Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Tamanho: px
Começar a partir da página:

Download "Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT"

Transcrição

1 Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

2 Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos níveis de generalidade. Adotaremos a seguinte: Poliedro é uma reunião de um número finito de poĺıgonos planos chamados faces onde: i) Cada lado de um desses poĺıgonos é também lado de um, e apenas um, outro poĺıgono. Cada lado de um poĺıgono, comum a exatamente duas faces, é chamado uma aresta do poliedro e, cada vértice de uma face é um vértice do poliedro. ii) A interseção de suas faces quaisquer ou é um lado comum, ou é um vértice ou é vazia. iii) É sempre possível, caminhando sobre as faces, ir de um ponto de uma a um ponto qualquer de outra sem passar por nenhum vértice (ou seja, cruzando apenas arestas). Poliedros slide 2/11

3 Um poliedro A = número de arestas A = 12 F = número de faces F = 6 V = número de vértices V = 8 Poliedros slide 3/11

4 Descrevendo as faces F n representa o número de faces de gênero n. O poliedro da figura ao lado é formado por dois triângulos, três quadriláteros e dois pentágonos. F 3 = 2, F 4 = 3, F 5 = 2. Poliedros slide 4/11

5 Descrevendo os vértices Gênero de um vértice é o número de arestas que incidem nele. V n representa o número de vértices de gênero n. Na figura ao lado, H A, B e C têm gênero 3, D, E, F e G têm gênero 4, H tem gênero 5. V 3 = 3, V 4 = 4, V 5 = 1. A F C G E Como exercício, descreva suas faces. D B Poliedros slide 5/11

6 Contando as faces e os vértices O número total de faces é a soma dos números de faces de cada gênero. F = F 3 + F 4 + F 5 + O número total de vértices é a soma dos números de vértices de cada gênero. V = V 3 + V 4 + V 5 + Poliedros slide 6/11

7 Contando as arestas Como cada aresta é lado de exatamente duas faces temos: 2A = 3F 3 + 4F 4 + 5F 5 + Como cada aresta é comum a extatamente dois vértces temos: 2A = 3V 3 + 4V 4 + 5V 5 + Poliedros slide 7/11

8 Visualizando as relações Veja novamente o poliedro anterior. A descrição pelas faces é F 3 = 6, F 4 = 3. Então, 2A = 3F 3 + 4F 4 = = 30 Logo, A = 15. A descrição pelos vértices é V 3 = 3, V 4 = 4, V 5 = 1. Então, 2A = 3V 3 +4V 4 +5V 5 = = 30 Logo, A = 15. Poliedros slide 8/11

9 Poliedro convexo Todo poliedro limita uma região do espaço chamada de interior do poliedro. Dado um poliedro, um ponto do espaço ou é exterior ao poliedro, ou pertence ao poliedro, ou é interior ao poliedro. Uma reta é secante a um poliedro quando possui pontos interiores ao poliedro. Um poliedro é convexo quando qualquer reta secante possui exatamente dois pontos em comum com o poliedro. Poliedros slide 9/11

10 Duas desigualdades Em todo poliedro valem as desigualdades: Demonstração de i) i) 2A 3F ii) 2A 3V 2A = 3F 3 + 4F 4 + 5F 5 + 2A = 3(F 3 + F 4 + F 5 + ) + F 4 + 2F 5 + 2A = 3F + F 4 + 2F 5 + 2A 3F A igualdade vale somente se F 4 = F 5 = = 0, ou seja, se o poliedro tiver apenas faces triangulares. A demonstração de ii) é análoga e fica para o leitor. Poliedros slide 10/11

11 Um exemplo Colando pela base duas pirâmides regulares iguais cuja base é um poĺıgono de n lados, obtemos um poliedro formado apenas por faces triangulares. Temos F = 2n, V = n + 2 e A = 3n. Como se vê, 2A = 3F. Poliedros slide 11/11

12 Poliedros regulares MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

13 Definição Um poliedro convexo é regular se suas faces são poĺıgonos regulares iguais e se todos os seus vértices possuem mesmo gênero. Desde a antiguidade são conhecidos os 5 poliedros regulares. Poliedros regulares slide 2/12

14 Tetraedro Formado por 4 faces triangulares F 3 = 4. F = 4 V = 4 A = 6 Poliedros regulares slide 3/12

15 Cubo Formado por 6 faces quadradas F 4 = 6. F = 6 V = 8 A = 12 Poliedros regulares slide 4/12

16 Octaedro Formado por 8 faces triangulares F 3 = 8. F = 8 V = 6 A = 12 Poliedros regulares slide 5/12

17 Dodecaedro Formado por 12 faces triangulares F 5 = 12. F = 12 V = 20 A = 30 Poliedros regulares slide 6/12

18 Icosaedro Formado por 20 faces triangulares F 3 = 20. F = 20 V = 12 A = 30 Poliedros regulares slide 7/12

19 Por que existem apenas 5 poliedros regulares? a) Poliedros com faces triangulares Se cada vértice é comum a 3 faces temos o tetraedro. Se cada vértice é comum a 4 faces temos o octaedro. Se cada vértice é comum a 5 faces temos o icosaedro. Retorne e veja as figuras desses poliedros. Reunindo 6 triângulos equiláteros com um vértice comum, a figura fica plana. Poliedros regulares slide 8/12

20 b) Poliedros com faces quadradas Se cada vértice é comum a 3 faces temos o cubo. Reunindo 4 quadrados com um vértice comum a figura fica plana. Poliedros regulares slide 9/12

21 c) Poliedros com faces pentagonais Se cada vértice é comum a 3 faces temos o dodecaedro. Não é possível reunir 4 pentágonos regulares com um vértice comum. Poliedros regulares slide 10/12

22 d) Não há poliedros com todas as faces regulares de nenhum outro tipo. Reunindo 3 hexágonos regularescom um vértice comum a figura fica plana. Não é possível reunir 3 heptágonos com um vértice comum. Poliedros regulares slide 11/12

23 Poliedros duais Dois poliedros são duais quando o número de vértices de um é igual ao número de faces do outro. Cubo e octaedro são duais. F V A Cubo Octaedro Obs: dodecaedro e icosaedro são também duais. Poliedros regulares slide 12/12

24 Teorema de Euler para poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

25 Teorema de Euler Em todo poliedro convexo com F faces, V vértices e A arestas tem-se A + 2 = F + V. Observe o poliedro da figura abaixo. A = 11 F = 6 V = 7 A + 2 = = 13 F + V = = 13 Teorema de Euler para poliedros slide 2/10

26 Preparando a demonstração do teorema Seja P um poliedro convexo com F faces, V vértices e A arestas. As faces são numeradas de 1 até F. O gênero da k-ésima face é n k. Lema A soma dos ângulos internos de todas das faces é S = 360 (A F ). Demonstração S = 180 (n 1 2) (n 2 2) (n F 2) S = 180 [(n 1 + n n F ) + ( )] S = 180 (2A 2F ) = 360 (A F ) Teorema de Euler para poliedros slide 3/10

27 Demonstração do teorema Sejam: r = reta não paralela a nenhuma face de P. H = plano perpendicular a r que não intersecta P (será chamado de plano horizontal). r A projeção de P sobre H possui como contorno um poĺıgono K. Cada ponto de K é projeção de um único ponto de P. O conjunto desses pontos de P é a poligonal K (vermelha no desenho) chamada de contorno aparente de P. H K K Teorema de Euler para poliedros slide 4/10

28 Continuando Se uma reta paralela a r intersecta P em dois pontos então o mais afastado de H será chamado de ponto superior e o outro de ponto inferior. r Os pontos de P ficam separados em 3 conjuntos: Os pontos superiores (verdes). K Os pontos do contorno aparente (vermelhos). Os pontos inferiores (azuis). H K Teorema de Euler para poliedros slide 5/10

29 Continuando Sejam: V 0 = número de vértices do contorno aparente K = número de vértices de K. V 1 = número de vértices superiores. V 2 = número de vértices inferiores. A projeção dos pontos superiores de P é formada por um poĺıgono K com V 0 vértices tendo em seu interior V 1 pontos que são as projeções dos vértices superiores. K Teorema de Euler para poliedros slide 6/10

30 Continuando Atenção: a soma dos ângulos internos de um poĺıgono não se altera com sua projeção. A soma dos ângulos internos das faces superiores é K S 1 = 360 V (V 0 2) Teorema de Euler para poliedros slide 7/10

31 Continuando Analogamente, a soma dos ângulos internos das faces inferiores é Somando os dois temos S 2 = 360 V (V 0 2) S = 360 V V (V 0 2) = 360 (V 1 + V 2 + V 0 2) = 360 (V 2) Entretanto, pelo Lema temos S = 360 (A F ). Logo, A F = V 2, ou seja, A + 2 = F + V Teorema de Euler para poliedros slide 8/10

32 Observação A relação de Euler foi demonstrada para poliedros convexos. Entretanto é fácil verificar que existem poliedros não convexos que também satisfazem a relação de Euler. F = 8 V = 12 A = 18 Que poliedros não satisfazem a relação de Euler? Teorema de Euler para poliedros slide 9/10

33 Um poliedro não-euleriano Identifique os números F, V e A nesse poliedro. A relação de Euler não vale. Teorema de Euler para poliedros slide 10/10

34 Volumes e Princípio de Cavalieri MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

35 Volumes Noção intuitiva O volume de um sólido é a quantidade de espaço por ele ocupada. Unidade de volume A unidade de volume é o cubo de aresta 1. Seu volume, por definição, será igual a 1. 1 Volumes e Princípio de Cavalieri slide 2/12

36 Volume do paralelepípedo retângulo Teorema Se dois paralelepípedos retângulos possuem bases iguais, então a razão entre seus volumes é igual à razão entre suas alturas. Demonstração Sejam V e V os volumes de dois paralelepípedos retângulos com mesma base B e alturas h e h, respectivamente. a) Suponha que h e h são comensuráveis. Seja x um segmento que cabe m vezes em h e n vezes em h. Daí, h = mx, h h = nx e h = m n. Volumes e Princípio de Cavalieri slide 3/12

37 Continuação da demonstração Pelos pontos de divisão traçamos planos paralelos a B que dividem os dois paralelepípedos retângulos em outros menores todos congruentes. h h Se v é o volume de cada um dos pequenos paralelepípedos então V = mv e V V = nv. Assim, V = m n e consequentemente, V V = h h, c.q.d. b) Se h e h não forem comensuráveis a demonstração está no Apêndice desta aula. Volumes e Princípio de Cavalieri slide 4/12

38 Teorema O volume de um paralelepípedo retângulo é o produto de suas dimensões. Demonstração Seja V o volume do paralelepípedo cujas dimensões são a, b e c. Considere três outros paralelepípedos retângulos com as dimensões que aparecem na tabela a seguir. Dimensões Volume a b c V a b 1 V 1 a 1 1 V v V Aplicando o Teorema 1 temos: = c V 1 1, V 1 = b V 2 1, V 2 v = a 1 Multiplicando membro a membro temos: V v = a b c Mas, por definição, V = 1 (unidade de área). Logo, V = abc. Volumes e Princípio de Cavalieri slide 5/12

39 O Princípio de Cavalieri São dados dois sólidos A e B e um plano H. Se todo plano paralelo a H secciona A e B segundo figuras de mesma área então esses sólidos têm mesmo volume. Na figura um plano paralelo a H, distando d de H seccionou os sólidos A e B segundo figuras de áreas A 1 e A 2. Se, para todo d, tem-se A 1 = A 2 então A e B têm mesmo volume. Volumes e Princípio de Cavalieri slide 6/12

40 O volume do prisma Dado um prisma de altura h cuja base é um poĺıgono de área A, considere um paralelepípedo retângulo tal que o produto de duas das dimensões seja A e que a terceira dimensão seja h. Ponha os dois sólidos com a face de área A sobre um plano H. O prisma e o paralelepípedo retângulo possuem mesma altura h. Para qualquer plano H paralelo a H a seção produzida no prisma é congruente com a base e a seção produzida no paralelepípedo retângulo também é congruente com a base. Assim, se A 1 e A 2 são as áreas das duas seções, temos A 1 = A = A 2. Pelo princípio de Cavalieri, os dois sólidos têm mesmo volume. Então, o volume do prisma é V = Ah. Volumes e Princípio de Cavalieri slide 7/12

41 Definição geral de volume Um poliedro retangular é todo sólido formado pela reunião de um número finito de paralelepípedos retângulos justapostos. Volumes e Princípio de Cavalieri slide 8/12

42 Definição Dado um sólido S, o volume de S é o número real cujas aproximações por falta são os volumes dos poliedros retangulares contidos em S. Seja P um poliedro retangular contido em S. A definição dada significa que não apenas se tem V (S) V (P) para todo poliedro retangular P contido em S como também, dado qualquer número real r tal que r < V (S) é possível encontrar um poliedro retangular P 1 tal que r < V (P 1 ) V (S). Volumes e Princípio de Cavalieri slide 9/12

43 Sólidos semelhantes Vamos recordar a definição de figuras semelhantes dada na Unidade Duas figuras F e F são semelhantes, com razão de semelhança k, quando existe uma bijeção s : F F entre os pontos de F e os pontos de F tais que: Se X e Y são pontos quaisquer de F e se X = s(x ) e Y = s(y ) são seus correspondentes em F então XY X Y = k. F F c c a b b a F e F são dois paralelepípedos retângulos semelhantes. Volumes e Princípio de Cavalieri slide 10/12

44 F c F c a b a b Se F e F são semelhantes na razão k então a a = b b = c c = k. A razão entre os volumes dos dois paralelepípedos é: V (F ) V (F ) = abc a b c = a a b b c c = k k k = k 3. Teorema A razão entre os volumes de dois sólidos semelhantes é igual ao cubo da razão de semelhança. Este fato geral decorre da definição geral de volume e do resultado anterior. Volumes e Princípio de Cavalieri slide 11/12

45 Apêndice Teorema Se dois paralelepípedos retângulos possuem bases iguais, então a razão entre seus volumes é igual à razão entre suas alturas. b) Suponha que as alturas h e h não são comensuráveis. Seja x um segmento que cabe n vezes em h. Temos h = nx. Suponha agora que x esteja contido em h entre m vezes e m + 1 vezes. Temos então mx < h < (m + 1)x. Assim, a razão h/h entre as alturas é tal que m n < h h < m+1 n. Traçando planos paralelos à base por cada extremidade dos segmentos x assinalados sucessivamente sobre h e h temos que a razão entre os volumes V e V dos dois paralelepípedos é tal que m n < V V < m+1 n. A razão entre os volumes e a razão entre as alturas estão entre m n e m+1 n. Entretanto, essas razões diferem de 1 n que pode ser tão pequeno quanto quisermos desde que n seja suficientemente grande. Portanto, a razão entre os volumes dos dois paralelepípedos é igual à razão entre suas V alturas: V = h h. Volumes e Princípio de Cavalieri slide 12/12

46 Prisma e pirâmide MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

47 Prisma regular Um prisma é reto quando suas arestas laterais forem perpendiculares ao plano da base. Prisma regular é um prisma reto cuja base é um poĺıgono regular. Prisma e pirâmide slide 2/7

48 Pirâmide (seções paralelas à base) A figura abaixo mostra uma pirâmide de vértice V, altura H e base de área A. Uma seção paralela à base dista h do vértice V e tem área A. V X A Y h H X Na figura acima, a razão de semelhança entre a seção e a base é A X Y XY = VX VX = h H. A razão entre as áreas de figuras semelhantes é o quadrado da razão de semelhança. Então, A ( ) 2 h A = H Y Prisma e pirâmide slide 3/7

49 Teorema Duas pirâmides de mesma base e mesma altura têm mesmo volume. V 1 V 2 A 1 A 2 h H A A figura acima mostra duas pirâmides com mesma base de área A e com altura H. Um plano paralelo à base distando h dos vértices V 1 e V 2 produziu seções de áreas A 1 e A 2. Temos A 1 A = ( h H ) 2 = A 2 A Logo, A 1 = A 2 e, pelo princípio de Cavalieri, as duas pirâmides têm mesmo volume. Prisma e pirâmide slide 4/7

50 Volume da pirâmide triangular Um prisma triangular pode ser decomposto em três tetraedros de mesmo volume. Observe a figura abaixo. Os tetraedros T 1, T 2 e T 3, juntos, formam o prisma triangular. Procure justificar por que os três tetraedros possuem mesmo volume. Se o prisma triangular tem altura h e base de área A então seu volume é Ah. Logo, o volume de T 3 é V = 1 3 Ah. O volume da pirâmide triangular é a terça parte do produto da área da base pela altura. Prisma e pirâmide slide 5/7

51 Volume da pirâmide qualquer O volume de qualquer pirâmide é a terça parte do produto da área da base pela altura. h A 3 A 1 A 2 O poĺıgono da base pode ser dividido em triângulos. A pirâmide fica dividida em pirâmides triangulares cujas bases têm áreas A 1, A 2,..., A n. O volume V da pirâmide é V = 1 3 A 1h A 2h A nh = 1 3 (A 1 + A 2 + A n )h = 1 3 Ah Prisma e pirâmide slide 6/7

52 Pirâmide regular Uma pirâmide é regular quando a base é regular e a projeção do vértice sobre o plano da base é o centro da base. V D C A A figura acima mostra uma pirâmide quadrangular regular. O ponto O é o centro da base. OV é a altura da pirâmide. As arestas laterais são iguais. Se M é o ponto médio de uma das arestas da base, VM é o apótema da pirâmide. O B M Prisma e pirâmide slide 7/7

53 Esfera inscrita e circunscrita. Tronco de prisma MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

54 Prisma regular e sua esfera circunscrita Todo prisma regular admite uma esfera circunscrita. O K O Se O e O são os centros das duas bases, o ponto K, médio de OO é equidistante de todos os vértices. O ponto K é o centro da esfera circunscrita ao prisma. Esfera inscrita e circunscrita. Tronco de prisma slide 2/8

55 Pirâmide regular e sua esfera circunscrita Toda pirâmide regular admite uma esfera circunscrita. V D O C A H B Todo ponto da altura da pirâmide regular equidista dos vértices da base. Na figura acima o ponto O é tal que OV = OA = OB = OC = OD. O ponto O é o centro da esfera circunscrita à pirâmide. Para calcular o raio da esfera use o triângulo OHA. Esfera inscrita e circunscrita. Tronco de prisma slide 3/8

56 Pirâmide regular e sua esfera inscrita Toda pirâmide regular admite uma esfera inscrita. V K E D C A H B M Todo ponto da altura da pirâmide regular equidista das faces laterais. Na figura acima o ponto K tem mesma distância da base e de uma face lateral (KH = KE). O ponto K é o centro da esfera inscrita na pirâmide. Para calcular o raio da esfera observe que os triângulos VEK e VHM são semelhantes. Esfera inscrita e circunscrita. Tronco de prisma slide 4/8

57 Seções paralelas à base de uma pirâmide Toda seção paralela à base de uma pirâmide forma outra uma outra menor, semelhante à primeira. O desenho mostra uma pirâmide triangular, mas o leitor deve imaginar uma pirâmide de gênero n. As pirâmides V A B C e V ABC de alturas h e h são semelhantes na razão k = A B AB = B C BC = = VA VA = VB VB = = h h V V A A V S S C B B C h h Se S e S são as áreas das bases e V e V os volumes, temos ainda S S = k2 e V V = k3 Obs: O poliedro ABC... A B C... é um tronco de pirâmide e seu volume é, naturalmente, a diferença entre os volumes das duas pirâmides. Esfera inscrita e circunscrita. Tronco de prisma slide 5/8

58 Tronco de prisma triangular O poliedro ABC A B C representado na figura a seguir é tal que AA, BB e CC são paralelos. Esse poliedro é um tronco de prisma triangular. C A h 3 h 1 B A B h 2 C Seja S a área do triângulo ABC e sejam h 1, h 2 e h 3 as distâncias dos vértices A, B e C ao plano (ABC), respectivamente. O volume do tronco de prisma triangular é V = S h1 + h 2 + h 3 3 Obs: A demonstração deste resultado está no Apêndice desta aula. Esfera inscrita e circunscrita. Tronco de prisma slide 6/8

59 Apêndice Notação Em uma pirâmide triangular qualquer face pode ser considerada como base e, escolhida a base, o quarto vértice é chamado de vértice da pirâmide. Na pirâmide triangular ABCD a notação D ABC significa que ABC é a base e D é o vértice da pirâmide. Esfera inscrita e circunscrita. Tronco de prisma slide 7/8

60 Roteiro da demonstração Faça a divisão do tronco de prisma nas mesmas três partes que foram realizadas na demonstração do volume da pirâmide triangular (unidade 22.1, figura 4). Sejam V 1, V 2 e V 3 os volumes das três partes. Lembre: Duas pirâmides de mesma base e mesma altura têm mesmo volume. V 1 = V (A A B C ) = V (A A BC ) = V (A A BC) = V (A ABC) V 2 = V (B ACC ) = V (B ACC ) = V (C ABC) V 3 = V (B ABC) O volume V do tronco de prisma é, então, V = V 1 + V 2 + V 3 = V (A ABC)+V (C ABC)+V (B ABC) Se S é a área do triângulo ABC temos então V = Sh Sh Sh 2 3 = S h1 + h 2 + h 3 3 Esfera inscrita e circunscrita. Tronco de prisma slide 8/8

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 GEOMETRIA Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 O MATERIAL COMO SUPORTE DO PENSAMENTO Muita gente usa o material na sala de aula como se a Geometria estivesse no material.

Leia mais

Aula 01 Introdução à Geometria Espacial Geometria Espacial

Aula 01 Introdução à Geometria Espacial Geometria Espacial Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora

Leia mais

Matemática Fascículo 07 Manoel Benedito Rodrigues

Matemática Fascículo 07 Manoel Benedito Rodrigues Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou

Leia mais

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS PRISMAS Os prismas são sólidos geométricos muito utilizados na construção civil e indústria. PRISMAS base Os poliedros representados a seguir são denominados prismas. face lateral base Nesses prismas,

Leia mais

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

GEOMETRIA DESCRITIVA A

GEOMETRIA DESCRITIVA A GEOMETRIA DESCRITIVA A 10.º Ano Sólidos I - Poliedros antónio de campos, 2010 GENERALIDADES - Sólidos O sólido geométrico é uma forma limitada por porções de superfícies, O sólido geométrico é uma forma

Leia mais

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir Sólidos Geométricos As figuras geométricas espaciais também recebem o nome de sólidos geométricos, que são divididos em: poliedros e corpos redondos. Vamos abordar as definições e propriedades dos poliedros.

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.

Leia mais

UFPR UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA PET PROGRAMA DE EDUCAÇÃO TUTORIAL. Alexandre Kirilov

UFPR UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA PET PROGRAMA DE EDUCAÇÃO TUTORIAL. Alexandre Kirilov UFPR UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA PET PROGRAMA DE EDUCAÇÃO TUTORIAL Tutor: Editoração: Site: Alexandre Kirilov Bruno de Lessa Victor Bruno Suzuki Carolina de Almeida Santos

Leia mais

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2)

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2) Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner 1 ÍNDICE Uma palavra inicial... 2 Instruções iniciais... 3 Retângulo... 5 Quadrado... 6 Triângulo...

Leia mais

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 06 matemática Calculando volume de sólidos geométricos Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. Ficha Informativa/Formativa. Poliedros, Duais e Relação de Euler

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. Ficha Informativa/Formativa. Poliedros, Duais e Relação de Euler ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Ficha Informativa/Formativa MATEMÁTICA - A 10º Ano 2011/2012 Poliedros, Duais e Relação de Euler Poliedro - Um Poliedro é um sólido geométrico limitado por faces que

Leia mais

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS http://apostilas.netsaber.com.br/ver_apostila.php?c=622 ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA 97003133 - BM3 01-011 POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

GEOMETRIA ESPACIAL. Professores: Jotair Kwaitkowski Jr e Maria Regina Lopes

GEOMETRIA ESPACIAL. Professores: Jotair Kwaitkowski Jr e Maria Regina Lopes GEOMETRIA ESPACIAL Professores: Jotair Kwaitkowski Jr e Maria Regina Lopes Caros alunos, Esse ebook é um pdf interativo. Para conseguir acessar todos os seus recursos, é recomendada a utilização do programa

Leia mais

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais

Leia mais

Figuras geométricas planas. Joyce Danielle. e espaciais

Figuras geométricas planas. Joyce Danielle. e espaciais Figuras geométricas planas Joyce Danielle e espaciais Figuras geométricas planas Joyce Danielle UNIVERSIDADE FEDERAL DE ALAGOAS 2 Apresentação Na geometria plana vamos então nos atentar ao método de cálculo

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas.

P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas. Geometria Espacial Conceitos primitivos São conceitos primitivos ( e, portanto, aceitos sem definição) na Geometria espacial os conceitos de ponto, reta e plano. Habitualmente, usamos a seguinte notação:

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Os elementos de um poliedro são as faces, os vértices e as arestas. As faces de um poliedro são polígonos.

Os elementos de um poliedro são as faces, os vértices e as arestas. As faces de um poliedro são polígonos. Ficha formativa para o 10.º ano - Poliedros Poliedros são sólidos geométricos cujas faces são superfícies planas. Os elementos de um poliedro são as faces, os vértices e as arestas. As faces de um poliedro

Leia mais

DESENHO TÉCNICO ( AULA 03)

DESENHO TÉCNICO ( AULA 03) Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns

Leia mais

Representação de sólidos

Representação de sólidos 110 Representação de sólidos Pirâmides e prismas regulares com base(s) contida(s) em planos verticais ou de topo Desenhe as projecções de uma pirâmide quadrangular regular, situada no 1. diedro e com a

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011 GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2 Dirce Uesu Pesco Geometria Espacial 08/11/2011 Definição : Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano

Leia mais

Escola Secundária Gabriel Pereira. Nome: N.º: Ano Turma

Escola Secundária Gabriel Pereira. Nome: N.º: Ano Turma Escola Secundária Gabriel Pereira FICHA DE EXERCÍCIOS Nº MATEMÁTICA A Rectas e Planos Nome: Nº: Ano Turma 1) Determina uma equação vectorial e cartesianas da recta que passa em A,1, 4 11) paralela ao vector

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME PROGRAMA IME ESPECIAL 1991 GEOMETRIA ESPACIAL PROF PAULO ROBERTO 01 (IME-64) Um cone circular reto, de raio da base igual a R e altura h, está circunscrito a 1 1 uma esfera de raio r Provar que = rh r

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES Nome Nº Turma 3 EJAS Data / / Nota Disciplina Matemática Prof. Elaine e Naísa Valor 30 Instruções: TRABALHO DE

Leia mais

Origem do nome de alguns termos usados na geometria: ÂNGULO. angle angle ángulo Winkel. Inglês Francês Espanhol Alemão

Origem do nome de alguns termos usados na geometria: ÂNGULO. angle angle ángulo Winkel. Inglês Francês Espanhol Alemão INTRODUÇÃO Origem do nome de alguns termos usados na geometria: ÂNGULO angle angle ángulo Winkel Inglês Francês Espanhol Alemão Do latim angulus. O sufixo-ulus implica diminutivo. Assim, angulus é entendido

Leia mais

PROFESSOR: Guilherme Franklin Lauxen Neto

PROFESSOR: Guilherme Franklin Lauxen Neto ALUNO TURMA: 2 Ano DATA / /2015 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /2015 1) Dado um cilindro de revolução de altura 12 cm e raio da base 4 cm, determine: a) a área da base do cilindro.

Leia mais

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais.

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais. 125 19 QUADRILÁTEROS Propriedades 1) Num quadrilátero qualquer ABCD a soma dos ângulos internos é 1800. 2) Um quadrilátero ABCD é inscritível quando seus vértices pertence a uma mesma circunferência. 3)

Leia mais

Professor Alexandre Assis. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura.

Professor Alexandre Assis. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura. A aresta VA é perpendicular ao plano da base e tem a mesma medida do segmento AD. O seguimento AB mede 6 cm. Determine o volume

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:

Leia mais

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM.

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 1 MAT 240- Lista de Exercícios 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 2. Seja G o baricentro e O o circuncentro do ABC. Na reta que contém

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

Geometria Espacial. Revisão geral

Geometria Espacial. Revisão geral Geometria Espacial Revisão geral Considere o poliedro cujos vértices são os pontos médios das arestas de um cubo. O número de faces triangulares e o número de faces quadradas desse poliedro são, respectivamente:

Leia mais

Da linha poligonal ao polígono

Da linha poligonal ao polígono Polígonos Da linha poligonal ao polígono Uma linha poligonal é formada por segmentos de reta consecutivos, não alinhados. Polígono é uma superfície plana limitada por uma linha poligonal fechada. Dos exemplos

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos: EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos Breve Introdução Histórica aos Sólidos Platônicos Cerca de 600 A.C. nas colônias gregas da Jônia, na costa oeste da Turquia, surgem dois dos principais matemáticos gregos: Tales de Mileto e Pitágoras de

Leia mais

Professor (a): William Alves. Disciplina: Matemática

Professor (a): William Alves. Disciplina: Matemática J+C Roteiro de Recuperação ª Etapa Professor (a) William Alves Disciplina Matemática º Ano Ensino Fundamental Objetivo Resolver problemas que envolvam caracterização, a representação e operações com números

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)

Leia mais

Estudando Poliedros com Auxílio do Software Poly

Estudando Poliedros com Auxílio do Software Poly DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO/GERÊNCIA DE PESQUISA PROJETO: TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO NO PROCESSO DE ENSINO E APRENDIZAGEM DE MATEMÁTICA Estudando Poliedros com Auxílio do Software

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

PUC-Rio Desafio em Matemática 23 de outubro de 2010

PUC-Rio Desafio em Matemática 23 de outubro de 2010 PUC-Rio Desafio em Matemática 3 de outubro de 010 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 1,0 3 1,0 4 1,5 5 1,5 6,0 7,0 Nota final 10,0 Instruções Mantenha seu

Leia mais

APOSTILA DE GEOMETRIA

APOSTILA DE GEOMETRIA APOSTILA DE GEOMETRIA Tópicos de Geometria Plana Noções de Geometria Espacial Professor: Paulo Soares Batista Nome: 1- ÂNGULOS...01 2- POLÍGONOS...03 3- TRIÂNGULOS E TEMAS RELACIONADOS...04 4- QUADRILÁTEROS...09

Leia mais

Ficha de Trabalho nº11

Ficha de Trabalho nº11 Ano lectivo 011/01 Matemática A 11º Ano / Curso de Ciências e Tecnologias Tema: Geometria Ficha de Trabalho nº11 Geometria no Espaço 1. Observa a figura onde está representado um cone recto cuja base pertence

Leia mais

Construções Geométricas

Construções Geométricas Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos

Leia mais

12 26, 62, 34, 43 21 37, 73 30 56, 65

12 26, 62, 34, 43 21 37, 73 30 56, 65 1 Questão 1 Solução a) Primeiro multiplicamos os algarismos de 79, obtendo 7 9 = 63, e depois somamos os algarismos desse produto, obtendo 6 + 3 = 9. Logo o transformado de é 79 é 9. b) A brincadeira de

Leia mais

GEOMETRIA DO TAXISTA. (a -b )² + (a -b )²

GEOMETRIA DO TAXISTA. (a -b )² + (a -b )² GEOMETRI O TXIST Geometria do Taxista é uma geometria não-euclidiana, no sentido em que a noção de distância não é a mesma e acordo com o desenho abaixo, suponhamos um motorista de táxi que apanha um cliente

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 7.01.011 11.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sua folha de respostas,

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA PRODUTO DE VETORES PRODUTO ESCALAR

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA PRODUTO DE VETORES PRODUTO ESCALAR LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA PRODUTO DE VETORES PRODUTO ESCALAR 9) Sendo u = ( ) e v = ( ). Calcular: a) u v b) (u v ) c)(u + v ) d) (u v ) e) (u - v )(u + v ) a) 9 b)8 c)9 d)66 e) f) 8 )Sendo

Leia mais

Centro Educacional Juscelino Kubitschek

Centro Educacional Juscelino Kubitschek Prezado (a) aluno(a): Centro Educacional Juscelino Kubitschek ALUNO: N.º: DATA: / / ENSINO: ( x ) Fundamental ( ) Médio SÉRIE: 8ª TURMA: TURNO: DISCIPLINA: MATEMEMÁTICA PROFESSOR: EQUIPE DE MATEMÁTICA

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor

Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro

Leia mais

Ficheiro de Matemática

Ficheiro de Matemática Adivinha quem somos nós! A partir das pistas, descobre qual o nome de cada um dos sólidos. Regista no teu caderno as conclusões a que chegaste. Planificações Suspeitas Descobri estas planificações suspeitas!

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando áreas de figuras geométricas planas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando áreas de figuras geométricas planas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 05 matemática Calculando áreas de figuras geométricas planas Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto

Leia mais

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF Pirâmide 1. (Unifesp 01) Na figura, ABCDEFGH é um paralelepípedo reto-retângulo, e PQRE é um tetraedro regular de lado 6cm, conforme indica a figura. Sabe-se ainda que: P e R pertencem, respectivamente,

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Lista de Exercícios Aula 04 Propagação do Calor

Lista de Exercícios Aula 04 Propagação do Calor Lista de Exercícios Aula 04 Propagação do Calor 1. (Halliday) Suponha que a barra da figura seja de cobre e que L = 25 cm e A = 1,0 cm 2. Após ter sido alcançado o regime estacionário, T2 = 125 0 C e T1

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA

UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA Disciplina: Física Básica III Prof. Dr. Robert R.

Leia mais

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA

Leia mais

Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA

Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA Sistema ELITE de Ensino IME - 01/01 1 COMENTÁRIO DA PROVA 01. O polinômio P() = 5 + 10 0 + 81 possui raízes compleas simétricas e uma raiz com valor igual ao módulo das raízes compleas. Determine todas

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora

TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora 1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo

Leia mais

GEOMETRIA ESPACIAL. Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO

GEOMETRIA ESPACIAL. Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA GEOMETRIA ESPACIAL Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIVERSIDADE

Leia mais

1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo

1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA IV 1 CLASSIFICAÇÃO De acordo com o gênero (número de lados), os polígonos podem receber as seguintes denominações: Na figura 2, o quadrilátero foi dividido em triângulos.

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero

Leia mais

CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA

CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA APÊNDICE A - CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS E MATEMÁTICA CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA AUTORES:

Leia mais

PUC-Rio Desafio em Matemática 15 de novembro de 2008

PUC-Rio Desafio em Matemática 15 de novembro de 2008 PUC-Rio Desafio em Matemática 5 de novembro de 2008 Nome: Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão.0 2.0 3.0 4.0 5a.0 5b.0 6a.0 6b.0 7 2.0 Nota final 0.0 Instruções Mantenha seu celular

Leia mais

Quarta lista de exercícios.

Quarta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro

Leia mais

Exercícios LENTES e VISÃO DUDU

Exercícios LENTES e VISÃO DUDU Exercícios LENTES e VISÃO DUDU 1. Sherlock Holmes neste dia usava seu cachimbo e uma instrumento ótico que permitia uma análise ainda mais nítida da cena do crime. a)sabendo que no texto acima o instrumento

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais