EM34B Transferência de Calor 2
|
|
|
- Yan Flávio Clementino Prado
- 8 Há anos
- Visualizações:
Transcrição
1 EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha [email protected] Convecção Forçada Escoamento Externo Parte II
2 2 Convecção Forçada: Escoamento Externo Cilindro em escoamento cruzado Um outros escoamento externo de comum ocorrência é o escoamento sobre cilindros
3 3 Cilindro em Escoamento Cruzado O fluido escoando na corrente livre atinge o cilindro (ponto de estagnação) causando um aumento de pressão. A partir desse ponto a pressão diminui com o aumento de da distância x.
4 4 Cilindro em Escoamento Cruzado A camada-limite se desenvolve sob a influencia de um gradiente de pressão favorável (dp/dx <0); Contudo, a pressão atinge um ponto mínimo na parte de trás do cilindro;
5 5 Cilindro em Escoamento Cruzado Mais a frente da parte traseira, a camada limite se desenvolve sob a influência de um gradiente de pressão adverso (dp/dx > 0).
6 6 Cilindro em Escoamento Cruzado
7 7 Cilindro em Escoamento Cruzado Cilindro em escoamento cruzado u = 0, no ponto de estagnação; O fluido acelera devido ao gradiente de pressão favorável (dp/dx < 0); Atinge um mínimo quando dp/dx = 0. Posteriormente, o fluido desacelera devido ao gradiente de pressão adverso (dp/dx > 0); Na desaceleração, o gradiente de velocidade na superfície pode ser zero. Esse ponto é conhecido como ponto de separação.
8 8 Cilindro em Escoamento Cruzado Cilindro em escoamento cruzado A camada-limite fluidodinâmica descolada da parede; E uma esteira (vórtices) é formada; A transição da camada-limite influencia significativamente a posição do ponto de separação Re D = ρvd μ
9 9 Cilindro em Escoamento Cruzado
10 10 Cilindro em Escoamento Cruzado Cilindro em escoamento cruzado O coeficiente de arrasto é afetado por estas condições; C D F D 1 2 ρv2 A
11 11 Cilindro em Escoamento Cruzado
12 12 Cilindro em Escoamento Cruzado Transferência de Calor Resultados experimentais Para Pr 0,6, uma correlação precisa para baixos números de Reynolds é dada por, Nu D θ = 0 = 1,15Re D 1/2 Pr 1/3
13 13 Cilindro em Escoamento Cruzado Transferência de Calor Correlação de Hilpert Nu D CRe D m Pr 1/3
14 14 Cilindro em Escoamento Cruzado Cilindro de Seção Não-Circular
15 15 Cilindro em Escoamento Cruzado Transferência de Calor Correlação de Zakauskas Nu D CRe D m Pr n 0,7 Pr Re D 10 6 Pr Pr s 1/4
16 16 Cilindro em Escoamento Cruzado Transferência de Calor Correlação de Churchill e Bernstein, válida para Re D Pr 0,2 Nu D = 0,3 + 0,62Re 1/2 D Pr 1/ ,4/Pr 2/3 1/4 1 + Re D /8 4/5
17 17 Esfera Os efeitos da camada-limite associados ao escoamento sobre uma esfera são muito semelhantes àqueles no cilindro circular, com a transição e a separação representando papéis importantes
18 18 Esfera: Considerações Hidrodinâmicas
19 19 Esfera: Considerações Térmicas Transferência de Calor Correlação de Whitaker Nu D = 2 + 0,4Re D 1/2 + 0,06ReD 2/3 Pr 0,4 μ μ s 1/4 0,71 Pr 380 3,5 Re D 7,6x μ μ s 3,2
20 20 Esfera: Considerações Térmicas Transferência de Calor Partículas líquidas (gotas): Correlação de Ranz e Marshall Nu D = 2 + 0,6Re D 1/2 Pr 1/3
21 21 Escoamento Cruzado em Banco de Tubos
22 22 Escoamento Cruzado em Banco de Tubos Aplicações Relevante em numerosas aplicações em engenharia. Dois exemplos são: o Caldeiras: geração de vapor; o Condicionamento de ar; Tipicamente, um fluido escoa externamente ao tubo, enquanto um segundo fluido escoamento internamente; O interesse no momento é a transferência de calor por convecção do escoamento cruzado sobre os tubos.
23 23 Arranjo
24 24 Arranjo Características O arranjo de tubos pode ser alinhado ou alternado; O arranjo é caracterizado pelo diâmetro do tubo D, pelo passo longitudinal (S L ) e pelo passo transversal (S T ) As condições de escoamento são dominadas pelos efeitos de separação da camada-limite e por interações das esteiras
25 25 Arranjo Características O escoamento ao redor dos tubos da primeira fila é similar àquele para um único cilindro em escoamento cruzado; Então, o coeficiente de transferência de calor também é aproximadamente igual; Nas filas a jusante, as condições do escoamento dependem do arranjo
26 26 Arranjo Alinhado Características Tubos alinhados estão nas esteiras dos tubos a montante; Para moderados valores de SL, os coeficientes de transferência de calor são aumentados devido ao efeito de mistura ou turbulência do escoamento.
27 27 Arranjo Alinhado Características O coeficiente de convecção de uma fila aumenta com o crescimento do número de filas até aproximadamente 5 filas;
28 28 Arranjo Alinhado Características Para altos valores de S L, a influência das filas a jusante a montante diminui e a transferência de calor nas filas a jusante não é aumentada. Recomenda-se então que S T /S L > 0,7
29 29 Arranjo Alternado Características A trajetória do escoamento é tortuosa e a mistura do fluido aumenta em relação ao arranjo alinhado;
30 30 Arranjo Alternado Características Em geral, a intensificação da transferência de calor é favorecida pelo escoamento mais tortuoso, particularmente para pequenos números de Reynolds
31 31 Escoamento Cruzado em Banco de Tubos Correlação de Nusselt Coeficiente de transferência de calor médio do banco de tubos: Correlação de Zakauskas m Nu D = C 1 Re D,max Pr 0,36 Pr Pr s 1/4 N F 20 0,7 Pr Re D,max 2x10 6
32 32 Escoamento Cruzado em Banco de Tubos Correlação de Zakauskas
33 33 Escoamento Cruzado em Banco de Tubos Para NF 20 Se houver 20 ou menos filas de tubos, o coeficiente de transferência de calor médio é tipicamente reduzido; Utiliza-se um fator de correção Nu D NF <20 = C 2 Nu D NF 20 N L = N F
34 34 Escoamento Cruzado em Banco de Tubos Número de Reynolds O número de Reynolds Re D,max é baseado na velocidade do fluido máxima presente no interior do banco de tubos Re D,max = ρv maxd μ
35 35 Escoamento Cruzado em Banco de Tubos Velocidade Máxima Arranjo Alinhado V max = S T S T D V Arranjo Alternado V max = S T 2 S D D V
36 36 Escoamento Cruzado em Banco de Tubos Velocidade Máxima Arranjo Alinhado V max = S T S T D V Arranjo Alternado V max = S T 2 S D D V
37 37 Escoamento Cruzado em Banco de Tubos Variação de Temperatura O uso de T = T s - T superestima a taxa de transferência de calor Veremos mais adiante que a forma apropriada para o T é a média logarítmica das diferenças de temperatura, dada por T ml = T s T ent T s T sai ln T s T ent T s T sai
38 38 Escoamento Cruzado em Banco de Tubos Variação de Temperatura A temperatura de saída, que é necessária para determinar T ml, pode ser estimada pela expressão, T S T sai = exp πdn h T S T ent ρvn T S T c p Taxa de transferência de calor q = N hπd T ml
39 39 Escoamento Cruzado em Banco de Tubos Queda de Pressão A potência necessária para escoar o fluido através do banco de tubos corresponde a um custo operacional relevante; O custo é diretamente proporcional à queda de pressão: p = N F χ ρv 2 max 2 f
40 40 Escoamento Cruzado em Banco de Tubos
41 41 Escoamento Cruzado em Banco de Tubos
42 42 Exemplo 01 (Exemplo 7.4) Experimentos foram conduzidos com um cilindro metálico com 12,7mm de diâmetro e 94mm de comprimento. O cilindro é aquecido internamente por um aquecedor elétrico e é submetido a um escoamento cruzado de ar no interior de um túnel de vento de baixa velocidade.
43 43 Exemplo 01 (Exemplo 7.4) - Continuação Considere a velocidade e a corrente do ar são mantidas a 10m/s e 26,2 C, respectivamente. A dissipação de potência do aquecedor é de 46W e a temperatura da superfície é de 128,4 C. Determine o coeficiente de transferência de calor
44 44 Lista de Exercícios Exercício do Capítulo 07 do Livro-texto: INCROPERA, F. P., DEWITT, D. P., BERGMAN, T. L., LAVINE, A., Fundamentos de Transferência de Calor e de Massa. 6ª Edição, Rio de Janeiro, Editora LTC, Exercícios: 7.8 / 7.27 / 7.34 / 7.41 / 7.46 / 7.67 / 7.87 Data de Entrega: Até a data da Avaliação P1.
45 45 Aula 04 Leitura Obrigatória Capítulo 07 do Livro-texto: INCROPERA, F. P., DEWITT, D. P., BERGMAN, T. L., LAVINE, A., Fundamentos de Transferência de Calor e de Massa. 6ª Edição, Rio de Janeiro, Editora LTC, 2008.
46 46 Referências INCROPERA, F. P., DEWITT, D. P., BERGMAN, T. L., LAVINE, A., Fundamentos de Transferência de Calor e de Massa. 6ª Edição, Rio de Janeiro, Editora LTC, 2008.
PG0054 Transferência de Calor B
PG0054 Transferência de Calor B Prof. Dr. Thiago Antonini Alves [email protected] http://pessoal.utfpr.edu.br/thiagoaalves/ Aula 4 Convecção Forçada em Escoamento Externo (Parte 2/2) Sumário Cilindro
EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas
Universidade Federal do ABC EN 2411 Aula 4 Escoamento externo. Escoamento cruzado em cilindros e esferas EN2411 Consideremos o escoamento de um fluido na direção normal do eixo de um cilindro circular,
Transferência de Calor
Transferência de Calor Escoamento Cruzado Sobre Cilindros e Esferas Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
Transferência de Calor
Transferência de Calor Escoamento Cruzado Sobre Matrizes Tubulares Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
EN 2411 Aula 8 Escoamento externo. Escoamento através de bancos de tubos
Universidade Federal do ABC EN 2411 Aula 8 Escoamento externo. Escoamento através de bancos de tubos roca térmica entre um feixe de tubos e um fluido externo: Fluido escoando pelo interior dos tubos; Fluido
Transferência de calor por convecção
Transferência de calor Transferência de calor por convecção Escoamento sobre cilindros e esferas º. semestre, 016 Cilindros e esferas Um escoamento externo muito comum envolve o movimento de um fluido
EM34B Transferência de Calor 2
EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha [email protected] Convecção Forçada Escoamento Interno Parte I 2 Convecção Forçada: Escoamento Interno Definição Escoamento Interno: é um
EM34B Transferência de Calor 2
EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha [email protected] Convecção Forçada Escoamento Externo 2 Convecção Forçada: Escoamento Externo Escoamento Externo É definido como um escoamento
h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície
\CONVECÇÃO FORÇADA EXTERNA " Fluxo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taxa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência
Convecção Forçada Externa
Convecção Forçada Externa Força de arrasto e sustentação Arrasto: força que o escoamento exerce na sua própria direção. Corpos submetidos a escoamento de fluidos são classificados: Região separada: Uma
Transferência de Calor 1
Transferência de Calor Guedes, Luiz Carlos Vieira. G94t Transferência de calor : um / Luiz Carlos Vieira Guedes. Varginha, 05. 80 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World
Transferência de Calor
Transferência de Calor Escoamento Interno - Parte 2 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
TRANSMISSÃO DE CALOR resumo
TRANSMISSÃO DE CALOR resumo convecção forçada abordagem experimental ou empírica Lei do arrefecimento de Newton Taxa de Transferência de Calor por Convecção 𝑞"#$ ℎ𝐴 𝑇 𝑇 ℎ 1 𝐴 ℎ - Coeficiente Convectivo
EM34B Transferência de Calor 2
EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha [email protected] Parte II: 2 Estudo da Transferência de Calor por Convecção 02 Objetivos 1. Mecanismo físico: o o o Origem física; Parâmetros
EN Escoamento interno. Considerações fluidodinâmicas e térmicas
Universidade Federal do ABC EN 411 - Escoamento interno. Considerações fluidodinâmicas e térmicas Considerações fluidodinâmicas Escoamento laminar dentro de um tubo circular de raio r o, onde o fluido
Transferência de Calor
Transferência de Calor Aletas e Convecção em Escoamento Interno e Externo Prof. Universidade Federal do Pampa BA000200 Campus Bagé 19 de junho de 2017 Transferência de Calor: Convecção 1 / 30 Convecção
Transferência de Calor
Transferência de Calor Escoamento Sobre uma Placa Plana Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
Universidade Federal do ABC. EN 2411 Aula 10 Convecção Livre
Universidade Federal do ABC EN 2411 Aula 10 Convecção ivre Convecção ivre Convecção natural (ou livre): transferência de calor que ocorre devido às correntes de convecção que são induzidas por forças de
Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2
Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2 1. (Incropera et al., 6 ed., 7.2) Óleo de motor a 100ºC e a uma velocidade de 0,1 m/s escoa sobre as duas
EP34D Fenômenos de Transporte
EP34D Fenômenos de Transporte Prof. Dr. André Damiani Rocha [email protected] Transferência de Calor em Superfícies Estendidas - Aletas 2 É desejável em muitas aplicações industriais aumentar a taxa
No escoamento sobre uma superfície, os perfis de velocidade e de temperatura têm as formas traduzidas pelas equações:
Enunciados de problemas de condução do livro: Fundamentals of Heat and Mass Transfer, F.P. Incropera e D.P. DeWitt, Ed. Wiley (numeros de acordo com a 5ª Edição). Introdução à Convecção 6.10 - No escoamento
EM34B Transferência de Calor 2
EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha [email protected] Trocadores de Calor 2 Trocadores de Calor Introdução Os trocadores de calor são dispositivos que facilitam a transferência
3. CONVECÇÃO FORÇADA INTERNA
3. CONVECÇÃO FORÇADA INTERNA CONVECÇÃO FORÇADA NO INTERIOR DE TUBOS Cálculo do coeficiente de transferência de calor e fator de atrito Representa a maior resistência térmica, principalmente se for um gás
Transferência de Calor
Transferência de Calor Convecção Natural - Parte 2 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
Vicente Luiz Scalon. Disciplina: Transmissão de Calor
Convecção Forçada Externa Vicente Luiz Scalon Faculdade de Engenharia/UNESP-Bauru Disciplina: Transmissão de Calor Sumário Método Empírico Camada Limite Teoria de Prandtl Solução de Blasius Convecção Laminar
Aula 21 Convecção Natural
Aula 1 Convecção Natural UFJF/Departamento de Engenharia de Produção e Mecânica Prof. Dr. Washington Orlando Irrazabal Bohorquez Considerações Gerais A convecção natural tem lugar quando há movimento de
ESTE Aula 2- Introdução à convecção. As equações de camada limite
Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:
Lista de Exercícios para P2
ENG 1012 Fenômenos de Transporte II Lista de Exercícios para P2 1. Estime o comprimento de onda que corresponde à máxima emissão de cada de cada um dos seguintes casos: luz natural (devido ao sol a 5800
Prof. MSc. David Roza José 1/26
1/26 Mecanismos Físicos A condensação ocorre quando a temperatura de um vapor é reduzida para abaixo da temperatura de saturação. Em equipamentos industriais o processo normalmente decorre do contato entre
Convecção Forçada Interna a Dutos
Convecção Forçada Interna a Dutos Vicente Luiz Scalon Faculdade de Engenharia/UNESP-Bauru Disciplina: Transmissão de Calor Sumário Escoamento no interior de dutos Velocidade Média Região de Entrada Hidrodinâmica
h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície
CONVECÇÃO FORÇADA EXTERNA " Fluo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência
Transferência de Calor
Transferência de Calor Escoamento Interno - Parte 1 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
ESTE Aula 1- Introdução à convecção. A camada limite da convecção
Universidade Federal do ABC ESTE013-13 Aula 1- Introdução à convecção. A camada limite da convecção Convecção Definição: Processo de transferência de calor entre uma superfície e um fluido adjacente, quando
Mecanismos de transferência de calor
Mecanismos de transferência de calor Condução Potência calor: Q cond A T 1 T x : condutibilidde térmica; A: área de transferência x: espessura ao longo da condução T 1 T : diferença de temperatura ifusividade
Aula 20 Convecção Forçada:
Aula 20 Convecção Forçada: Escoamento Interno UFJF/epartamento de Engenaria de Produção e Mecânica Prof. r. Wasington Orlando Irrazabal Boorquez Escoamento Laminar em ubos Circulares Análise érmica e Correlações
TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4
TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4 LABORATÓRIOS DE ENGENHARIA QUÍMICA I 2009/2010 1. Objectivo Determinação do coeficiente de convecção natural e
EP34D Fenômenos de Transporte
EP34D Fenômenos de Transporte Prof. Dr. André Damiani Rocha [email protected] Transferência de Calor por Condução 2 Transferência de Calor por Condução Análise da Condução A análise da condução diz respeito
Análise Dimensional. q 1 = f(q 2,q 3,...q n ) Matematicamente, podemos expressar a relação por uma função equivalente: F(q 1, q 2, q 3,...
S S 0 1 V 0 t at Dado um problema físico no qual o parâmetro dependente é uma função de (n-1) parâmetros independentes, podemos expressar a relação entre as variáveis como: q 1 = f(q,q 3,...q n ) S f a,
Universidade Federal de Sergipe, Departamento de Engenharia Química 2
ELABORAÇÃO DE FERRAMENTA DE CÁLCULO PARA A DETERMINAÇÃO DO COEFICIENTE CONVECTIVO EM EXPERIMENTOS DE CONVECÇÃO FORÇADA AO REDOR DE UM CORPO SUBMERSO E ALETAS TORRES, F. C. O. 1, BARBOSA NETO, A. M. 2 1
EN 2411 Aula 13 Trocadores de calor Método MLDT
Universidade Federal do ABC EN 24 Aula 3 Trocadores de calor Método MLDT Trocadores de calor São equipamentos utilizados para promover a transferência de calor entre dois fluidos que se encontram sob temperaturas
Transferência de Calor
Transferência de Calor Introdução à Convecção Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de
Escoamento completamente desenvolvido
Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo
PG0054 Transferência de Calor B
PG0054 Transferência de Calor B Prof. Dr. Thiago Antonini Alves [email protected] http://pessoal.utfpr.edu.br/thiagoaalves/ Aula 0 09/08/2016 Apresentação do Plano de Ensino 2016/2 Sumário Objetivos
EP34D Fenômenos de Transporte
EP34D Fenômenos de Transporte Prof. Dr. André Damiani Rocha [email protected] Introdução à Transferência de Calor 2 Introdução à Transferência de Calor O que é Transferência de Calor? Transferência de
TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO ÍNDICE DE REVISÕES DESCRIÇÃO E / OU FOLHAS ATINGIDAS
GOPE CAT. : ÁREA DE ATIVIDADE: SERVIÇO: TÍTULO : TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO de 9 METODOLOGIA DE CÁLCULO DO COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR REV. ÍNDICE DE REVISÕES DESCRIÇÃO
Disciplina: Camada Limite Fluidodinâmica
Prof. Fernando Porto Disciplina: Camada Limite Fluidodinâmica Camada Limite Incompressível Laminar: Escoamento de Fluidos ao Redor de Corpos Submersos 4ª Parte Introdução Se o corpo estiver se movendo
ESTUDO NUMÉRICO DA INFLUÊNCIA DA CONVECÇÃO FORÇADA E USO DE ALETAS PARA TROCA DE CALOR CONVECTIVA
ESTUDO NUMÉRICO DA INFLUÊNCIA DA CONVECÇÃO FORÇADA E USO DE ALETAS PARA TROCA DE CALOR CONVECTIVA Luciano Wotikoski Sartori ([email protected]). Aluno de graduação do curso Engenharia Mecânica.
FENÔMENOS DE TRANSPORTE
Universidade Federal Fluminense Escola de Engenharia Disciplina: FENÔMENOS DE TRANSPORTE Aula 8 Análise Dimensional e Semelhança Prof.: Gabriel Nascimento (Dep. de Eng. Agrícola e Meio Ambiente) Elson
Escoamentos Externos
Escoamentos Externos O estudo de escoamentos externos é de particular importância para a engenharia aeronáutica, na análise do escoamento do ar em torno dos vários componentes de uma aeronave Entretanto,
Condensação
Condensação Condensação Condensação Condensação Condensação Condensação em Filme Tal como no caso de convecção forçada, a transferência de calor em condensação depende de saber se o escoamento é laminar
LABORATÓRIO DE ENGENHARIA QUÍMICA I
LABORATÓRIO DE ENGENHARIA QUÍMICA I Prof. Gerônimo Virgínio Tagliaferro FENÔMENOS DE TRANSPORTE EXPERIMENTAL Programa Resumido 1) Cominuição e classificação de sólidos granulares 2) Medidas de Vazão em
PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2015 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico. Gabarito da Prova 3
PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2015 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico Gabarito da Prova 3 Questão 1: Um tubo de parede delgada, com diâmetro de 6 mm e comprimento
EM-524 : aula 13. Capítulo 06 Escoamento Externo Efeitos Viscosos e Térmicos
EM-54 : aula Capítulo 06 Escoamento Eterno Efeitos Viscosos e érmicos 6.6 Coeficiente de ransferência de Calor por Convecção; 6.7 ransferência de Calor por Convecção Forçada; 6.8 ransferência de Calor
Capítulo 6: Escoamento Externo Hidrodinâmica
Capítulo 6: Escoamento Externo Hidrodinâmica Arrasto viscoso e de pressão Arrasto total Campo de escoamento Linhas de corrente: definidas como a linha contínua que é tangente aos vetores velocidade ao
Transmissão de Calor I - Prof. Eduardo Loureiro
Camada limite de velocidade As partículas de fluido em contato com a superfície têm velocidade nula. Essas partículas atuam no retardamento do movimento das partículas da camada de fluido adjacente superior
Laboratório de Engenharia Química I Aula Prática 01. Determinação do regime de escoamento: Experiência de Reynolds. Prof. Dr. Gilberto Garcia Cortez
Laboratório de Engenharia Química I Aula Prática 01 Determinação do regime de escoamento: Experiência de Reynolds Prof. Dr. Gilberto Garcia Cortez 1 Introdução Em 1883, procurando observar o comportamento
Escoamentos não isotérmicos
Escoamentos não isotérmicos Profa. Mônica F. Naccache 1 Condições de contorno: paredes sólidas e interfaces Tipos: Fronteira livre Fronteira limitada: paredes ou interfaces Condição cinemáeca conservação
ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa)
ENGENHARIA DE MATERIAIS Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] TRANSFERÊNCIA DE
AULA 18 CONVECÇÃO NATURAL OU LIVRE
Notas de aula de PME 361 Processos de Transferência de Calor 137 AUA 18 CONVECÇÃO NATURA OU IVRE Nos dois casos anteriormente estudados, convecção interna e eterna, havia o movimento forçado do fluido
EXAME. SEMESTRE 2 Data: 7 de julho, 9:00 MIEEA. Transferência de Calor e Massa. (Duração máxima permitida: minutos)
TCM, Época de recurso, 207 EXAME SEMESTRE 2 Data: 7 de julho, 9:00 MIEEA Transferência de Calor e Massa Duração máxima permitida: 20 + 30 minutos) ATENÇÃO: Entregar este enunciado devidamente identificado
Desenvolvimento de Bancada Didática para Estudos de Desempenho Térmico de um Trocador de Calor Compacto Aletado
Curso de Engenharia Mecânica Desenvolvimento de Bancada Didática para Estudos de Desempenho Térmico de um Trocador de Calor Compacto Aletado Hugo Sotelo Goulart Campinas São Paulo Brasil Dezembro de 2008
Ponto de Separação e Esteira
Ponto de Separação e Esteira p/ x=0 p/ x0 Escoamento separado O fluido é desacelerado devido aos efeitos viscosos. Se o gradiente de pressão é nulo, p/x=0, não há influência no escoamento. Na região
1 a experiência Escoamento ao redor de um cilindro
1 a experiência Escoamento ao redor de um cilindro 1) Força de Arrasto sobre um cilindro Quando um fluido escoa ao redor de um objeto, exerce sobre este uma força que pode ser decomposta em uma componente
Corpos Não-Fuselados
Escoamentos com esteiras de grandes dimensões (ordem de grandeza da dimensão transversal do corpo), com alterações significativas do escoamento relativamente à situação de fluido perfeito (elevados δ *
TRANSFERÊNCIA DE CALOR POR CONVECÇÃO
RANSFERÊNCIA DE CALOR POR CONVECÇÃO ransferência de energia entre uma superfície e um fluido em movimento sobre essa superfície Fluido em movimento, u, s > A convecção inclui a transferência de energia
5 Resfriamento de Gás
5 Resfriamento de Gás Para analisar o tempo de resfriamento e o fluxo de calor através das paredes do duto, para o caso do gás, foram consideradas as mesmas condições iniciais já apresentadas para o caso
Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido.
V ESCOAMENTO F AO REOR E CORPOS SUBMERSOS F F F S F Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido. é a força total que possui
Transferência de Calor em Geradores de Vapor
ransferência de Calor em Geradores de Vapor Considerações gerais O dimensionamento térmico das paredes d água e dos feixes de tubos deve: Minimizar investimentos em material Otimizar o aproveitamento da
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Energia 2 Energia Transferência de Energia por Calor Sempre que existir diferença de temperatura haverá transferência de calor. Se
Transferência de Calor
Transferência de Calor Convecção Natural - Parte 1 Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal
Operações Unitárias II Lista de Exercícios 1 Profa. Dra. Milena Martelli Tosi
1. Vapor d água condensado sobre a superfície externa de um tubo circular de parede fina, com diâmetro interno igual a 50 mm e comprimento igual a 6 m, mantém uma temperatura na superfície externa uniforme
Aula 3 de FT II. Prof. Geronimo
Aula 3 de FT II Prof. Geronimo Raio crítico de isolamento O conceito de raio crítico de isolamento, é introduzido para geometrias onde a área de troca de calor varia com uma dimensão especificada. Por
Capítulo 6: Escoamento Externo Hidrodinâmica
Capítulo 6: Escoamento Externo Hidrodinâmica Conceitos fundamentais Fluido É qualquer substância que se deforma continuamente quando submetido a uma tensão de cisalhamento, ou seja, ele escoa. Fluidos
FENÔMENO DE TRANSPORTE EXPERIMENTAL
FENÔMENO DE TRANSPORTE EXPERIMENTAL Prof. MSc.. Sérgio S R. Montoro 1º semestre de 2012 EMENTA: FENÔMENOS DE TRANSPORTE EXPERIMENTAL Experimento 1: Estudo do tempo de escoamento de líquidos l em função
FENÔMENO DE TRANSPORTE EXPERIMENTAL
FENÔMENO DE TRANSPORTE EXPERIMENTAL Prof. MSc.. Sérgio S R. Montoro 1º semestre de 2013 EMENTA: FENÔMENOS DE TRANSPORTE EXPERIMENTAL Experimento 1: Estudo do tempo de escoamento de líquidos l em função
Transferência de Calor Escoamentos Externos
Transferência de Calor Escoamentos Externos There Are Three Kinds of Heat Transfer: Conductive: one object transfers heat directly through contact with another object. Radiation: This is when heat is transferred
CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA
CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA 1) Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e gesso, conforme indicado na figura. Em um dia frio
Escoamentos externos. PME2230 Mecânica dos Fluidos I
Escoamentos externos PME2230 Mecânica dos Fluidos I Aplicações Aeronaves Veículos terrestres Embarcações e submarinos Edificações Camada limite Camada limite: região delgada próxima à parede, onde as tensões
11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado
Capítulo 11 Material Suplementar 11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado Embora as condições de escoamento em trocadores
ALVARO ANTONIO OCHOA VILLA
UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA MECÂNICA PÓS-GRADUAÇÃO. DOUTORADO EM ENERGIA. ANÁLISE DIMENSIONAL E SEMELHANÇA ALVARO ANTONIO OCHOA VILLA
FENÔMENOS DE TRANSPORTES
FENÔMENOS DE TRANSPORTES AULA 3 CLASSIFICAÇÃO DE ESCOAMENTOS PROF.: KAIO DUTRA Descrição e Classificação dos Movimentos de Fluido A mecânica dos fluidos é uma disciplina muito vasta: cobre desde a aerodinâmica
) (8.20) Equipamentos de Troca Térmica - 221
onde: v = &m = Cp = h lv = U = A = T = t = volume específico vazão em massa (Kg/h) calor específico calor latente de vaporização coeficiente global de troca térmica área de transmissão de calor temperatura
EXPERIMENTO 02. Estudo da influência da perda de carga e da rugosidade de tubos no escoamento forçado de líquidos. Prof.
EXPERIMENTO 02 Estudo da influência da perda de carga e da rugosidade de tubos no escoamento forçado de líquidos Prof. Lucrécio Fábio Atenção: As notas destinam-se exclusivamente a servir como roteiro
Fenômenos de Transporte Aula-Cinemática dos fluidos. Professor: Gustavo Silva
Fenômenos de Transporte Aula-Cinemática dos fluidos Professor: Gustavo Silva 1 Conteúdo da Aula -Regimes de escoamento, laminar, transição e turbulento; -Apresentação do experimento de Reynolds; -Número
TROCADOR DE CALOR BITUBULAR
UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E PETRÓLEO INTEGRAÇÃO I TROCADOR DE CALOR BITUBULAR Alunos : Rodrigo da Silva Rosa Adriano Matielo Stulzer Niterói,
Considerações gerais sobre radiação térmica
CÁLCULO TÉRMICO E FLUIDOMECÂNICO DE GERADORES DE VAPOR Prof. Waldir A. Bizzo Faculdade de Engenharia Mecânica - UNICAMP General Considerations Considerações gerais sobre radiação térmica Radiação térmica
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Análise Integral (Volume de Controle) 2 ou 1ª Lei da Termodinâmica A 1ª Lei da Termodinâmica para um Sistema Fechado é dada por,
MECÂNICA DOS FLUIDOS II. Introdução à camada limite. Introdução à camada limite. Conceitos:
MECÂNICA DOS FLIDOS II Conceitos: Camada limite; Camada limite confinada e não-confinada; Escoamentos de corte livre e Esteira; Camadas limites laminares e turbulentas; Separação da camada limite; Equações
Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I
Departamento de Engenharia Mecânica ENG 1011: Fenômenos de Transporte I Aula 9: Formulação diferencial Exercícios 3 sobre instalações hidráulicas; Classificação dos escoamentos (Formulação integral e diferencial,
UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 6 ROTEIRO
1 UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB0472 HIDRÁULICA Prof. Fernando Campos Mendonça AULA 6 ROTEIRO Tópicos da aula: -
Hidrodinâmica: Fluidos em Movimento
Hidrodinâmica: Fluidos em Movimento Renato Akio Ikeoka FLUIDOS EM MOVIMENTO Fluido subdivisão de elementos de volume suficientemente pequenos para que possamos tratar cada um deles como uma partícula e
HIDRODINÂMICA CONDUTOS SOB PRESSÃO
HIDRODINÂMICA CONDUTOS SOB PRESSÃO CONDUTOS SOB PRESSÃO Denominam-se condutos sob pressão ou condutos forçados, as canalizações onde o líquido escoa sob uma pressão diferente da atmosférica. As seções
Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos
Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos 1ª. Questão (1 ponto) Considere uma bomba centrífuga de 20 kw de potência nominal, instalalada em uma determinada planta
