
Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica
Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica Processos irreversíveis. Máquinas térmicas. Ciclo de Carnot 2 a lei da Termodinâmica: enunciado de Kelvin-Planck. Refrigeradores. 2 a lei da
Curso de Engenharia Civil
Curso de Engenharia Civil Física Geral e Experimental II 2 período A e B Calorimetria e Termodinâmica Prof.a Érica Muniz Capacidade térmica de um corpo: Capacidade térmica de um corpo é a grandeza que
TM-182 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO. Prof. Dr. Rudmar Serafim Matos
Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica TM-82 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO Prof. Dr. Rudmar Serafim Matos 2.5 EXEMPLOS ILUSTRATIVOS Procedimentos para
Termodinâmica 13. Alexandre Diehl. Departamento de Física - UFPel
Termodinâmica 13 Alexandre Diehl Departamento de Física - UFPel Nicolas Léonard Sadi Carnot (1796 1832) 1824: observações de Carnot Trabalho pode ser produzido a partir de fontes de calor (calor ainda
Energética Industrial
Universidade do Minho Departamento de Engenharia Mecânica Energética Industrial Problemas propostos José Carlos Fernandes Teixeira 1) 1.5 kg de gelo à temperatura de 260 K, funde-se, à pressão de 1 bar,
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Revisão Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz de
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Entropia
ermodinâmica Entropia v.. Introdução Falamos nas aulas anteriores sobre a a Lei da ermodinâmica. Vimos dois enunciados da a Lei, o de Kelvin-Planck e o de Clausius. Falamos sobre sentido natural dos processos,
Escola Politécnica da Universidade de São Paulo. Termodinâmica. 11) Ciclos motores a ar Ciclo Brayton. v. 2.1
Termodinâmica 11) Ciclos motores a ar Ciclo Brayton 1 v. 2.1 Exemplos Turbinas a gás Fonte:http://www.alstom.com/products-services/product-catalogue/power-generation/gas-power/gas-turbines/gt24-gt26-gas-turbines/
