TERMODINÂMICA APLICADA
|
|
|
- Washington Benke Fontes
- 8 Há anos
- Visualizações:
Transcrição
1 TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho Juiz de Fora -MG
2 INTRODUÇÃO: Para a primeira lei da termodinâmica, um processo era definido como sendo uma integral cíclica do calor igual a integral cíclica do trabalho. Mas a primeira lei preocupa-se com a direção dos fluxos desse processo? NÃO. Os processos em geral ocorrem de forma naturalem uma determinada direção mas não na direção oposta.
3 MOTORES TÉRMICOS E REFRIGERADORES: Alta Temperatura Q Q Q W Baixa Temperatura
4 INTRODUÇÃO: A partir de agora, como podemos definir um processo? Início Processo 1ª Lei 2ª Lei Término OK! Um processo somente ocorrerá, se tanto a primeira quanto a segunda lei da termodinâmica forem satisfeitas. De forma mais ampla, a segunda lei indica que todos os processos conhecidos ocorrem em um certo sentido, mas no sentido oposto isso não poderá ocorrer, pelo menos,nãodeformaespontânea.alémdisso, a2ªleifocaaqualidade.
5 MOTORES TÉRMICOS E REFRIGERADORES: Baseado nos exemplos anteriores, podemos considerar o motor térmico e o refrigerador. Motor Termodinâmico, essa denominação é utilizada em sentido mais amplo que o real, designa todos os dispositivos que produzem trabalho, por meio da transferência de calor ou combustão, mesmo que ele não opere segundo um processo e/ou ciclo termodinâmico. São também conhecidos por Máquinas Térmicas. (ex.: motor a combustão interna e turbina a gás).
6 MOTORES TÉRMICOS: Em outras palavras, o seu funcionamento, pode ser exemplificado de acordo com a figura ao lado. Um diagrama de um motor térmico restrito, ou seja, uma usina a vapor básica, será apresentado aseguir:
7 MOTORES TÉRMICOS:
8 MOTORES TÉRMICOS: Nesse caso, pode-se dizer que o Trabalho líquido de saída é a energia pretendia, ou seja, é o trabalho realizado por algum equipamento proveniente do calor recebido de uma fonte quente. Assim,podemosdefini-locomo:, ou
9 MOTORES TÉRMICOS: Definimos cada variável da seguinte forma: ou - quantidade de energiafornecidaao fluido apartirde umafonte de alta temperatura(fornalha). Magnitude do calor transferido entre o dispositivo cíclico e o meio a alta temperatura ou - quantidade de energia rejeitada pelo fluido para um sumidouro a baixa temperatura(atmosfera, rio, etc.). Magnitude do calor transferido entre o dispositivo cíclico e o meio a baixa temperatura
10 MOTORES TÉRMICOS: Definimos cada variável da seguinte forma:, - quantidade de trabalho realizada pelo fluido em algum equipamento(turbina) à medida que se expande, - quantidade de trabalho necessário para algum equipamento (bomba) para realização de alguma tarefa.
11 MOTORES TÉRMICOS: Nesse momento torna-se importante definir Eficiência Térmica(η). Podemos dizer que essa eficiência é a razão entre a energia pretendida (gerada) pela energia total cedida. Em outras palavras: 1
12 MOTORES TÉRMICOS: Exemplo 1: Um motor de um carro com potência de 65 hp tem uma eficiência térmica de 24%. Determine a taxa mássica de consumo do combustível desse carro(lbm/h) se o poder calorífico do combustível for Btu/lbm. 8,705! "
13 MOTORES TÉRMICOS: A segunda situação seria a retirada de calor de um corpo a baixa temperatura para um corpo a alta temperatura. De forma espontânea isso não é possível, mas através de dispositivos como um sistema de refrigeração ou uma bomba de calor isso será alcançado. Um diagrama de um refrigerador elementar, ou, sistema de refrigeração, será apresentado a seguir:
14 MOTORES TÉRMICOS E REFRIGERADORES:
15 MOTORES TÉRMICOS E REFRIGERADORES: AeficiênciadeumrefrigeradoroudeumaBombadeCaloréconhecidacomo COP- Coeficiente de desempenho ou Coeficiente de Performance(β). O objetivo é remover calor ( ) do espaço refrigerado. Para atingir esse objetivo é necessário a realização de trabalho líquido de entrada. Assim, pode-se definir o COP de um refrigerador como sendo a razão da energia pretendida pela energia gasta, ou seja: $%& ' ( ) * + ) * ), -) *. ), ) * -.
16 BOMBA DE CALOR: Outro dispositivo que também retira calor de um meio com temperatura baixa e manda para um de temperatura maisaltaéabombadecalor. A diferença entre um refrigerador e uma bomba de calor é que o primeiro tem por finalidade manter baixa a temperaturadeondeeleretiraocalor,osegundoémanter alta a temperatura para onde ele envia calor, assim: $%& /0 1 ), + ), ), -) *..-), ) *
17 MOTORES TÉRMICOS E REFRIGERADORES: Exemplo 2: O compartimento de alimentos de um refrigerador, mostrado ao lado, é mantido a 4 C por meio da remoção de calor a uma taxa de 360 kj/min. Se a energia necessária for fornecida ao refrigerador a uma taxa de 2 kw. Determine (a) o coeficiente de performance do refrigerador e (b) a taxa com a qual o calor é rejeitado na sala em que está instalado o refrigerador.
18 SEGUNDA LEI DA TERMODINÂMICA: 1º) Há dois enunciados clássicos da segunda lei da termodinâmica. É impossível para qualquer dispositivo que opera em um ciclo receber calor de um único reservatório e produzir uma quantidade líquida de trabalho. (Enunciado de Kevin-Planck) Em outras palavras é impossível construir um motor térmico com 100% de eficiência ( 13.
19 SEGUNDA LEI DA TERMODINÂMICA: 2º) Há dois enunciados clássicos da segunda lei da termodinâmica. É impossível construir um dispositivo que funcione em um ciclo e não produza qualquer outro efeito que não seja a transferência de calor de um corpo com temperatura mais baixa para um corpo com temperatura mais alta. (Enunciado de Clausius) Em outras palavras é impossível construir um refrigerador ou uma bomba de calor com COP infinito (β 3.
20 SEGUNDA LEI DA TERMODINÂMICA: Assim, pode-se concluir que ambos enunciados são expressões equivalentes à segunda lei da termodinâmica, ou seja, a violação de um implica na violação do outro.
21 SEGUNDA LEI DA TERMODINÂMICA: Mais uma vez, pode-se afirmar que, um processo não pode ocorrer sem que atenda à primeira e a segunda leis da termodinâmica. Porém, se houvesse um dispositivo para fazer tal infração, essa seria a tão considerada moto-perpétuo ou moto-contínuo.
22 SEGUNDA LEI DA TERMODINÂMICA: Há tipos ou espécies distintas para um moto-perpétuo. um moto-perpétuo de primeira espécie, criaria trabalho do nada, ou criaria massa e energia, violando a primeira lei. um moto-perpétuo de segunda espécie, receberia uma quantidade de calor de um reservatório térmico e, então, converteria essa quantidade de calor totalmente em trabalho, violando a segunda lei. um moto-perpétuo de terceira espécie, não teria atrito e, assim, operaria indefinidamente, porém, não produziria trabalho.
23 PROCESSO REVERSÍVEL E IRREVERSÍVEL: Quando afirmamos que não há um processo com 100% de eficiência, qual a próxima pergunta que precisa ser respondida? Qualéamáximaeficiênciaquepodeserobtida? Para responder essa pergunta, primeiro devemos definir um processo ideal, que é chamado de processo reversível. Podemos definir um processo como reversível, como aquele que, tendo ocorrido, pode ser invertido e após a inversão, não será notado nenhum vestígio no sistema e nas vizinhanças, em relação ao estado anterior.
24 PROCESSO REVERSÍVEL E IRREVERSÍVEL: Analise as seguintes situações: Processo inicial. Processo Irreversível Processo inverso.
25 IRREVERSIBILIDADE: São fatores que levam um processo a ser irreversível. Há vários desses fatores, mas aqui, será tratado quatro desses. 1º- Atrito: é uma força comum de irreversibilidade associada a corpos em movimento.
26 IRREVERSIBILIDADE: São fatores que levam um processo a ser irreversível. Há vários desses fatores, mas aqui, será tratado quatro desses. 2º - Expansão não resistida: quando há preenchimento de um fluido seja pelo rompimento de uma membrana que separa duas regiões, ou pela compressão e/ou expansão rápida ocupada pelo fluido.
27 IRREVERSIBILIDADE: São fatores que levam um processo a ser irreversível. Há vários desses fatores, mas aqui, será tratado quatro desses. 78 9: < 3º- Transferência de calor com diferença finita de temperatura: de forma espontânea só pode ocorrer na transferência de calor de um corpo com temperatura mais alta para um corpo com temperatura mais baixa.
28 IRREVERSIBILIDADE: São fatores que levam um processo a ser irreversível. Há vários desses fatores, mas aqui, será tratado quatro desses. 78 9: < 3º- Transferência de calor com diferença finita de temperatura: de forma espontânea só pode ocorrer na transferência de calor de um corpo com temperatura mais alta para um corpo com temperatura mais baixa.
29 IRREVERSIBILIDADE: São fatores que levam um processo a ser irreversível. Há vários desses fatores, mas aqui, será tratado quatro desses. 3º- Mistura de duas substâncias distintas: processo que envolve a mistura de dois fluidos distintos.
30 PROCESSOS INTERNA E EXTERMANENTE REVERSÍVEIS: Um processo é considerado internamente reversível, quando os caminhos do processode voltase coincidem com oscaminhosdo processo de ida. Mas essa coincidência de caminhos, só é válida para a ocorrência na região interna às fronteiras do sistema. Um processo é considerado externamente reversível, se não ocorrer nenhuma irreversibilidade fora do sistema (na vizinhança) durante o processo.
31 CICLO DE CARNOT: Trata-se de um ciclo teórico, pois na prática ciclos reversíveis não podem ser realizados, porque as irreversibilidades associadas a cada processo não podem ser eliminadas. No entanto, esse ciclo serve como referência para os ciclos reais, onde a tentativas desses ciclos é fazer com que o trabalho líquido e a eficiência do ciclo sejam maximizados com o uso de processos que exijam o mínimo de trabalho e resultem no máximo de trabalho Assim, o ciclo reversível mais conhecido é o ciclo de Carnot.
32 CICLO DE CARNOT: Para entender o ciclo de Carnot, vamos analisar os processos a seguir: 1.IníciodoCiclo
33 CICLO DE CARNOT: Para entender o ciclo de Carnot, vamos analisar os processos a seguir: 2.
34 CICLO DE CARNOT: Para entender o ciclo de Carnot, vamos analisar os processos a seguir: 3.
35 CICLO DE CARNOT: Para entender o ciclo de Carnot, vamos analisar os processos a seguir: 4.Fimdociclo
36 CICLO DE CARNOT: Em resumo, o ciclo de Carnot apresenta 4 processos básicos que podem ser descritos da seguinte forma. 1. Um processo isotérmico reversível, no qual o calor é transferido do reservatório a alta temperatura. 2. Um processo adiabático reversível, no qual a temperatura do fluido de trabalho diminui enquanto há expansão do volume.
37 CICLO DE CARNOT: Em resumo, o ciclo de Carnot apresenta 4 processos básicos que podem ser descritos da seguinte forma. 3. Um processo isotérmico reversível, no qual o calor é transferido para o reservatório a baixa temperatura. 4. Um processo adiabático reversível, no qual a temperatura do fluido de trabalho aumenta enquanto há redução do volume.
38 CICLO DE CARNOT: O resultado gráfico de um processo como esse seria: Esse primeiro caso, trata-se de uma máquina térmica, no entanto o inverso é válido para um refrigerador ou bomba de calor.
39 CICLO DE CARNOT: O ciclo de Carnot trabalha em escala de temperatura absoluta, ou seja, na escala Kelvin [T(K) = T(⁰C) + 273,15]. Assim, a escala termodinâmica de temperatura pode ser definida como: = = Por fim, o rendimento térmico de um ciclo de Carnot, pode ser expresso por: >é@abcd 1 1 = =
40 CICLO DE CARNOT: Exercício Um ciclo de refrigeração de Carnot é executado em um sistema fechado na região de mistura líquido-vapor saturados com 0,8 kg de refrigerante-134a como fluido de trabalho(ver figura ao lado). As temperaturas máximas e mínimas do ciclo são 20 ⁰C e -8 ⁰C, respectivamente. Sabe-se que o refrigerante é líquido saturado ao final do processo de rejeição de calor, e a entrada de trabalho líquido no ciclo é de 15 kj. Determine a fração da massa do refrigerante que vaporiza durante o processo de adição de calor e a pressão no final do processo de rejeição de calor
41 CICLO DE CARNOT: Exercícios: Um refrigerador doméstico opera segundo um ciclo de Carnot em uma sala a 20 ⁰C. o calor necessita ser transferido do espaço refrigerado a uma taxa de 2 kw para manter a sua temperatura interna em -30 ⁰C. Qual é a menor potência teórica requerida para a sua operação?
42 FIM CAP. 5
Profa.. Dra. Ana Maria Pereira Neto
Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto [email protected] Segunda ei da Termodinâmica 1 Segunda ei da Termodinâmica Comparação com a 1ª ei da Termodinâmica;
Disciplina : Termodinâmica. Aula 14 Segunda Lei da Termodinâmica
Disciplina : Termodinâmica Aula 14 Segunda Lei da Termodinâmica Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução a segunda lei da termodinâmica Uma xícara de café quente deixado em uma sala mais fria,
Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica
Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica A segunda lei da termodinâmica Máquinas térmicas e bombas de calor Ciclos reversíveis Ciclo de Carnot A segunda lei da termodinâmica O que
Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot
Módulo II Processo Reversível e Irreversível, Ciclos (Potência, Refrigeração e Bomba de Calor) de Carnot Processos Reversíveis e Irreversíveis Nenhuma máquina térmica pode ter eficiência 100% de acordo
Uma caneca de café quente não fica mais quente se for colocada numa sala fria
SUMÁRIO Focámos, nos capítulos anteriores, a nossa atenção na Primeira Lei da Termodinâmica, que nos diz que a energia é conservada durante um processo. Neste capítulo abordaremos a Segunda Lei da Termodinâmica,
Professor Dr. Evandro Rodrigo Dário Curso: Engenharia Mecânica Disciplina: Termodinâmica. Processos reversíveis e Irreversíveis
Processos reversíveis e Irreversíveis Um processo reversível é definido como um processo que pode ser invertida sem deixar nenhum vestígio no ambiente. Ou seja, tanto o sistema e o ambiente são devolvidos
GABARITO - QUESTÕES DE MULTIPLA ESCOLHA
Instituto de Ciências Exatas e Tecnológicas P2 Termodinâmica Básica Nome: Curso: RA: Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação. É
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 2 a Lei da Termodinâmica v. 2.2 Introdução A 1ª lei da termodinâmica não estabelece restrições no sentido da interação de calor ou trabalho. De nossa experiência sabemos
Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação.
Nome: Curso: RA: Instituto de Ciências Exatas e Tecnológicas Campus Indianópolis SUB Termodinâmica Básica Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz
Capítulo 3 A Segunda Lei da Termodinâmica
Capítulo 3 A Segunda Lei da Termodinâmica 3.1 Enunciados da Lei 3.2 Máquinas Térmicas 3.3 Escalas de Temperaturas Termodinâmicas 3.4 Entropia 3.5 Variações da Entropia de um Gás Ideal 3.6 A Terceira Lei
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Segunda Lei da Termodinâmica. v. 1.0
Termodinâmica Segunda Lei da Termodinâmica 1 v. 1.0 Introdução Leis da termodinâmica são a expressão matemática de observações da processos da natureza. Lei Zero - Equilíbrio Térmico 1a Lei - Relaciona
Enunciados da Segunda lei da Termodinâmica. Enunciado de Kelvin e Planck ( referente a motor térmico)
Enunciados da Segunda lei da ermodinâmica Enunciado de Kelvin e Planck ( referente a motor térmico) " É impossível a um motor térmico operar trocando calor com uma única fonte de calor Universidade " Santa
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Introdução aos Ciclos Refrigeração por Compressão de Vapor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade
2ª Lei da Termodinâmica. Prof. Matheus Fontanelle Pereira
2ª Lei da Termodinâmica Prof. Matheus Fontanelle Pereira Introdução Trabalho poderia ser obtido. Oportunidades de gerar trabalho Qual é o máximo valor teórico do trabalho que poderia ser obtido? Quais
Entropia e Segunda Lei da termodinâmica
Entropia e Segunda Lei da termodinâmica Todas as Leis física estudadas até agora são leis de conservação : energia, momento linear, momento angular, etc Segunda Lei da Termodinâmica (inequação) O calor
Termodinâmica II. Tecnologia e Processos
Termodinâmica II Tecnologia e Processos Geral Estudadas nos gases Propriedades termodinâmicas A temperatura (T) A pressão (P) O volume (V) A densidade ( ) = m / V O calor específico a volume constante
Fís. Monitor: Caio Girão
Professor: Leonardo Gomes Monitor: Caio Girão Máquinas térmicas 05 jul RESUMO O que é uma máquina térmica? Máquinas térmicas são dispositivos usados para converter calor em energia mecânica. Como assim?
Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012
Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012 http://en.wikipedia.org/wiki/steam_car Caldeira de carro a vapor de 1924. Populares até a década de 1930, perderam prestígio com a popularização
Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado.
Exergia Introdução 1ª Lei da Termodinâmica conservação da energia (energia não pode ser criada nem destruída). Serve como ferramenta para contabilizar a energia durante um processo 2ª Lei da Termodinâmica
Escola Politécnica da Universidade de São Paulo. Termodinâmica. 2 a Lei da Termodinâmica. v. 2.1
Termodinâmica 2 a Lei da Termodinâmica v. 2.1 Introdução 1ª lei da termodinâmica não estabelece restrições no sentido da interação de calor ou trabalho. De nossa experiência sabemos que há um único sentido
Curso de Engenharia Civil
Curso de Engenharia Civil Física Geral e Experimental II 2 período A e B Calorimetria e Termodinâmica Prof.a Érica Muniz Capacidade térmica de um corpo: Capacidade térmica de um corpo é a grandeza que
Físico-Química I. Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz. Máquinas Térmicas. Segunda Lei da Termodinâmica. Ciclo de Carnot.
Físico-Química I Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz Máquinas Térmicas Segunda Lei da Termodinâmica Ciclo de Carnot Refrigeração Máquina Térmica Uma máquina térmica converte parte da energia
Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica
Capítulo 4: Análise de Sistemas: ª e ª eis da ermodinâmica Revisão Exercícios Primeira lei da termodinâmica O balanço de energia pode ser escrito na forma diferencial: de δ - δw Como energia E é uma propriedade
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 1-3 TERMODINÂMICA APLICADA AS MÁQUINAS TÉRMICAS PROF.: KAIO DUTRA Diagrama de Fases Estado líquido Mistura bifásica líquido-vapor Estado de vapor Conservação
Disciplina : Termodinâmica. Aula 16 Entropia
Disciplina : Termodinâmica Aula 16 Entropia Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução A segunda lei leva à definição de uma nova propriedade chamada entropia. Essa propriedade é um tanto abstrata,
Entropia e a Segunda Lei da Termodinâmica
ENTRO DE IÊNIAS E TENOLOGIA AGROALIMENTAR UNIDADE AADÊMIA DE TENOLOGIA DE ALIMENTOS DISIPLINA: FÍSIA II Entropia e a Segunda Lei da Termodinâmica Prof. Bruno Farias Sentido de um processo termodinâmico
Termodinâmica 12. Alexandre Diehl. Departamento de Física - UFPel
Termodinâmica 12 Alexandre Diehl Departamento de Física - UFPel Ciclo termodinâmico Definição Sequência de processos termodinâmicos aplicados sobre um sistema, tal que o mesmo é levado desde o seu estado
4/Mar/2015 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos
4/Mar/05 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos Transformações termodinâmicas e gases ideais Tipos de transformações
UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 10: Segunda lei da Termodinâmica Máquinas térmicas
UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 10: Segunda lei da Termodinâmica Máquinas térmicas Segunda lei da termodinâmica Na aula passada definimos a variação de entropia para um processo reversível
Capítulo 10 Segunda Lei da Termodinâmica. Obs: a existência do moto perpétuo de 1ª. Espécie, criaria energia, violando a 1ª. Lei.
Capítulo 10 Segunda Lei da Termodinâmica É muito comum e popular enunciar a 2ª Lei dizendo simplesmente que calor não pode ser totalmente transformado em trabalho. Está errado. Podemos fazer uma expansão
Máquinas Térmicas, Segunda Lei e o Motor de Carnot
Máquinas Térmicas, Segunda Lei e o Motor de Carnot Revisando S = f i dq T = Q T Segunda Lei: ΔS>0 Para um processo espontâneo (irreversível) em um sistema fechado. Para processos reversíveis em um sistema
2ª Lei da Termodinâmica Máquinas Térmicas Refrigeradores
2ª Lei da Termodinâmica Máquinas Térmicas 2 a Lei da Termodinâmica 2 a Lei da Termodinâmica O que determina o sentido de certos fenômenos da natureza? Exemplo: Sistema organizado Sistema desorganizado
Refrigeração e Ar Condicionado
Refrigeração e Ar Condicionado Ciclo de Refrigeração por Compressão de Vapor Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS DE POTÊNCIA A VAPOR Prof. Dr. Ramón Silva - 2015 O objetivo dessa aula é relembrar os conceitos termodinâmicos do ciclo Rankine e introduzir aos equipamentos que
Segunda Lei da Termodinâmica restrita a ciclos (cont.)
UNIVERSIDADE DE SÃO PAUO ESCOA DE ENGENARIA DE SÃO CAROS Núcleo de Engenharia érmica e Fluidos ermodinâmica I (SEM0233) Prof. Oscar M.. Rodriguez Segunda ei da ermodinâmica restrita a ciclos (cont.) O
Capítulo 5. Ciclos de Refrigeração
Capítulo 5 Ciclos de Refrigeração Objetivos Estudar o funcionamento dos ciclos frigoríficos por compressão de vapor idealizados e reais Apontar as distinções entre refrigeradores e bombas de calor 5.1.
Termodinâmica 13. Alexandre Diehl. Departamento de Física - UFPel
Termodinâmica 13 Alexandre Diehl Departamento de Física - UFPel Nicolas Léonard Sadi Carnot (1796 1832) 1824: observações de Carnot Trabalho pode ser produzido a partir de fontes de calor (calor ainda
Física II FEP º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães
Física II FEP 112 2º Semestre de 2012 Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: [email protected] Fone: 3091-7104 Aula 3 Irreversibilidade e Segunda Lei
PME 3344 Exercícios - Ciclos
PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 SISTEMAS DE POTÊNCIA A VAPOR 2 SIST. POTÊNCIA A VAPOR Diferente do ciclo de potência a gás, no ciclo de potência
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 12) Ciclos de Refrigeração 1 v. 3.0 Ciclos de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de
= AT Lei de Stefan-Boltzmann
Radiação transporte de energia sob a forma de ondas electromagnéticas. No vazio, a propagação dá-se à velocidade da luz. A radiação térmica, emitida por um sólido ou líquido em virtude da sua temperatura
A Segunda Lei da Termodinâmica
A Segunda Lei da ermodinâmica -Evitar desperdícios - Conservar energia - A Energia total do Universo não muda! A 1ª Lei não conta a história toda! 2ª Lei trata da possibilidade ou impossibilidade de se
Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica
Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica Processos irreversíveis. Máquinas térmicas. Ciclo de Carnot 2 a lei da Termodinâmica: enunciado de Kelvin-Planck. Refrigeradores. 2 a lei da
2ª Lei da Termodinâmica. Dentre as duas leis da termodinâmica, a segunda é a. que tem maior aplicação na construção de máquinas e
2ª Lei da Termodinâmica Dentre as duas leis da termodinâmica, a segunda é a que tem maior aplicação na construção de máquinas e utilização na indústria, pois trata diretamente do rendimento das máquinas
Módulo I Ciclo Rankine Ideal
Módulo I Ciclo Rankine Ideal Sistema de Potência a Vapor As usinas de potência a vapor são responsáveis pela produção da maior parte da energia elétrica do mundo. Porém, para o estudo e desenvolvimento
Termodinâmica Calor Movimento
Termodinâmica Calor Movimento Revolução Industrial (Século XVIII) Revolução Industrial Nasceram as fábricas e as grandes cidades, os novos meios de transporte, as novas ideologias e doutrinas econômicas,
Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia.
Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia. Desigualdade de Clausius Aplicável para qualquer ciclo reversível ou irreversível. Ela foi desenvolvida pelo físico alemão R. J. E. Clausius
Aula 7 Refrigeração e bombeamento de calor
Universidade Federal do ABC P O S M E C Aula 7 Refrigeração e bombeamento de calor MEC202 Refrigeração Transferência de calor a partir de uma região de temperatura mais baixa para uma região com temperatura
MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA
MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em variações das instalações
Resumo do Conteúdo. 1ª Lei da Termodinâmica
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: 2º TURMA(S):
2º Lei da Termodinâmica. Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot
2º Lei da Termodinâmica Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot Introdução Chamamos, genericamente, de máquina a qualquer dispositivo que tenha por finalidade transferir
Capítulo 5: Análise através de volume de controle
Capítulo 5: Análise através de volume de controle Segunda lei da termodinâmica Conversão de energia EM-54 Fenômenos de Transporte Variação de entropia em um sistema Num sistema termodinâmico a equação
Termodinâmica e Estrutura da Matéria (MEFT)
Termodinâmica e Estrutura da Matéria (MEFT) 2014-2015 Vasco Guerra Carlos Augusto Santos Silva [email protected] Versão 1.0 24-1-2014 1. Um inventor diz que desenvolveu uma máquina
Física do Calor. Segunda Lei da Termodinâmica II
4300159 Física do Calor Segunda Lei da Termodinâmica II A reversão dos processos não violaria a Primeira Lei! Trata-se de um Princípio de Conservação. O Princípio físico relacionado à irreversibilidade
Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine
Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine Ciclo Rankine Real Esses ciclos diferem do ideal devido às irreversibilidades presentes em vários componentes.
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 4-5 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em
TERMODINÂMICA 3 INTRODUÇÃO AO 2º PRINCÍPIO DA TERMODINÂMICA
3 INRODUÇÃO AO º PRINCÍPIO DA ERMODINÂMICA 3. O ciclo de Carnot (84). ERMODINÂMICA Investigou os princípios que governam a transformação de energia térmica, calor em energia mecânica, trabalho. Baseou
Física 3 aulas 19 e
www.fisicanaveia.com.br www.fisicanaveia.com.br/cei Ciclo de Carnot (824) Ciclo de rendimento máximo teórico possível, ainda assim menor do que 00%. máx máx Q Q 2 2 Q Q 2 2 Ciclo no sentido horário Ciclo
Conteúdo. 1 Introdução e Comentários Preliminares, Propriedades de uma Substância Pura, 53
Conteúdo 13 Conteúdo 1 Introdução e Comentários Preliminares, 21 1.1 O Sistema Termodinâmico e o Volume de Controle, 23 1.2 Pontos de Vista Macroscópico e Microscópico, 24 1.3 Estado e Propriedades de
QUÍMICA PROFº JAISON MATTEI
QUÍMICA PROFº JAISON MATTEI 1. Em uma máquina térmica ideal que opere em ciclos, todos os processos termodinâmicos, além de reversíveis, não apresentariam dissipação de energia causada por possíveis efeitos
Aula 4 A 2ª Lei da Termodinâmica
Universidade Federal do ABC P O S M E C Aula 4 A 2ª Lei da Termodinâmica MEC202 As Leis da Termodinâmica As leis da termodinâmica são postulados básicos aplicáveis a qualquer sistema que envolva a transferência
Lista de Exercícios - Máquinas Térmicas
DISCIPLINA: MÁQUINAS TÉRMICAS - 2017/02 PROF.: MARCELO COLAÇO PREPARADO POR GABRIEL ROMERO ([email protected]) 4. Motores de combustão interna: Os calores específicos são constantes para todos os exercícios
PME 3344 Exercícios - Ciclos
PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.
Exercícios sugeridos para Ciclos de Refrigeração
Exercícios sugeridos para Ciclos de Refrigeração 11-13 (Cengel 7ºed) - Um ciclo ideal de refrigeração por compressão de vapor que utiliza refrigerante R134a como fluido de trabalho mantém um condensador
A 1 a lei da termodinâmica para um sistema transiente é:
TT011 - Termidinâmica - Engenharia Ambiental - UFPR Gabarito - Avaliação Final Data: 15/07/2016 Professor: Emílio G. F. Mercuri Antes de iniciar a resolução leia atentamente a prova e verifique se a mesma
3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:
1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total
Ciclos Termodinâmicos de Refrigeração. STE Termodinâmica Aplicada II
Ciclos Termodinâmicos de Refrigeração STE010-13 - Termodinâmica Aplicada II - 2017 1 Objetivos Introduzir os conceitos de refrigeradores e bombas de calor e medir sua performance; Analisar o ciclo ideal
Termodinâmica 15. Alexandre Diehl. Departamento de Física - UFPel
Termodinâmica 15 Alexandre Diehl Departamento de Física - UFPel Desigualdade de Clausius Processo cíclico qualquer Ciclo é operado com o calor fornecido por um reservatório principal. O calor é fornecido
Sistemas de Refrigeração Parte I
Sistemas de Refrigeração Parte I 1 Tópicos da Aula de Hoje Introdução / definições sobre sistemas de refrigeração Ciclo de refrigeração por compressão Fatores que influenciam o desempenho do sistema de
Máquinas térmicas. Máquina térmica Dispositivo que converte calor em energia mecânica (trabalho) Reservatório a alta temperatura T H
9/Mar/208 ula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin Máquinas frigoríficas (e bombas de calor): princípio de funcionamento e eficiência Formulação de lausius
Lista de Exercícios Solução em Sala
Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão
Assinale a alternativa que preenche corretamente as lacunas do enunciado abaixo, na ordem em que aparecem. 3ª série EM A/B Disciplina: Física
Processo Avaliativo T1-3º Bimestre/217 Disciplina: Física 3ª série EM A/B Nome do aluno Nº Turma 1. 1. (Upe-ssa 2 217) Um estudo do ciclo termodinâmico sobre um gás que está sendo testado para uso em um
27/Fev/2013 Aula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin
7/Fev/03 ula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin Máquinas frigoríficas (e bombas de calor): princípio de funcionamento e eficiência Formulação de lausius
Nota: Campus JK. TMFA Termodinâmica Aplicada
TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização
Termodinâmica. Lucy V. C. Assali
Termodinâmica Segunda Lei Física II 2016 - IO A Segunda Lei da Termodinâmica 1 a Lei da Termodinâmica: incorpora ao princípio de conservação de energia o calor como forma de energia: du = dq - dw (qualquer
Segunda Lei da Termodinâmica
Segunda Lei da Termodinâmica Para que possamos entender o enunciado da 2ª lei, devemos ter alguns conceitos básicos. 1. Transformações reversíveis e irreversíveis Transformações reversíveis são aquelas
TERMODINÂMICA QUÍMICA
TERMODINÂMICA QUÍMICA Prof a. Loraine Jacobs [email protected] http://paginapessoal.utfpr.edu.br/lorainejacobs DAQBI Reações Químicas Fatores que determinam a ocorrência de ligações químicas:
Máquinas Térmicas, Refrigeradores, e a Segunda Lei
Máquinas érmicas, Refrigeradores, e a Segunda Lei onversão de rabalho em alor, e ice ersa uando atritamos dois objetos, eles tendem a ter sua energia interna aumentada, devido ao trabalho feito por fricção.
TERMODINÂMICA FÍSICA 2 REVISÃO DE FÉRIAS
TERMODINÂMICA FÍSICA REVISÃO DE FÉRIAS. (Uece 06) O processo de expansão ou compressão de um gás em um curto intervalo de tempo pode representar um processo termodinâmico que se aproxima de um processo
TERMODINÂMICA. Radiação Solar. Anjo Albuquerque
TERMODINÂMICA Radiação Solar 1 Anjo Albuquerque TERMODINÂMICA A Termodinâmica é a área da Física que nos permite compreender o mundo que nos rodeia, desde a escala dos átomos até à escala do universo;
UFABC - BC Fenômenos Térmicos - Prof. Germán Lugones. AULA 11 Segunda lei da Termodinâmica - Máquinas térmicas
UFABC - BC0205 - Fenômenos Térmicos - Prof. Germán Lugones AULA 11 Segunda lei da Termodinâmica - Máquinas térmicas Segunda lei da termodinâmica Na aula passada definimos a variação de entropia para um
Física 3 Cap 19 - Máquinas Térmicas
Física 3 Cap 19 - Máquinas Térmicas Baseado em parte em slides pelo Prof. Carlos Eduardo Souza Máquinas Térmicas Máquina Térmica: um dispositivo que opera em ciclos convertendo calor em trabalho útil.
PROVA DE FÍSICA - 1 o TRIMESTRE 2012
PROVA DE FÍSICA - 1 o TRIMESTRE 2012 PROF. VIRGÍLIO NOME Nº 9º ANO A compreensão do enunciado faz parte da questão. Não faça perguntas ao examinador. A prova deve ser feita com caneta azul ou preta. É
Física 3. Cap 19: Máquinas Térmicas
Física 3 Cap 19: Máquinas Térmicas Máquinas Térmicas Máquina Térmica: um dispositivo que opera em ciclos convertendo calor em trabalho útil. 1ª máquina térmica conhecida: Criada por Herão de Alexandria
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos de Refrigeração. v. 2.0
Termodinâmica Ciclos de Refrigeração 1 v. 2.0 Ciclo de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de refrigeração; Equipamentos
Aula 6 Vapor e ciclos combinados
Universidade Federal do ABC P O S M E C Aula 6 Vapor e ciclos combinados MEC202 Ciclos de vapor Consideramos os ciclos de alimentação de vapor, em que o fluido de trabalho é alternativamente vaporizado
PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 2º TRIMESTRE TIPO A
PROVA DE FÍSICA º ANO - ª MENSAL - º TRIMESTRE TIPO A 01) No gráfico abaixo, temos uma seqüência de transformações gasosas, que seguem a seguinte ordem: ABCDA. De acordo com o apresentado, assinale verdadeiro
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Entropia
ermodinâmica Entropia v.. Introdução Falamos nas aulas anteriores sobre a a Lei da ermodinâmica. Vimos dois enunciados da a Lei, o de Kelvin-Planck e o de Clausius. Falamos sobre sentido natural dos processos,
Termodinâmica. Lucy V. C. Assali
Termodinâmica Calor Física II 2016 - IO O Equivalente Mecânico da Caloria A relação entre a caloria (unidade de quantidade de calor em termos da variação de temperatura que produz numa dada massa de água)
Entropia e a Segunda Lei da Termodinâmica II. Entropia e Temperatura. Marcos Moura & Carlos Eduardo Aguiar
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Física Programa de Pós-Graduação em Ensino de Física Mestrado Profissional em Ensino de Física Mestrado Nacional Profissional em Ensino de Física Entropia
Física estatística. Termodinâmica: a segunda lei MEFT, IST
Física estatística Termodinâmica: a segunda lei MEFT, IST You should call it entropy, because nobody knows what entropy really is, so in a debate you will always have the advantage von Neumann A segunda
Máquinas Térmicas e a 2ª Lei da Termodinâmica. Módulo 7 Frente B
Máquinas érmicas e a ª Lei da ermodinâmica Módulo 7 Frente B ENERGIA ÉRMICA E AS MÁUINAS ÉRMICAS Poder calorífico do combustível Rendimento (η) Ciclo termodinâmico de transformações ENERGIA ÉRMICA E AS
