Transferência de Calor
|
|
|
- Martim Braga Medina
- 8 Há anos
- Visualizações:
Transcrição
1 Transferência de Calor Escoamento Cruzado Sobre Cilindros e Esferas Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz de Fora Engenharia Mecânica 1/28
2 Introdução 2/28
3 Introdução Geometrias ciĺındricas e esféricas, são amplamente empregados na indústria, frequentemente em situações onde a transferência de calor tem um papel importante na aplicação. 2/28
4 Introdução 3/28
5 Escoamento Cruzado Sobre Um Cilindro 4/28
6 Considerações Sobre o Escoamento 4/28
7 Considerações Sobre o Escoamento No escoamento sobre um cilindro existe um ponto (ponto de estagnação) onde o fluido possui velocidade zero, e elevada pressão; A partir do ponto de estagnação, a pressão diminui ao longo da superfície do cilindro; O fluido escoa sobre a influência de um gradiente favorável de pressão (dp/dx < 0). Em um certo ponto x, a pressão atinge um mínimo (dp/dx = 0), acarretando em um gradiente de pressão adverso (dp/dx > 0) a partir desse ponto. 4/28
8 Considerações Sobre o Escoamento A velocidade do fluido na corrente livre (u ) exibe um comportamento oposto ao do gradiente de pressão; No ponto de estagnação, (u = 0); A partir desse ponto, o fluido acelera devido ao gradiente favorável de pressão (du /dx > 0 quando dp/dx < 0); A velocidade máxima ocorre quando dp/dx = 0; E começa a desacelerar devido ao gradiente adverso de pressão (du /dx < 0 quando dp/dx > 0). 5/28
9 Considerações Sobre o Escoamento À medida que o fluido desacelera, o gradiente de velocidade na superfície do cilindro u/ y y=0 acaba se tornando zero; Nesse local, conhecido como ponto de separação, o fluido próximo à superfície carece de momento suficiente para superar o gradiente de pressão, tornando o escoamento a jusante impossível; Então ocorre a separação do fluido da superfície do cilindro, formando uma esteira; 6/28
10 Considerações Sobre o Escoamento A ocorrência de transição da camada limite, que depende do número de Reynolds, influencia muito a posição do ponto de descolamento da camada limite; Para um cilindro, o número de Reynolds é dado por: Re D = ρvd µ = VD ν (1) Como momento do fluido em uma camada limite turbulenta é maior que no caso laminar, é razoável esperar que a transição atrase a separação; 7/28
11 Considerações Sobre o Escoamento Se Re D , a camada limite permanece laminar, e a separação ocorre por volta de 80 C; Se Re D , transição da camada limite acontece, e a separação ocorre por volta de 140 C; 8/28
12 Considerações Sobre o Escoamento A separação e a natureza do escoamento, influenciam muito na força de arrasto que age no cilindro; A força de arrasto tem dois componentes: Devido à tensão de cisalhamento da camada limite (arrasto de atrito ou arrasto viscoso); Devido à diferença de pressão resultante da formação da esteira (arrasto de forma ou arrasto de pressão). O coeficiente de arrasto pode ser definido como: C D = F D A f (ρv 2 /2) (2) 9/28
13 Considerações Sobre o Escoamento 10/28
14 Considerações Sobre o Escoamento 11/28
15 Transferência de Calor Por Convecção em Cilindros 12/28
16 Transferência de Calor Por Convecção em Cilindros O número de Nusselt varia com o ângulo θ do cilindro; Os resultados são fortemente influenciados pelo desenvolvimento da camada limite; 12/28
17 Transferência de Calor Por Convecção em Cilindros Uma relação para encontrar o número de Nusselt médio é dada por: Nu D = hd k = CRem D Pr 1/3 Pr 0, 7 (3) Todas as propriedades são avaliadas na temperatura de filme T f ; Os parâmetros C e m são dados em função do número de Reynolds pela seguinte tabela: 13/28
18 Transferência de Calor Por Convecção em Cilindros A equação 3 pode ser utilizada para cilindros de seção transversal não circular; A tabela a seguir pode ser utilizada para determinar os parâmetros C e m. 14/28
19 Transferência de Calor Por Convecção em Cilindros Outra relação pode ser usada para obter o número de Nusselt: Nu D = hd ( ) Pr 1/4 k = CRem D Pr n (4) Pr s { 0, 7 Pr Re D 10 6 Todas as temperaturas são avaliadas em T, exceto para Pr s ; Os parâmetros C e m podem ser obtidos em uma tabela; O coeficiente n é dado em função do número de Prandtl; { 0, 37, Pr 10 n = 0, 36, Pr 10 15/28
20 Transferência de Calor Por Convecção em Cilindros 16/28
21 Transferência de Calor Por Convecção em Cilindros Uma equação que abrange um amplo valor de Pr é dada a seguir: 0, 62Re1/2 D Pr 1/3 [ ( ) 5/8 ] 4/5 ReD Nu D = 0, 3 + [1 + (0, 4/Pr) 2/3 ] 1/4 1 + (5) Essa relação é válida para Re D Pr 0, 2; Todas propriedades são avaliadas na temperatura de filme (T f ). 17/28
22 Exemplos 18/28
23 Metodologia Para Resolução de Problemas 1. Identifique a geometria do problema; 2. Especifique a temperatura de referência e avalie as propriedades do fluido nessa temperatura; 3. Calcule o número de Reynolds e número de Prandtl; 4. Selecione a equação correta. 18/28
24 Exemplos (7.46, 7.41) Exemplo 1 - Considere os fluidos a seguir, cada um com uma velocidade de V = 5m/s e uma temperatura de T = 14 C, em escoamento cruzado sobre um cilindro com 10mm de diâmetro, mantido a 40 C: ar atmosférico. (a) Calcule a taxa de transferência de calor por unidade de comprimento do cilindro. 19/28
25 Exemplos 20/28
26 Exemplos 21/28
27 Exemplos 22/28
28 Exemplos (7.65, 7.52) Exemplo 2 - Uma linha de alta tensão, com 25 mm de diâmetro, possui uma resistência elétrica de 10 4 Ω/m e está transmitindo uma corrente de 1000 A. (a) Se ar ambiente, a 10 C e 5m/s, encontra-se em escoamento cruzado sobre a linha, qual é a temperatura da sua superfície? 23/28
29 Escoamento Sobre Esfera 24/28
30 Escoamento Sobre Esfera O efeitos sobre a camada limite são basicamente os mesmos do cilindro, como a transição e separação tendo importantes papéis no escoamento; Uma relação para o número de Nusselt médio para escoamento sobre esfera é dado por: Nu D = 2 + (0, 4Re 1/2 D ( ) µ 1/4 + 0, 06Re2/3 D )Pr 0,4 µ s (6) 0, 71 Pr 380 3, 5 Re D 7, , 0 (µ/µ s ) 3, 2 Todas as propriedades, exceto µ s (T s ), são avaliadas em T. 24/28
31 Escoamento Sobre Esfera Um caso especial ocorre quando calor é trocado por convecção com um gota de ĺıquido em queda livre; Para esse caso a seguinte equação pode ser usada: Nu D = 2 + 0, 6Re 1/2 D Pr 1/3 (7) 25/28
32 Exemplos 26/28
33 Metodologia Para Resolução de Problemas 1. Identifique a geometria do problema; 2. Especifíque a temperatura de referência e avalie as propriedades do fluido nessa temperatura; 3. Calcule o número de Reynolds e número de Prandtl; 4. Selecione a equação correta. 26/28
34 Exemplos (7.74, 7.66) Exemplo 3 - Ar a 25 C escoa sobre uma esfera, com 10 mm de diâmetro, com uma velocidade de 25m/s, enquanto a superfície da esfera é mantida a 75 C. (a) Qual é a taxa de transferência de calor saindo da esfera? 27/28
35 Exemplo 28/28
EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas
Universidade Federal do ABC EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas EN2411 Consideremos o escoamento de um fluido na direção normal do eixo de um cilindro circular,
EM34B Transferência de Calor 2
EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha [email protected] Convecção Forçada Escoamento Externo Parte II 2 Convecção Forçada: Escoamento Externo Cilindro em escoamento cruzado Um
Transferência de calor por convecção
Transferência de calor Transferência de calor por convecção Escoamento sobre cilindros e esferas º. semestre, 016 Cilindros e esferas Um escoamento externo muito comum envolve o movimento de um fluido
h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície
\CONVECÇÃO FORÇADA EXTERNA " Fluxo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taxa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência
PG0054 Transferência de Calor B
PG0054 Transferência de Calor B Prof. Dr. Thiago Antonini Alves [email protected] http://pessoal.utfpr.edu.br/thiagoaalves/ Aula 4 Convecção Forçada em Escoamento Externo (Parte 2/2) Sumário Cilindro
Transferência de Calor
Transferência de Calor Escoamento Sobre uma Placa Plana Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
Transferência de Calor
Transferência de Calor Escoamento Interno - Parte 2 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
Transferência de Calor
Transferência de Calor Escoamento Cruzado Sobre Matrizes Tubulares Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
Convecção Forçada Externa
Convecção Forçada Externa Força de arrasto e sustentação Arrasto: força que o escoamento exerce na sua própria direção. Corpos submetidos a escoamento de fluidos são classificados: Região separada: Uma
TRANSMISSÃO DE CALOR resumo
TRANSMISSÃO DE CALOR resumo convecção forçada abordagem experimental ou empírica Lei do arrefecimento de Newton Taxa de Transferência de Calor por Convecção 𝑞"#$ ℎ𝐴 𝑇 𝑇 ℎ 1 𝐴 ℎ - Coeficiente Convectivo
Transferência de Calor
Transferência de Calor Aletas e Convecção em Escoamento Interno e Externo Prof. Universidade Federal do Pampa BA000200 Campus Bagé 19 de junho de 2017 Transferência de Calor: Convecção 1 / 30 Convecção
Vicente Luiz Scalon. Disciplina: Transmissão de Calor
Convecção Forçada Externa Vicente Luiz Scalon Faculdade de Engenharia/UNESP-Bauru Disciplina: Transmissão de Calor Sumário Método Empírico Camada Limite Teoria de Prandtl Solução de Blasius Convecção Laminar
Transferência de Calor
Transferência de Calor Introdução à Convecção Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de
EM34B Transferência de Calor 2
EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha [email protected] Convecção Forçada Escoamento Externo 2 Convecção Forçada: Escoamento Externo Escoamento Externo É definido como um escoamento
h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície
CONVECÇÃO FORÇADA EXTERNA " Fluo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência
ESTE Aula 2- Introdução à convecção. As equações de camada limite
Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:
Capítulo 6: Escoamento Externo Hidrodinâmica
Capítulo 6: Escoamento Externo Hidrodinâmica Arrasto viscoso e de pressão Arrasto total Campo de escoamento Linhas de corrente: definidas como a linha contínua que é tangente aos vetores velocidade ao
Transferência de Calor
Transferência de Calor Convecção Natural - Parte 2 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
Convecção Forçada Interna a Dutos
Convecção Forçada Interna a Dutos Vicente Luiz Scalon Faculdade de Engenharia/UNESP-Bauru Disciplina: Transmissão de Calor Sumário Escoamento no interior de dutos Velocidade Média Região de Entrada Hidrodinâmica
Transferência de Calor 1
Transferência de Calor Guedes, Luiz Carlos Vieira. G94t Transferência de calor : um / Luiz Carlos Vieira Guedes. Varginha, 05. 80 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World
Disciplina: Camada Limite Fluidodinâmica
Prof. Fernando Porto Disciplina: Camada Limite Fluidodinâmica Camada Limite Incompressível Laminar: Escoamento de Fluidos ao Redor de Corpos Submersos 4ª Parte Introdução Se o corpo estiver se movendo
EN Escoamento interno. Considerações fluidodinâmicas e térmicas
Universidade Federal do ABC EN 411 - Escoamento interno. Considerações fluidodinâmicas e térmicas Considerações fluidodinâmicas Escoamento laminar dentro de um tubo circular de raio r o, onde o fluido
Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido.
V ESCOAMENTO F AO REOR E CORPOS SUBMERSOS F F F S F Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido. é a força total que possui
Escoamentos externos. PME2230 Mecânica dos Fluidos I
Escoamentos externos PME2230 Mecânica dos Fluidos I Aplicações Aeronaves Veículos terrestres Embarcações e submarinos Edificações Camada limite Camada limite: região delgada próxima à parede, onde as tensões
EM34B Transferência de Calor 2
EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha [email protected] Convecção Forçada Escoamento Interno Parte I 2 Convecção Forçada: Escoamento Interno Definição Escoamento Interno: é um
Prof. MSc. David Roza José 1/26
1/26 Mecanismos Físicos A condensação ocorre quando a temperatura de um vapor é reduzida para abaixo da temperatura de saturação. Em equipamentos industriais o processo normalmente decorre do contato entre
Capitulo 6. Escoamento Externo
Fenômenos de Transporte Capitulo 6 Escoamento Externo Prof. Dr. Christian J. Coronado Rodriguez IEM - UNIFEI Força de arrasto e sustentação (exemplo) UNIFEI 2013 Estado de forças no fluido Características
Transmissão de Calor I - Prof. Eduardo Loureiro
Camada limite de velocidade As partículas de fluido em contato com a superfície têm velocidade nula. Essas partículas atuam no retardamento do movimento das partículas da camada de fluido adjacente superior
EN 2411 Aula 8 Escoamento externo. Escoamento através de bancos de tubos
Universidade Federal do ABC EN 2411 Aula 8 Escoamento externo. Escoamento através de bancos de tubos roca térmica entre um feixe de tubos e um fluido externo: Fluido escoando pelo interior dos tubos; Fluido
Escoamento completamente desenvolvido
Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo
3. CONVECÇÃO FORÇADA INTERNA
3. CONVECÇÃO FORÇADA INTERNA CONVECÇÃO FORÇADA NO INTERIOR DE TUBOS Cálculo do coeficiente de transferência de calor e fator de atrito Representa a maior resistência térmica, principalmente se for um gás
Mecanismos de transferência de calor
Mecanismos de transferência de calor Condução Potência calor: Q cond A T 1 T x : condutibilidde térmica; A: área de transferência x: espessura ao longo da condução T 1 T : diferença de temperatura ifusividade
Capítulo 6: Escoamento Externo Hidrodinâmica
Capítulo 6: Escoamento Externo Hidrodinâmica Conceitos fundamentais Fluido É qualquer substância que se deforma continuamente quando submetido a uma tensão de cisalhamento, ou seja, ele escoa. Fluidos
Análise Dimensional. q 1 = f(q 2,q 3,...q n ) Matematicamente, podemos expressar a relação por uma função equivalente: F(q 1, q 2, q 3,...
S S 0 1 V 0 t at Dado um problema físico no qual o parâmetro dependente é uma função de (n-1) parâmetros independentes, podemos expressar a relação entre as variáveis como: q 1 = f(q,q 3,...q n ) S f a,
Escoamentos não isotérmicos
Escoamentos não isotérmicos Profa. Mônica F. Naccache 1 Condições de contorno: paredes sólidas e interfaces Tipos: Fronteira livre Fronteira limitada: paredes ou interfaces Condição cinemáeca conservação
1 a experiência Escoamento ao redor de um cilindro
1 a experiência Escoamento ao redor de um cilindro 1) Força de Arrasto sobre um cilindro Quando um fluido escoa ao redor de um objeto, exerce sobre este uma força que pode ser decomposta em uma componente
MECÂNICA DOS FLUIDOS II. Introdução à camada limite. Introdução à camada limite. Conceitos:
MECÂNICA DOS FLIDOS II Conceitos: Camada limite; Camada limite confinada e não-confinada; Escoamentos de corte livre e Esteira; Camadas limites laminares e turbulentas; Separação da camada limite; Equações
TRANSFERÊNCIA DE CALOR POR CONVECÇÃO
RANSFERÊNCIA DE CALOR POR CONVECÇÃO ransferência de energia entre uma superfície e um fluido em movimento sobre essa superfície Fluido em movimento, u, s > A convecção inclui a transferência de energia
Aula 21 Convecção Natural
Aula 1 Convecção Natural UFJF/Departamento de Engenharia de Produção e Mecânica Prof. Dr. Washington Orlando Irrazabal Bohorquez Considerações Gerais A convecção natural tem lugar quando há movimento de
EM-524 : aula 13. Capítulo 06 Escoamento Externo Efeitos Viscosos e Térmicos
EM-54 : aula Capítulo 06 Escoamento Eterno Efeitos Viscosos e érmicos 6.6 Coeficiente de ransferência de Calor por Convecção; 6.7 ransferência de Calor por Convecção Forçada; 6.8 ransferência de Calor
Escoamentos Externos
Escoamentos Externos O estudo de escoamentos externos é de particular importância para a engenharia aeronáutica, na análise do escoamento do ar em torno dos vários componentes de uma aeronave Entretanto,
Transferência de Calor
Transferência de Calor Convecção Natural - Parte 1 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
Separação da Camada limite
Conceitos: Separação da camada limite Condições para a ocorrência de separação da camada limite; Gradientes de pressão nulos, favoráveis e adversos; Acção do gradiente de pressão sobre a evolução da C.L.
Ponto de Separação e Esteira
Ponto de Separação e Esteira p/ x=0 p/ x0 Escoamento separado O fluido é desacelerado devido aos efeitos viscosos. Se o gradiente de pressão é nulo, p/x=0, não há influência no escoamento. Na região
TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO ÍNDICE DE REVISÕES DESCRIÇÃO E / OU FOLHAS ATINGIDAS
GOPE CAT. : ÁREA DE ATIVIDADE: SERVIÇO: TÍTULO : TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO de 9 METODOLOGIA DE CÁLCULO DO COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR REV. ÍNDICE DE REVISÕES DESCRIÇÃO
Camada limite laminar
Camada limite laminar J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Camada limite laminar 1 / 24 Sumário 1 Introdução 2 Equações da camada limite laminar 3 Solução
TROCADOR DE CALOR BITUBULAR
UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E PETRÓLEO INTEGRAÇÃO I TROCADOR DE CALOR BITUBULAR Alunos : Rodrigo da Silva Rosa Adriano Matielo Stulzer Niterói,
RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente.
RESUMO MECFLU P2 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. Hipóteses Fluido invíscido (viscosidade nula) não ocorre perda de energia. Fluido incompressível
Escoamentos exteriores. Escoamento em torno de um cilindro/esfera. Matéria:
Escoamentos exteriores Matéria: Escoamento em torno de cilindro e esfera: localização dos ponto de separação, sua influência na distribuição da pressão e coeficiente de resistência. Escoamento em torno
Transferência de Calor
Transferência de Calor Escoamento Interno - Parte 1 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds
Disciplina: Fenômeno de AULA 01 unidade 2 Transporte Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds Prof. Ednei Pires Definição: Cinemática dos fluidos É a ramificação da mecânica
Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2
Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2 1. (Incropera et al., 6 ed., 7.2) Óleo de motor a 100ºC e a uma velocidade de 0,1 m/s escoa sobre as duas
Mecânica dos Fluidos
Mecânica dos Fluidos Cinemática dos Fluidos: Escoamento e Balanços Prof. Universidade Federal do Pampa BA000200 Campus Bagé 27 e 28 de março de 2017 Cinemática dos Fluidos, Parte 1 1 / 35 Escoamento de
Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I
Departamento de Engenharia Mecânica ENG 1011: Fenômenos de Transporte I Aula 9: Formulação diferencial Exercícios 3 sobre instalações hidráulicas; Classificação dos escoamentos (Formulação integral e diferencial,
Separação da Camada Limite
Separação da Camada Limite Equação de camada limite laminar D delgada (δ
Aula 20 Convecção Forçada:
Aula 20 Convecção Forçada: Escoamento Interno UFJF/epartamento de Engenaria de Produção e Mecânica Prof. r. Wasington Orlando Irrazabal Boorquez Escoamento Laminar em ubos Circulares Análise érmica e Correlações
ESTE Aula 1- Introdução à convecção. A camada limite da convecção
Universidade Federal do ABC ESTE013-13 Aula 1- Introdução à convecção. A camada limite da convecção Convecção Definição: Processo de transferência de calor entre uma superfície e um fluido adjacente, quando
Capítulo 6: Escoamento Externo Hidrodinâmica
Capítulo 6: Escoamento Externo Hidrodinâmica Conceitos fundamentais Arrasto total Transferência de calor Fluido É qualquer substância que se deforma continuamente quando submetido a uma tensão de cisalhamento,
Transferência de Calor Escoamentos Externos
Transferência de Calor Escoamentos Externos There Are Three Kinds of Heat Transfer: Conductive: one object transfers heat directly through contact with another object. Radiation: This is when heat is transferred
Disciplina: Camada Limite Fluidodinâmica
Prof. Fernando Porto Disciplina: Camada Limite Fluidodinâmica Camada Limite Incompressível Laminar 1ª Parte Introdução Alguns fenômenos que ocorrem quando um fluxo externo é aplicado sobre um corpo: U
LABORATÓRIO DE ENGENHARIA QUÍMICA I
LABORATÓRIO DE ENGENHARIA QUÍMICA I Prof. Gerônimo Virgínio Tagliaferro FENÔMENOS DE TRANSPORTE EXPERIMENTAL Programa Resumido 1) Cominuição e classificação de sólidos granulares 2) Medidas de Vazão em
ALVARO ANTONIO OCHOA VILLA
UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA MECÂNICA PÓS-GRADUAÇÃO. DOUTORADO EM ENERGIA. ANÁLISE DIMENSIONAL E SEMELHANÇA ALVARO ANTONIO OCHOA VILLA
FENÔMENOS DE TRANSPORTES
FENÔMENOS DE TRANSPORTES AULA 3 CLASSIFICAÇÃO DE ESCOAMENTOS PROF.: KAIO DUTRA Descrição e Classificação dos Movimentos de Fluido A mecânica dos fluidos é uma disciplina muito vasta: cobre desde a aerodinâmica
TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4
TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4 LABORATÓRIOS DE ENGENHARIA QUÍMICA I 2009/2010 1. Objectivo Determinação do coeficiente de convecção natural e
Condensação
Condensação Condensação Condensação Condensação Condensação Condensação em Filme Tal como no caso de convecção forçada, a transferência de calor em condensação depende de saber se o escoamento é laminar
Universidade Federal do ABC. EN 2411 Aula 10 Convecção Livre
Universidade Federal do ABC EN 2411 Aula 10 Convecção ivre Convecção ivre Convecção natural (ou livre): transferência de calor que ocorre devido às correntes de convecção que são induzidas por forças de
Corpos Não-Fuselados
Escoamentos com esteiras de grandes dimensões (ordem de grandeza da dimensão transversal do corpo), com alterações significativas do escoamento relativamente à situação de fluido perfeito (elevados δ *
ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)
ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] Objetivos da Disciplina Apresentar noções de mecânica dos
Décima aula de FT. Segundo semestre de 2013
Décima aula de FT Segundo semestre de 2013 Vamos eliminar a hipótese do fluido ideal! Por que? Simplesmente porque não existem fluidos sem viscosidade e para mostrar que isto elimina uma situação impossível,
PERDA DE CARGA CONTÍNUA
PERDA DE CARGA CONTÍNUA INTRODUÇÃO E CONCEITOS INICIAIS Prof. Miguel Toledo del Pino 1. INTRODUÇÃO Condutos forçados ou condutos sob pressão são aqueles que o líquido escoa sob uma pressão diferente da
Máquinas de Fluxo I (ENG03332) Material de apoio à disciplina
Máquinas de Fluxo I (ENG0333) - /maqflu Porto Alegre RS, Perda de carga em tubos, Slide 1/19 Máquinas de Fluxo I (ENG0333) /maqflu Material de apoio à disciplina Perda de carga em tubos Prof. Alexandre
No escoamento sobre uma superfície, os perfis de velocidade e de temperatura têm as formas traduzidas pelas equações:
Enunciados de problemas de condução do livro: Fundamentals of Heat and Mass Transfer, F.P. Incropera e D.P. DeWitt, Ed. Wiley (numeros de acordo com a 5ª Edição). Introdução à Convecção 6.10 - No escoamento
Transferência de Calor Condução e Convecção de Calor
Transferência de Calor Condução e Material adaptado da Profª Tânia R. de Souza de 2014/1. 1 O calor transferido por convecção, na unidade de tempo, entre uma superfície e um fluido, pode ser calculado
ALGUNS FUNDAMENTOS MICROFLUÍDICA
ALGUNS FUNDAMENTOS DE MICROFLUÍDICA INTRODUÇÃO TRANSFERÊNCIA DE MOMENTUM Estudo do movimento dos fluidos e das forças que produzem esse movimento. Fluido Definição: Fluido é uma substância que se deforma
Universidade Federal de Sergipe, Departamento de Engenharia Química 2
ELABORAÇÃO DE FERRAMENTA DE CÁLCULO PARA A DETERMINAÇÃO DO COEFICIENTE CONVECTIVO EM EXPERIMENTOS DE CONVECÇÃO FORÇADA AO REDOR DE UM CORPO SUBMERSO E ALETAS TORRES, F. C. O. 1, BARBOSA NETO, A. M. 2 1
PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2015 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico. Gabarito da Prova 3
PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2015 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico Gabarito da Prova 3 Questão 1: Um tubo de parede delgada, com diâmetro de 6 mm e comprimento
AULA 18 CONVECÇÃO NATURAL OU LIVRE
Notas de aula de PME 361 Processos de Transferência de Calor 137 AUA 18 CONVECÇÃO NATURA OU IVRE Nos dois casos anteriormente estudados, convecção interna e eterna, havia o movimento forçado do fluido
EM34B Transferência de Calor 2
EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha [email protected] Parte II: 2 Estudo da Transferência de Calor por Convecção 02 Objetivos 1. Mecanismo físico: o o o Origem física; Parâmetros
Fenômeno de Transportes A PROFª. PRISCILA ALVES
Fenômeno de Transportes A PROFª. PRISCILA ALVES [email protected] Proposta do Curso Critérios de Avaliação e Recuperação Outras atividades avaliativas Atividades experimentais: Será desenvolvida
+ MECÂNICA DOS FLUIDOS. n DEFINIÇÃO. n Estudo do escoamento de li quidos e gases (tanques e tubulações) n Pneuma tica e hidraúlica industrial
Mecânica Sólidos INTRODUÇÃO MECÂNICA DOS FLUIDOS FBT0530 - FÍSICA INDUSTRIAL PROFA. JULIANA RACT PROFA. MARINA ISHII 2018 Fluidos O que é um fluido? MECÂNICA DOS FLUIDOS PROPRIEDADE SÓLIDOS LÍQUIDOS GASES
TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS
TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: FACULDADE DE ENGENHARIA DE SOROCABA AUTOR(ES): RAPHAEL
Lista de Exercícios para P2
ENG 1012 Fenômenos de Transporte II Lista de Exercícios para P2 1. Estime o comprimento de onda que corresponde à máxima emissão de cada de cada um dos seguintes casos: luz natural (devido ao sol a 5800
FENÔMENOS DOS TRANSPORTES. Definição e Conceitos Fundamentais dos Fluidos
Definição e Conceitos Fundamentais dos Fluidos Matéria Sólidos Fluidos possuem forma própria (rigidez) não possuem forma própria; tomam a forma do recipiente que os contém Fluidos Líquidos Gases fluidos
Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros
Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros Convecção natural Convecção forçada Convecção natural A transmissão de calor por convecção natural ocorre sempre quando um corpo é
FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos
FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos Sistemas Hidráulicos podem ser descritos por leis que regem o comportamento de fluidos confinados em: regime permanente (repouso) invariante no tempo; regime
Transferência de Calor
Transferência de Calor Condução em Superfícies Estendidas Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Exame de 3ª época, 19 de Julho de 2013 Nome : Hora : 15:00 Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta
FENÔMENOS DE TRANSPORTE
Universidade Federal Fluminense Escola de Engenharia Disciplina: FENÔMENOS DE TRANSPORTE Aula 8 Análise Dimensional e Semelhança Prof.: Gabriel Nascimento (Dep. de Eng. Agrícola e Meio Ambiente) Elson
Profa. Dra. Milena Araújo Tonon Corrêa. Turma Farmácia- 4º Termo
Profa. Dra. Milena Araújo Tonon Corrêa Turma Farmácia- 4º Termo A Mecânica dos Fluidos é a parte da mecânica aplicada que estuda o comportamento dos fluidos em repouso e em movimento A fluidização é empregada
Laboratório de Engenharia Química I Aula Prática 01. Determinação do regime de escoamento: Experiência de Reynolds. Prof. Dr. Gilberto Garcia Cortez
Laboratório de Engenharia Química I Aula Prática 01 Determinação do regime de escoamento: Experiência de Reynolds Prof. Dr. Gilberto Garcia Cortez 1 Introdução Em 1883, procurando observar o comportamento
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15
Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 4/5 Exame de ª época, 3 de Janeiro de 5 Nome : Hora : 8: Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a
