Álgebra Linear I - Aula 20
|
|
|
- Gabriela Caldeira Assunção
- 9 Há anos
- Visualizações:
Transcrição
1 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo problema Considere uma transformação linear T e uma base β Suponha conhecida a matriz [T] β de T na base β Queremos obter a matriz de T na base canônica (ou em outra base Para simplificar notação, escreveremos [T] e a matriz na base canônica Considere duas bases β e γ e um vetor v, conhecidas as coordenadas de v na base β, (v β, determinar as coordenadas do vetor v na base γ, (v γ A respeito do primeiro problema, veremos que as matrizes [T] e e [T] β são semelhantes, [T] e P [T] β P 1 O problema principal é determinar P As matrizes P e P 1 são as chamadas matrizes de mudança de base Aplicando P 1 a um vetor v na base canônica obtemos as coordenadas de v na base β, assim P 1 e a matriz de mudança da base canônica à base β Analogamente, aplicando P a um vetor w na base β obtemos as coordenadas de w na base canônica, portanto, P e a matriz de mudança da base β à base canônica Para evitar notação mais pesada, resolveremos este problema no caso de transformações lineares de R Em dimensões superiores o raciocínio é idêntico Considere a base β {u, v} e a base canônica e {(1, 0, (0, 1} Suponha que u (u 1, u e e v (v 1, v e (coordenadas de u e v na base canônica 1
2 Dado um vetor w com (w β (a, b queremos calcular (w e Isto é muito simples, temos w au + b v a (u 1 i + u j + b (v 1 i + v j (au 1 + b v 1 i + (au + b v j Isto é, (w e (a, b (au 1 + b v 1, au + b v Portanto, em forma matrizial, ( ( a u1 v b 1 u v ( a b Em outras palavras, a matriz M de mudança da base β para a base canônica é a matriz cujas colunas são as coordenadas dos vetores da base β na base canônica Observe que a matriz de mudança da base canônica e à base β é a matriz inversa de M Finalmente, observe que as matrizes P M e P 1 M 1 verificam Complete os detalhes [T] e P [T] β P 1 Exemplo 1 Considere a projeção ortogonal T : R R na reta x +y 0 Escreva [T] e P 1 DP, onde D é diagonal Prova: Como D e T tem os mesmos autovalores, os autovalores de D devem ser 0 e 1 Como D é diagonal, seus autovalores são os elementos da diagonal Portanto, uma das duas escolhas para D é ( 0 0 D 0 1 Qual é a outra possibilidade? Também sabemos que se consideramos a base β {(1, 1, (1, 1} formada por dois autovetores de T então [T] β D
3 Sabemos que [P] ( ( 1/ 1/, [P] 1 1/ 1/ Verifique que PDP 1 resulta em [T] e ( 1/ 1/ [T] e 1/ 1/ Exemplo Considere a transformação linear T que verifica T(1, 1, 0 (,, 0, T(0, 1, 1 (0, 1, 1, T(1, 0, 1 (3, 0, 3 Escreva [T] e P D P 1, onde D é diagonal Determine também [T] e Prova: Temos que β {(1, 1, 0, (0, 1,1, (1,0,1} é uma base de autovetores de T Sabemos que 0 0 [T] β D Também sabemos que P Calculando [P] 1 (por exemplo, pelo método de Gauss obtemos P
4 Logo [T e ] Confira que ao aplicar a última matriz aos vetores (1, 1, 0, (0, 1, 1 e (1, 0, 1 obtemos (,, 0, (0, 1, 1 e (3, 0, 3, o que confirma que o resultado é correto Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos u e v da base β se verifica que u v 0 Uma base γ é ortonormal se é ortogonal e todo vetor da base é um vetor unitário (ou seja, u u 1 para todo vetor de γ Como já vimos, calcular as coordenadas de um vetor em uma base ortogonal é muito simples (mais ainda se a base é ortonormal Suponha que estamos em R 3 e que β {u, v, w} é uma base ortonormal Queremos determinar as coordenadas de um vetor l na base β, ou seja (l β (a, b, c, l au + b v + cw Para determinar a considere l u, l u (au + b v + cw u a (u u + b (u v + c (u w Observe que, como a base é ortonormal, u u 1, u v 0 u w Logo a l u Analogamente obtemos, b l v, c l w 4
5 Exercício 1 Encontre uma base ortonormal β que contenha dois vetores paralelos a (1, 1, 1 e (1, 1, 0 Obtida a base β, determine as coordenadas do vetor (1,, 3 em dita base Resposta: O terceiro vetor da base deve ser ortogonal a (1, 1, 1 e (1, 1, 0, portanto, é paralelo a (1, 1, 1 (1, 1, 0, isto é, paralelo a (1, 1, Uma possível base β (existem muitas possibilidades é β {(1/ 3, 1/ 3, 1/ 3, (1/, 1/, 0, (1/ 6, 1/ 6, / 6} As coordenadas de (1,, 3 na base β são (a, b, c onde a (1,, 3 (1/ 3, 1/ 3, 1/ 3 6/ 3, b (1,, 3 (1/, 1/, 0 1/, c (1,, 3 (1/ 6, 1/ 6, / 6 3/ 6 Obtemos assim as coordenadas 3 Matrizes ortogonais Dada uma matriz quadrada M sua transposta, denotada M t, é uma matriz cujas linhas são as colunas de M, ou seja, se M (a i,j e M t (b i,j se verifica b j,i a i,j Definição 1 (Matriz ortogonal Uma matriz M é ortogonal se é inversível e M 1 M t, ou seja, MM t M t M Id Observe que se M é ortogonal então sua transposta também é ortogonal (veja que (M t 1 M Portanto, a inversa de uma matriz ortogonal também é ortogonal Propriedade 31 Uma matriz ortogonal é uma matriz cujas colunas (ou linhas formam uma base ortonormal (de fato, isto é uma definição geométrica alternativa de matriz ortogonal 5
6 Prova: Para simplificar a notação veremos a afirmação para matrizes Seja M uma matriz ortogonal cujos vetores coluna são u (a, b e v (c, d ( ( ( a b a c aa + b b ac + b d Id M t M c d b d ac + b d cc + d d ( u u u v u v v v ( Logo u u v v 1, u v 0, e u e v formam uma base ortonormal De fato, o argumento anterior mostra o seguinte: Propriedade 3 Uma matriz é ortogonal se, e somente se, seus vetores coluna formam uma base ortonormal Multiplicando MM t, v obterá a mesma afirmação para os vetores linha: Propriedade 33 Uma matriz é ortogonal se, e somente se, seus vetores linha formam uma base ortonormal Observação 1 O fato anterior implica que a matriz de uma rotação ou de um espelhamento (na base canônica é uma matriz ortogonal Também implica que a matriz de uma projeção não é ortogonal (em nenhuma base 31 Conclusão Quando uma transformação linear T tem uma base ortonormal β de autovetores o processo de diagonalização se simplifica substancialmente: existe uma matriz ortogonal P e uma matriz diagonal D tais que [T] P D P t, onde P é a matriz cujos vetores coluna são os vetores da base β 6
Álgebra Linear I - Aula 22
Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais
Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que
Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação
Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo
1 Matrizes Ortogonais
Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos
P4 de Álgebra Linear I de junho de 2005 Gabarito
P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana
G4 de Álgebra Linear I
G4 de Álgebra Linear I 27.1 Gabarito 1) Considere a base η de R 3 η = {(1, 1, 1); (1,, 1); (2, 1, )} (1.a) Determine a matriz de mudança de coordenadas da base canônica para a base η. (1.b) Considere o
Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.
e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto
G3 de Álgebra Linear I
G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma
Álgebra Linear I - Aula 20
Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a
Inversão de Matrizes
Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de
G3 de Álgebra Linear I
G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes
Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas
Álgebra Linear I - Aula 22 1. Matrizes 2 2 ortogonais e simétricas. 2. Projeções ortogonais. 3. Matrizes ortogonais e simétricas 3 3. Roteiro 1 Matrizes simultaneamente ortogonais e simétricas 2 2 Propriedade
G3 de Álgebra Linear I
G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal
P4 de Álgebra Linear I
P4 de Álgebra Linear I 2008.2 Data: 28 de Novembro de 2008. Gabarito. 1) (Enunciado da prova tipo A) a) Considere o plano π: x + 2 y + z = 0. Determine a equação cartesiana de um plano ρ tal que a distância
Álgebra Linear I - Aula 21
Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4
Álgebra Linear I - Aula 18
Álgebra Linear I - Aula 18 1. Matrizes semelhantes. 2. Matriz de uma transformação linear em uma base. Roteiro 1 Matrizes semelhantes Definição 1 (Matrizes semelhantes). Considere duas matrizes quadradas
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected].
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected] Autovalores e Autovetores Definição e Exemplos 2 Polinômio Característico
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear II/2004 1 Considere as matrizes A, B, C, D e E com respectivas ordens,
Álgebra Linear I - Aula 19
Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a
P3 de Álgebra Linear I
P3 de Álgebra Linear I 2008.2 Data: 14 de Novembro de 2008. Gabarito. 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Considere uma transformação linear T : R 3 R 3 tal que existem vetores
Capítulo 2 - Determinantes
Capítulo 2 - Determinantes Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 19 DeMat-ESTiG Sumário
Aula 19 Operadores ortogonais
Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos
Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas
Álgebra Linear I - Lista 12 Matrizes semelhantes. Diagonalização Respostas 1) Determine quais das matrizes a seguir são diagonalizáveis. Nos caso afirmativos encontre uma base de autovetores e uma forma
Departamento de Matemática da Universidade de Coimbra Álgebra Linear e Geometria Analítica Engenharia Civil Ano lectivo 2005/2006 Folha 1.
Departamento de Matemática da Universidade de Coimbra Álgebra Linear e Geometria Analítica Engenharia Civil Ano lectivo 2005/2006 Folha 1 Matrizes 1 Considere as matrizes A = 1 2 3 2 3 1 3 1 2 Calcule
Fórmulas do Traço e o Cálculo de Matrizes Inversas
2013: Trabalho de Conclusão de Curso do Mestrado Profissional em Matemática - PROFMAT Universidade Federal de São João del-rei - UFSJ Sociedade Brasileira de Matemática - SBM Fórmulas do Traço e o Cálculo
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
PARTE 11 VETOR GRADIENTE:
PARTE 11 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 11.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira
Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru
1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais
Ficha de Exercícios nº 2
Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 2 Matrizes, Determinantes e Sistemas de Equações Lineares 1 O produto de duas matrizes, A e B, é a matriz nula (mxn). O que pode
Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.
Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses
Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1
Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas
Marcelo M. Santos DM-IMECC-UNICAMP msantos/
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 0 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Identificação de Cônicas
Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.
Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine
G4 de Álgebra Linear I
G4 de Álgebra Linear I 20122 Gabarito 7 de Dezembro de 2012 1 Considere a transformação linear T : R 3 R 3 definida por: T ( v = ( v (1, 1, 2 (0, 1, 1 a Determine a matriz [T ] ε da transformação linear
Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3
Prova tipo A P2 de Álgebra Linear I 2004.2 Data: 8 de outubro de 2004. Gabarito Decida se cada afirmação a seguir é verdadeira ou falsa..a Considere os vetores de R 3 v = (, 0,, v 2 = (2,, a, v 3 = (3,,
G4 de Álgebra Linear I
G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado
Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo.
Álgebra Linear I - Lista 11 Autovalores e autovetores Respostas 1 Calcule os autovalores e autovetores das matrizes abaixo. (a ( 4 1 1, (b ( 1 1, (c ( 5 6 3 4, (d 1 1 3 1 6 6, (e 3 5 1, (f 1 1 1 1 1 1
MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega
1 MATEMÁTICA II Aula 12 Determinantes Professor Luciano Nóbrega º Bimestre 2 DETERMINANTES DEFINIÇÃO A toda matriz quadrada está associado um número real ao qual damos o nome de determinante. O determinante
Matrizes Semelhantes e Matrizes Diagonalizáveis
Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas
Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais
Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 16 de novembro
Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =
Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como
Álgebra Linear Computacional
Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco. PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br Sistemas de Equações Lineares Espaços
Capítulo 4. Retas e Planos. 4.1 A reta
Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam
Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17
Sumário Aula 1 Autovetores e Autovalores de Matrizes.......... 8 Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Aula 3 Polinômio Característico................. 25 Aula 4 Cálculo de Autovalores
Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.
Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual
Álgebra Linear I - Aula Propriedades dos autovetores e autovalores
Álgebra Linear I - Aula 17 1. Propriedades dos autovetores e autovalores. 2. Matrizes semelhantes. 1 Propriedades dos autovetores e autovalores Propriedade 1: Sejam λ e β autovalores diferentes de T e
Análise de Sistemas de Controle no Espaço de Estados
Análise de Sistemas de Controle no Espaço de Estados 9.1 INTRODUÇÃO* (Capítulo 11 do Ogata) Um sistema moderno complexo pode ter muitas entradas e muitas saídas e elas podem ser interrelacionadas de maneira
Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:
Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,
UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL
Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que
Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2
Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade
Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).
F I C H A D E R A B A L H O 0 Ficha de rabalho 0 Sistemas. Matriz Inversa. (Aulas 4 a 6). Sistemas de equações lineares. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema.
Álgebra Linear - Exercícios (Determinantes)
Álgebra Linear - Exercícios (Determinantes) Índice 1 Teoria dos Determinantes 3 11 Propriedades 3 12 CálculodeDeterminantes 6 13 DeterminanteseRegularidade 8 14 TeoremadeLaplace 11 15 Miscelânea 16 2 1
Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 6 Operadores Ortogonais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 6: Operadores Ortogonais
CM005 Álgebra Linear Lista 3
CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ
Exercícios de Álgebra Linear
Exercícios de Álgebra Linear Mestrado Integrado em Engenharia do Ambiente Mestrado Integrado em Engenharia Biológica Nuno Martins Departamento de Matemática Instituto Superior Técnico Setembro de Índice
Introdução ao determinante
ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld
Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17
Capítulo 4 Determinantes ALGA 2008/2009 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições Seja M n n o conjunto das matrizes quadradas reais (ou complexas) de ordem n Chama-se determinante de
Determinantes. Matemática Prof. Mauricio José
Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.
Semana 7 Resolução de Sistemas Lineares
1 CÁLCULO NUMÉRICO Semana 7 Resolução de Sistemas Lineares Professor Luciano Nóbrega UNIDADE 1 2 INTRODUÇÃO Considere o problema de determinar as componentes horizontais e verticais das forças que atuam
P2 de Álgebra Linear I Data: 10 de outubro de Gabarito
P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de
1.10 Sistemas de coordenadas cartesianas
7 0 Sistemas de coordenadas cartesianas Definição : Um sistema de coordenadas cartesianas no espaço é um v v conjunto formado por um ponto e uma base { } v3 Indicamos um sistema de coordenadas cartesianas
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)
P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a
Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017
º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Universidade Fernando Pessoa Faculdade de Ciências e Tecnologia 1. Calcule: Capítulo I - Matrizes e Sistemas de Equações Lineares EXERCÍCIOS 1 3 4 3 5 6 1 a + 0 5 1
ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU
INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:
ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes
ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:
Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.
Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1
Lista de Exercícios Critérios de Divisibilidade
Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas
(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,
Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)
Autovalores e Autovetores
Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução
LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51
1 LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA 01) Dados os vetores e, determine o valor da expressão vetorial. A=51 02) Decomponha o vetor em dois vetores tais que e, com. 03) Dados os vetores, determine
3 Determinantes. 2 Definição Número de trocas de ordem de um termo de uma matriz. 3 Definição Determinante de uma Matriz ( ( ))
Nova School of Business and Economics Prática Álgebra Linear 1 Definição Termo de uma matriz Produto de elementos de, um e um só por linha e por coluna. Ex.: 2 Definição Número de trocas de ordem de um
P1 de Álgebra Linear I de setembro de Gabarito
P1 de Álgebra Linear I 2005.2 8 de setembro de 2005. Gabarito 1) (a) Considere os planos de equações cartesianas α: β : 2 x y + 2 z = 2, γ : x 5 y + z = k. Determine k para que os planos se interceptem
Matrizes. Sumário. 1 pré-requisitos. 2 Tipos de matrizes. Sadao Massago 2011-05-05 a 2014-03-14. 1 pré-requisitos 1. 2 Tipos de matrizes.
Matrizes Sadao Massago 20-05-05 a 204-03-4 Sumário pré-requisitos 2 Tipos de matrizes 3 Operações com matrizes 3 4 Matriz inversa e transposta 4 5 Determinante e traço 5 Neste texto, faremos uma breve
Análise de Regressão. Notas de Aula
Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas
ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller
ÁLGEBRA LINEAR Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller Autovalores e Autovetores de um Operador Linear Seja T:V V um operador linear. Um vetor v V, v 0, é
- identificar operadores ortogonais e unitários e conhecer as suas propriedades;
DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;
. (A verificação é imediata.)
1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2010 Instabilidade em Sistemas de Equações Lineares Marisa Ortegoza
Geometria Analítica. Prof Marcelo Maraschin de Souza
Geometria Analítica Prof Marcelo Maraschin de Souza Disciplina Aulas: Segunda-feira e terça-feira: 8:00 até 9:50 Avaliações: listas de exercícios e três provas; Sala: 222; Livros. Conteúdos Plano de Ensino
Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa
MA33 - Introdução à Álgebra Linear Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto
Aula 5 - Produto Vetorial
Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa
Álgebra Linear I - Aula 10. Roteiro
Álgebra Linear I - Aula 10 1. Combinação linear de vetores. 2. Subespaços e geradores. Roteiro 1 Combinação linear de vetores Definição 1 (Combinação linear de vetores). Dada um conjunto de vetores U =
1 Autovetor e Autovalor 9. 2 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55
Capítulo LINE LINE Autovetor e Autovalor 9 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55 Matrizes Simétricas, o Teorema Espectral e Operadores Auto-adjuntos 8 4 Formas Bilineares,
Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores
Álgebra Linear I - Aula 11 1. Dependência e independência linear. 2. Bases. 3. Coordenadas. 4. Bases de R 3 e produto misto. Roteiro 1 Dependência e independência linear de vetores Definição 1 (Dependência
Congruências Lineares
Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA.
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA Determinantes Introdução Como já vimos, matriz quadrada é a que tem o mesmo número
a 21 a 22... a 2n... a n1 a n2... a nn
Projeto TEIA DO SABER 2006 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP. Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof. Dr. José Ricardo Zeni Metodologias de Ensino
1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos
FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA 1 NOTAS DE AULA Professor Doutor: Jair Silvério dos Santos (i) Matrizes Reais Uma matriz real é o seguinte arranjo de números reais : a 11 a 12 a 13 a 1m a 21
Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.
Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
