Colégio Naval 2002 (prova azul)
|
|
|
- Ísis Estrada Cunha
- 8 Há anos
- Visualizações:
Transcrição
1 Colégio Naval 00 (prova azul) 01) O número de múltiplos de 1 compreendidos entre 357 e 3578 é igual a (A) 68 (B) 69 (C) 70 (D) 71 (E) 7 1ª SOLUÇÃO: Seja A o número que denota a quantidade no intervalo 1, N de números K N que são divisíveis por k, tal que A K, onde representa a parte inteira da divisão k de N por k. 357 Podemos notar que no intervalo 1, 357 A1 eistem 9 múltiplos de 1, Do mesmo modo no intervalo 1, 3578 A1 eistem 98 múltiplos de 1, 1 Assim o número de múltiplos de doze no intervalo de 357 a 3578 é igual a 98 9 = Ou podíamos ver que no intervalo 357, 3578, 9,75; 98,16 ou 1 1 seja, ver quantas soluções inteiras eistem no intervalo, isto é, quantos números inteiros eistem nesse intervalo 30, 31, 3, 33, 34,..., Alternativa B ª SOLUÇÃO: temos que 360 é o primeiro termo da seqüência, o último termo é 3578 dividido por 1, cujo quociente é 98 e o resto é, logo 3578 = 3576 é divisível por 1. Assim os números da seqüência são: 360; 37; 384;...; 3576 usando o conceito de Progressão Aritmética, temos: " n" números A = A n 1 R onde A é um termo qualquer, A é o primeiro termo, n 1 n 1 n é o número de termos e R é a razão ou diferença entre um termo qualquer e o termo anterior. Logo: A 3576, A 360, R=1 e n =? n = ( n - 1) 1 dividindo por 1 98 = 30 + ( n - 1) n - 1 = n - 1 = 68 n = n = 69 Alternativa B (1)
2 0) Se o conjunto solução da inequação é S, então o número de elementos da interseção do conjunto S com o conjunto dos números inteiros é igual a (A)0 (B)1 (C) (D)3 (E)4 1ª SOLUÇÃO: Observe que a soma dos coeficientes de é zero, isso indica que uma das raizes é um, logo divisível por ( - 1), assim fazendo a divisão encontramos = Do mesmo modo temos que é divisível por Assim Logo = Daí 0 0 Observem que: a) 1 0 (será zero quando for igual a um) b ) pois delta é menor do que zero. c ) 0 (pois está no denominador) Como no problema é pedido menor ou igual a zero, temos que = 1 Alternativa B 1 (1)
3 4 3 O polinômio podia ter sido fatorado da seguinte forma: ª SOLUÇÃO: seja y = y y 1 1 y y 1 1 Assim y 8 y 10 0 y y y y 3y 8y y y1 e y (1)
4 1 1 Assim y mas como y = 3 3 Como "" tem que ser inteiro = 1 3 Alternativa B 03) Se a e b , então a+b é igual a : (A) 10 (B) 4 (C) (D) 5 1 (E) 3 SOLUÇÃO: Usando o produto notável a b a ab b, temos: a b a b Alternativa D (1)
5 04) Se e y são números inteiros e positivos, representa-se o máimo divisor comum de e y por MDC (, y ); assim, o número de pares ordenados (, y ) que são soluções do sistema y 810 mdc(, y) 45 (A) 6 (B) 8 (C) 10 (D) 16 (E) 18 y Temos que a e b onde "a" e "b" são primos entre si. mdc y, mdc, y y y 810 a b 18 mdc, y mdc, y mdc, y 45 Logo a + b = 18 Onde os valores possíveis para os pares ordenados são: a b a b Serve ou não serve Serve não serve não serve não serve Serve não serve Serve não serve 9 9 X X não serve Logo são seis os pares ordenados que são soluções do sistema. Alternativa A (1)
6 05) Um relógio indica dois minutos menos do que a hora certa e adianta t minutos por dia. Se 1 estivesse atrasado três minutos e adiantasse t minutos por dia, então marcaria a hora certa eatamente um dia antes do que vai marcar. O tempo t, em minutos, que esse relógio adianta por dia está compreendido entre (A) e (B) e (C) e (D) e (E) e ª SOLUÇÃO: DIA ADIANTA 1 dia t minutos nt n n dias minutos t DIA ADIANTA dia t minutos t m 3 m 1 t m dias 3 minutos como m 1 n t t 1 t t 1 t t 6 1 6t t t t 1 t 1 1 t t t t t 1 6t t t 4t t 3t 0 y 3y y1 1 e y 4 t1 =0,5 e t não serve Alternativa C (1)
7 ª SOLUÇÃO: Como o relógio está atrasado minutos, em "n" dias com adiantamento de "t" minutos por dia a hora estará certa, isto é: n t = (1) Do mesmo modo, se estivesse atrasado 3 minutos em "n-1" dias com 1 adiantamento do relógio em " t " minutos a hora estará correta, ou seja: 1 n 1 n 1 t 3 nt t 3 nt n t 1 6 nt n t 7 0 mas como nt = 4 n t 7 0 n t 3 0 n t 3 () Pondo () em (1), temos: t t t t y y 1 4 y1 1 e y 4 t1 =0,5 e t não serve Alternativa C (1)
8 06) Considere um triângulo e uma circunferência que passa pelos pontos médios dos seus três lados. Se X, Y e Z, (X < Y < Z) são as medidas dos arcos dessa circunferência, em graus, eteriores ao triângulo, então (A) Z = y (B) Z = X + Y (C) X + Y +Z =180 (D) X + Y =180 (E) Z = X + Y Fazendo a figura de acordo com o enunciado e denotando os arcos conforme abaio, temos: O arco AO por Z; O arco AM por X; O arco PN por Y; O arco MP por B e O arco NO por A. Observe que o quadrilátero AMNO é inscritível, pois, ON é paralelo a AB e MN é paralelo a AC, assim AMNO é um retângulo, logo os ângulos opostos são suplementares. Assim temos: Z + A = 180º e Z + X = 180º A = X A + Y + B = 180º Z + A = A + Y + B Z = Y + B Como MO é paralelo a BC, pois os pontos M e O são pontos médios, temos: AOM = MNB arco MP = arco AM B = X Daí, como Z = Y + B Z = X + Y Alternativa B (1)
9 07) Se os lados de um triângulo medem, respectivamente 3X, 4X e 5X, em que X é um número inteiro positivo, então a distância entre os centros dos círculos inscritos e circunscritos a esse triângulo corresponde a (A) (B) (C) (D) 5 (E) 5 6 Sejam FC = a, EC = a, AF = R, AD = R, BD = b, BE = b. Onde R é o raio do cículo inscrito. a + R = 3X R + b = 4X como os lados são 3X, 4X e 5X, isso indica que o triângulo é retângulo. b + a =5X a + R + b = 1X a + R + b = 6X Como R + b = 4X a + R + b = 6X a = X 4 De a + R = 3X R = X e de R + b = 4X b = 3X 5X 6X 5X X GE = BE - BG = GE = 3X - = GE = Logo do triângulo OEG, temos: X X 5X D = X - D = X - D = 4 4 5X X 5 D = D = 4 Alternativa D (1)
10 Observações sobre a questão 07: Se o triângulo for retângulo o raio do círculo inscrito é igual ao semi-perímetro menos a hipotenusa ou r = P - a Teorema: Em todo triângulo retângulo, a soma dos catetos é igual a soma dos diâmetros dos círculos incrito e circunscrito ou seja b + c = r + R Se o triângulo retângulo tem os lados iguais a 3R, 4R e 5R, então os lados estão em Progressão aritmética, daí o raio do círculo inscrito é igual a razão (ou diferença entre dois lados consecutivos) ou r = Razão. O problema poderia ter sido resolvido usando o teorema abaio: Em qualquer triângulo à distância D do centro do círculo inscrito tendo r como raio, ao centro do círculo circunscrito de raio R é dado pela relação. D = R R - r Resolvendo o problema fazendo uso das observações acima temos: Como o triângulo tem os lados iguais a 3X, 4X e 5X r = X (raio do círculo inscrito) Sendo o triângulo retângulo, então R = 5X ( o diâmetro é igual a hipotenusa), assim: 5X 5X Usando a fórmula D = R R - r D = -X X X X X X X X D = D = D = D = 4 (1)
11 08) Observe o quadrado acima em que as letras representam números naturais distintos desde 1 até 9. Se a adição de três números de cada linha, de cada coluna ou de cada diagonal, desse quadrado, tem sempre o mesmo resultado, então a letra E representa o número: (A) 1 (B) (C) 3 (D) 4 (E) 5 Solução: Primeiramente temos: a b c d e f g h i Observe que, como a, b, c, d, e, f, g, h, i são números distintos que variam de 1 a 9, então: Como = 45 a b c d e f g h i 45 Do mesmo modo, temos que: 45 a b c d e f g h i a b c d e f g h i 15 3 Por outro lado temos: a e i 15 c e g 15 a b c d e f g h i 3e e 60 b e h d e f 15 3e e 15 e 5 Alternativa E (1)
12 09) Justapondo-se os números naturais conforme a representação abaio, onde o sinal * indica o último algarismo, forma-se um número de 100 algarismos * O resto da divisão do número formado por 16 é igual a (A) (B) 4 (C) 6 (D) 8 (E) 10 Solução: Temos que: De 1 à = 9 algarísmos 189 algarísmos De 10 à =90 90 =180 algarísmos Logo = 813 algarísmos números Assim, sendo X um número de três algarísmos, temos: X = 71 X = X = 370 Daí a seguência de números Fato teórico: Um número é divisível por dois se é par e um número é par se o último algarísmo a direita for divisível por dois ou seja é par (algarismo das unidades). Um número é divisível por quatro guando os dois últimos algarísmos da direita for divisível por quatro (algarísmos das unidades e das dezenas). Um número é divisível por oito quando os três últimos algarísmos da direita for divisível por oito (algarísmos das unidades, das dezenas e das centenas). Podemos mostrar que isso vale para dezesseis, isto é: Um número é divisível por dezesseis se os quatro últimos algarísmos da direira for divisível por dezesseis. Então Que tem como resto 10 Alternativa E (1)
13 10) Se y 1, com X e Y reais, então o maior valor da epressão igual a 3 y y é (A) 5 4 (B) (C) 8 (D) (E) 16 Solução: y 1 4 4y y 1 3y y y 1 3y y y 1 K 1 K 1 K 1 1 O maior valor de K 1, onde K é K( ) 1, ou seja K é função de ou depende do valor de, esse valor é obtido quando K =. 4a Assim fazendo as contas, temos: b ac 5 5 K = K 4 a Alternativa A (1)
14 11) Considere um triângulo eqüilátero ABC, inscrito em um círculo de raio R. Os pontos M e N são, respectivamente, os pontos médios do arco menor AC e do segmento BC. Se a reta MN também intercepta a circunferência desse círculo no ponto P, PM, então o segmento NP mede R 7 3R 3 3R 7 R 5 R 5 (A) (B) (C) (D) (E) Fazendo a figura conforme o enunciado, ligando os pontos B e M, P e C, A e N, temos a figura abaio: Observe que o triângulo BNO é retângulo com ângulos de 30º, 60º e 90º, como BO é igual ao Raio, denotado por R, temos que o lado oposto ao ângulo de 30º é igual à metade da hipotenusa e o lado oposto ao ângulo de 60º é igual a metade da hipotenusa vezes a raiz de três.os ângulos MBN e NPC são congruentes pois são metade do arco MC, do mesmo modo os ângulos BMN e PCN são congruentes pois são metade do arco BP, logo os triângulos PCN e BMN são semelhantes, daí: (1)
15 PN NC =, mas antes de continuar temos que determinar MN, assim: BN MN R 3 R 3 MN R R cos 30º MN 4R 3R R 3 R 4 3R 3R MN 4R 3R MN R 4 4 4R 3R 7R 7R R 7 MN MN MN MN Daí, temos: PN NC PN = BN MN R 3 R 3 R 7 9R 7 9R 7 PN PN R 3 3 9R PN PN 7 7 Alternativa C (1)
16 1) Em um trapézio cujas bases medem A e B, os pontos M e N pertencem aos lados nãopararelos. Se o segmento MN divide esse trapézio em dois outros trapézios equivalentes, então a medida do segmento MN corresponde a (A) média aritmética de A e B. (B) média geométrica das bases. (C) raiz quadrada da média aritmética de A e B. (D) raiz quadrada da média harmônica de A e B. (E) média harmônica de A e B. Fazendo a figura conforme o enunciado, prolongando os lados não paralelos AD e BC de tal maneira que o ponto P seja a interseção desses prolongamentos, temos, assim construído três triângulos semelhantes, saber: ABP MNP DCP (semelhantes), assim: S a k ABP S S S ABP MNP DCP k S k MNP a b S b k DCP A área do trapézio ABMN pode ser dada por S S MNP ABP Do mesmo modo a área de MNCD pode ser dada por S S DCP MNP Como essas áreas são equivalentes temos: S S S S S S S MNP ABP DCP MNP MNP DCP ABP a b a b k b k a k a b Alternativa C (1)
17 13) Dois ciclistas, com velocidades constantes, porém diferentes, deslocam-se em uma estrada retilínea que liga os pontos A e B. Partem de A no mesmo instante e quando alcançam B, retornam a A, perfazendo o movimento A-B-A-B, uma única vez. Quando o mais veloz alcança o ponto B, pela primeira vez, retorna no sentido de A encontrando o outro a 4 km de B. Quando o mais lento atinge o ponto B, retorna imediatamente e reencontra, no meio do percurso, o outro que está vindo de A. Desprezando-se o tempo gasto em cada mudança no sentido de percurso, a distância entre os pontos A e B, em km, é igual a (A) 10 (B)1 (C)14 (D)16 (E) 18 d 4 d 4 d 4 V V 4 V e V t d 1 t y t V d 4 V d 4 y y t d d d d d 5d d d V t V d V V 1 5 V e V t y t V d V d V 3d V y d y d y y t 1 De 1 e, temos: d 4 5 3d 1 5d 0 d 3 d 16 d 4 3 Alternativa D (1)
18 14) Considere a equação 6 m 1 0 com o parâmetro m inteiro não nulo. Se essa equação tem duas raízes reais e distintas com o número 4 compreendido entre essas raízes, então o produto de todos os possíveis valores de m é igual a (A)- (B)-1 (C) (D) 4 (E) 6 Solução: Seja p() = 6 m 1 para = 4 p(4) = m 1 p(4) = 16 4 m 1 p(4) = m 9 Por teoria sabemos que a condição para um número (alfa) estar entre as raízes do Trinômio do Segundo Grau, p( ) a b c é que a p( ) < 0. Assim a p(4) < 0, como a = 1 m 9 0 Logo m 3, 3, sendo que m 0 pelo enunciado. Daí "m" pode ser um dos valores do conjunto abaio: -, -1, 1, Assim o Produto = Alternativa D (1)
19 15) João vendeu dois carros de modelo SL e SR, sendo o preço de custo do primeiro 0% mais caro que o do segundo. Em cada carro teve um lucro de 0 % sobre os seus respectivos preços de venda. Se o total dessa venda foi R$ ,00, o preço de custo do segundo modelo era, em reais, igual a (A) ,00 (B) 3 000,00 (C) ,00 (D) ,00 (E) ,00 Solução: Fato teórico: Venda com lucro A venda de mercadorias pode oferecer um lucro e esse lucro pode ser sobre o preço de custo ou sobre o preço de venda. Quando o lucro incidir sobre o PREÇO DE CUSTO, este valor será o principal, e como tal, corresponderá a 100%. Do mesmo modo quando o lucro incidir sobre o PREÇO DE VENDA, este valor será o principal, e como tal, corresponderá a 100%. SL preço 1, X 1,X + X =,X SR preço X, X 80%,X 100% = % X = % Alternativa E (1)
20 16) Se X é um número inteiro tal que 3 5 1, o número de elementos do conjunto solução dessa inequação é igual a (A) 0 (B) 1 (C) (D) 3 (E) 4 Solução: antes de mais nada temos que ou 1 ou seja, 1, + e Do mesmo modo ou seja 1, +, feito isso, temos: ou seja 3,. Das condições acima e tendo em mente que "" tem que ser inteiro, temos que 1, Alternativa C (1)
21 17) Se um segmento AB tem cm de comprimento, então a flecha do arco capaz de 135 desse segmento mede (A) 1 (B) (C) 1 (D) 3 (E) 1ª SOLUÇÃO: Fazendo a figura conforme o enunciado, temos: Do triângulo ABC, temos: Usando a Lei dos cossenos cos 135º Agora vamos determinar o valor da flea CD, observando o triângulo ACD, temos: 4 4 CD 1 CD 1 CD (1) CD CD CD CD CD CD 4 CD 3 CD 3 Observe que 1 CD 3 1 CD 1 Alternativa C
22 ª SOLUÇÃO: Uma saída rápida para QUESTÃO 17 é observar que AB é o lado do quadrado inscrito, isto é: l = R R = R= R = 4 Ou observando o triângulo HOG R 1 1 R = R = Observe que DO é igual a metade do lado do quardrado ou seja igual a 1, então como DC = CO - DO DC = -1 raio (1)
23 18) Se a, b, c são algarismos distintos, no sistema de numeração decimal eiste um único número de dois algarismos ab tal que ab ba cc. O valor de a + b + c é igual a: (A)11 (B)1 (C)13 (D)14 (E) 15 Solução: ab ba cc 10a b 10b a 10c c 10a b 10b a10a b 10b a 10c c 11a 11b 9a 9b 11c 11a b9a b 11 c 11 a b a b c a b a b 9 c 111 c c 9 3 a b 11 a 6 e b 5 a b 1 Daí a + b + c = = 14 Observações: Se c a b a b a b Daí c 3 a b c 11 b b c 11 b para ser quadrado perfeito b 7 (menor valor) c 3 5 c 15 que não convém ao problema, pois a, b e c são algarismos na base dez. Se c a b a b a b Daí c 3 a b c 3 11 b b c 3 11 b para ser quadrado perfeito, temos : Se b 1 c 9, mas se b 1 a 10, não serve; Se b 5 c 3, mas se b 5 a 6, daí a b c ok, serve ao problema. Alternativa D (1)
24 19) Se a e b são dois números reais, denotarmos por min a, b o menor dos números a e b, isto é, min a, b a, se a b a, se a b min -7, é O número de soluções inteiras negativas da inequação igual a (A) 0 (B) 1 (C) (D) 3 (E) 4 a, se a b Essa questão pelo erro de digitação min a, b estaria ANULADA. a, se a b Observação: Minha solução está sendo baseada na prova azul original e não digitação feita por terceiros. Desconsiderando o erro, temos: min -7, a) se Resolvendo: - 7 > > 10 > -, logo < 3 b) se Resolvendo: 8-3 > > 3 isso é verdade qualquer que seja o valor de, mas como inicialmente 3. Assim pelos itens a e b não eistem soluções negativas. Alternativa A (1)
25 0) Considere os triângulos ABC e MNP. Se as medidas dos lados do segundo triângulo são, respectivamente, iguais às medidas das medianas do primeiro, então a razão da área de MNP para a área de ABC é igual a (A) 3 1 (B) 1 (C) 3 (D) 4 3 (E) 6 5 1ª SOLUÇÃO: Supondo que ABC seja eqüilátero, temos: l 3 S 1 que é a área de um triângulo equilátero qualquer. ABC 4 Sabendo-se que em um triângulo equilátero todos os pontos notáveis se confundem (ou seja são coincidentes), temos que a mediana é a altura, bissetriz e mediatriz. Assim o lado do triângulo MNP (equilátero) é l 3 l 3 usando a fórmula anterior S MNP 4 l S S l MNP 4 MNP 16 3 Daí e de 1 e, vem : S MNP S ABC 3 3 l S 16 MNP l 3 S ABC 4 l l 3 4 S MNP S ABC 3 4 Alternativa D (1)
26 ª SOLUÇÃO: Seja um triângulo ABC qualquer, seja G o ponto de encontro das três medianas (baricentro), é sabido que o baricentro divide a mediana na razão dois pra um, desse modo podemos construir a figura abaio. Outro fato importante é que o baricentro determina em qualquer triângulo seis triângulos que possuem a mesma área, isto é, se a área do triângulo ABC é S, então a área de cada um dos triângulos formados será S dividida por seis. Seja D o ponto médio do segmento CG, ligando os pontos D e N e observando o triângulo ACG, podemos concluir que DN é paralelo a AG e sua medida é metade de AG, assim sendo o triângulo DNG tem os lados com medidas X, Y e Z. O triângulo MNP formado pelas medianas do triângulo ABC, tem lados cujas medidas são 3X, 3Y e 3Z, logo os triângulos DNG e MNP são semelhantes (caso LLL lados proporcionais). Da semelhança entre os triângulos DNG e MNP, temos: S DNG S 1 S 1 DNG DNG S MNP S S MNP MNP S Mas S pois á área de DNG é igual a metade da área do triângulo CNG. DNG 1 S 1 S 3S Daí, DNG S S 9 S 9 S 9 MNP DNG MNP 1 4 MNP Como a área de ABC é S 3S S S MNP 4 MNP S S S ABC ABC 3 S 4 S 3 4 Alternativa D (1)
Conteúdo programático por disciplina Matemática 6 o ano
60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números
1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS
Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.
www.rumoaoita.com 141
0 Dado um trapézio qualquer, de bases e 8, traça-se paralelamente às bases um segmento de medida x que o divide em outros dois trapézios equivalentes. Podemos afirmar que: (A) x, 5 (B) x (C) x 7 x 5 (E)
30's Volume 8 Matemática
30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,
Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.
Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do
Atividade 01 Ponto, reta e segmento 01
Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o
Polígonos Regulares Inscritos e Circunscritos
Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é
Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.
PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.
(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4
TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)
Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:
Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )
Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.
Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:
Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor
Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que
1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA VIII 1 PONTOS NOTÁVEIS 1.1 Baricentro O baricentro é o encontro das medianas de um triângulo. Na figura abaixo, é o ponto médio do lado, é o ponto médio do lado
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E
Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)
Capítulo 6. Geometria Plana
Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior
TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...
1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 2 V - CIRCUNFERÊNCIA E DISCO V.1) Circunferência e Disco Elementos : a) Circunferência
Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso
Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal
Geometria Plana Triângulos Questões Resolvidas (nem todas)
Questão 1 A bissetriz interna do ângulo  de um triângulo ABC divide o lado oposto em dois segmentos que medem 9 cm e 16 cm. Sabendo que medida de. 9 16 = AC = 3 18 AC Questão mede 18 cm, determine a O
Aula 5 Quadriláteros Notáveis
Aula 5 Quadriláteros Notáveis Paralelogramo Definição: É o quadrilátero convexo que possui os lados opostos paralelos. A figura mostra um paralelogramo ABCD. Teorema 1: Se ABCD é um paralelogramo, então:
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa
Aplicações Diferentes Para Números Complexos
Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos
Da linha poligonal ao polígono
Polígonos Da linha poligonal ao polígono Uma linha poligonal é formada por segmentos de reta consecutivos, não alinhados. Polígono é uma superfície plana limitada por uma linha poligonal fechada. Dos exemplos
Aula 10 Triângulo Retângulo
Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.
REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.
NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a
Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.
ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =
Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano
Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com
Assunto: Estudo do ponto
Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3
TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:
TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 04 GABARITO COMENTADO 40 40 ) Sabendo que O B M = 40 O B = B M M = O, 40 O B+ M = 46 + M = 46 M 46M + 40 =
LISTA DE EXERCÍCIOS MATEMÁTICA
LISTA DE EXERCÍCIOS MATEMÁTICA P E P - º BIMESTRE 9º ANO Aluno (a): Turno: Turma: Unidade Data: / /05 EXERCÍCIOS P Potenciação/Radiciação QUESTÃO 0 Calcule as seguintes potências: A. B. 0 6 C. (-) D. E.
UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL
Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que
Aula 12 Áreas de Superfícies Planas
MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:
Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F.
Módulo de Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo. 8 ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo.
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:
Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:
Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,
DIDÁTIKA - RESOLUÇÕES DOS EXERCÍCIOS EXTRAS
DIDÁTIKA - RESOLUÇÕES DOS EXERCÍCIOS EXTRAS 01. Na figura, ABCD é um quadrado e ADE é um triângulo retângulo em E. Se P é o centro do quadrado, prove que a semirreta EP é a bissetriz do ângulo AED. Resolução.
[email protected] Rua 13 de junho, 1882-3043-0109
LISTA 17 RELAÇÕES MÉTRICAS 1. (Uerj 01) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um
Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E
Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)
Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais.
125 19 QUADRILÁTEROS Propriedades 1) Num quadrilátero qualquer ABCD a soma dos ângulos internos é 1800. 2) Um quadrilátero ABCD é inscritível quando seus vértices pertence a uma mesma circunferência. 3)
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa
1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar
SISTEMA DE EQUAÇÕES DO 2º GRAU
SISTEMA DE EQUAÇÕES DO 2º GRAU Os sistemas a seguir envolverão equações do 2º grau, lembrando de que suas soluções constituem na determinação do par ordenado { (x, y )(x, y ) }. Resolver um sistema envolvendo
1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E
Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior
Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:
Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema
Equação e Inequação do 2 Grau Teoria
Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo
Cevianas: Baricentro, Circuncentro, Incentro e Mediana.
Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:
Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.
Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique
PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães
PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães Nível Iniciante Propriedade 1 Num triângulo retângulo ABC, a mediana BM relativa à hipotenusa mede
GABARITO PROVA AMARELA
GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)
10 FGV. Na figura, a medida x do ângulo associado é
urso de linguagem matemática Professor Renato Tião 6. Sabendo que ângulos geométricos têm medidas entre 0º e 180º, ângulos adjacentes têm um lado em comum, ângulos complementares têm a soma de suas medidas
ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos
GABARITO MA13 - Avaliação 1 - o semestre - 013 Questão 1. (pontuação: ) ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos do triângulo AF C.
12 26, 62, 34, 43 21 37, 73 30 56, 65
1 Questão 1 Solução a) Primeiro multiplicamos os algarismos de 79, obtendo 7 9 = 63, e depois somamos os algarismos desse produto, obtendo 6 + 3 = 9. Logo o transformado de é 79 é 9. b) A brincadeira de
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)
Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton
21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU
1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas
Circunferência e círculo
54 Circunferência e círculo Ângulos na circunferência Ângulo central Ângulo central é o ângulo que tem o vértice no centro da circunferência. A medida de um ângulo central é igual à medida do arco correspondente
COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.
COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade
115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100
MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu
para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.
MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas
Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta
Questão São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite, 550 kcal; 00 g de manteiga,.00 kcal; kg de queijo,.00 kcal; uma banana, 80 kcal.
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente
a) 2 b) 3 c) 4 d) 5 e) 6
Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355
Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer
Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois
Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela
Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento
Exercícios Triângulos (1)
Exercícios Triângulos (1) 1. Na figura dada, sabe-se que r // s. Calcule x. 2. Nas figuras abaixo, calcule o valor de x. 5. (PUC-SP) Na figura seguinte, as retas r e s são paralelas. Encontre os ângulos
a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.
OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1
Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes:
AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Relações métricas nos triângulos retângulos ) Usando o teorema de Pitágoras, determine os elementos indicados por ou nas figuras seguintes: d) e) f) g) h) 0
Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1)
Matemática aula POLINÔMIOS I. COMENTÁRIOS ATIVIDADES PARA SALA b a P() b P() + + Calculando P (), temos: b a P() b b + b + a ab b a P () b + ( ab) + b + a b Se P () P (), podemos observar que: b + ( ab)
Áreas e Aplicações em Geometria
1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das
A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â
A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos
EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA
1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA
= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.
VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre
C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando áreas de figuras geométricas planas
C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 05 matemática Calculando áreas de figuras geométricas planas Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto
ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS.
ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS ÁLGEBRA I: 003 a 013 Funções: definição de função; funções definidas por
Seu pé direito nas melhores Faculdades
10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,
Prática. Exercícios didáticos ( I)
1 Prática Exercício para início de conversa Localize na reta numérica abaixo os pontos P correspondentes aos segmentos de reta OP cujas medidas são os números reais representados por: Exercícios didáticos
Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana
Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade
2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.
Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA
18 1 a QUESTÃO. (VALOR: 0 ESCORES) - ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. Item 01. A representação gráfica de M ( M N) P é a. ( )
Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:
Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,
Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225.
1. (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma que o mais baixo e o mais alto tenham larguras respectivamente iguais a 60 cm e a 30 cm, conforme a figura:
Representação de sólidos
110 Representação de sólidos Pirâmides e prismas regulares com base(s) contida(s) em planos verticais ou de topo Desenhe as projecções de uma pirâmide quadrangular regular, situada no 1. diedro e com a
PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.
PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos
Aula 4 Ângulos em uma Circunferência
MODULO 1 - AULA 4 Aula 4 Ângulos em uma Circunferência Circunferência Definição: Circunferência é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo desse plano é uma constante positiva.
Matemática. Resolução das atividades complementares. M3 Conjuntos
Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas
Questão 1. Questão 2. Questão 3. Resposta. Resposta
Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro
SIMULADO. Matemática 1 (UFCG-PB) 2 (IBMEC)
(UFCG-PB) (IBMEC) Um jornalista anuncia que, em determinado momento, o público presente em um comício realizado numa praça com formato do trapézio isósceles ABCD, com bases medindo 00 m e 40 m (vide figura
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância
Polígonos semelhantes
Escola Secundária de Lousada Matemática do 8º ano FT nº8 Data: / / 011 Assunto: Semelhança de figuras Lição nº e Figuras semelhantes têm a mesma forma. Duas figuras são semelhantes se são geometricamente
Solução Comentada Prova de Matemática
18. Se x e y são números inteiros maiores do que 1, tais que x é um divisor de 0 e y é um divisor de 35, então o menor valor possível para y x é: A) B) C) D) E) 4 35 4 7 5 5 7 35 Questão 18, alternativa
OPERAÇÕES COM FRAÇÕES
OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que
TC DE GEOMETRIA 8 a SÉRIE OLÍMPICA ENSINO FUNDAMENTAL
TC DE GEOMETRIA 8 a SÉRIE OLÍMPICA ENSINO FUNDAMENTAL Professores: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. A medida de um dos ângulos externos de um triângulo é 125º. Sabendo-se que os
Aula 6 Pontos Notáveis de um Triângulo
MODULO 1 - AULA 6 Aula 6 Pontos Notáveis de um Triângulo Definição: Lugar Geométrico é um conjunto de pontos que gozam de uma mesma propriedade. Uma linha ou figura é um lugar geométrico se: a) todos os
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura
A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto [email protected]
A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se
Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos
Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da a Prova de Geometria I - Matemática - Monica 9/05/015 1 a Questão: (4,5 pontos) (solução na
Uma Introdução às Construções Geométricas
page 1 Uma Introdução às Construções Geométricas Eduardo Wagner page 2 Texto já revisado pela nova ortografia. page 3 Eισαγωγή στ ις Γεωµετ ρική κατ ασκευές Eduardo Wagner page 4 page i Apresentação Oι
