Erivaldo ACAFE ACAFE
|
|
|
- Mafalda Braga Coimbra
- 8 Há anos
- Visualizações:
Transcrição
1 Erivaldo ACAFE ACAFE
2 ACAFE Observe o gráfico da função cujo domínio é o conjunto D = { x R / -2 < x < 4 } e analise as afirmações a seguir. I) A função é par. Incorreto II) A função possui 3 raízes reais. Correto III) No intervalo A=[1,3] a função é decrescente. Incorreto IV) A função pode ser representada por y = x 3-3x 2 -x+3, sendo D={x R/-2<x<4}. Correto
3 ACAFE Analise as alternativas a seguir considerando as equações c: x 2 + y 2 = 4 e r: 3x + 4y = 10. Todas estão corretas, exceto a: A A distância entre a reta r e o centro da circunferência c é 2 u.c. B A equação c representa uma circunferência cujo centro é a origem do plano cartesiano. C A reta r é tangente a circunferência c. D A equação r representa uma reta cujo coeficiente angular é 2,5. Gabarito: D
4 ACAFE Zona Sul Na viagem entre o Galeão e os hotéis da zona sul, só ao fim do Túnel Rebouças ou a partir do Aterro do Flamengo os convidados da Rio+20 começarão a ter contato com as imagens do Rio que correm o mundo. A porção mais nobre da cidade também luta para reverter os efeitos da poluição. A Lagoa Rodrigo de Freitas passa por um programa que prevê a despoluição até Isso significa trazer o nível de coliformes fecais de 16 mil para cada 100 mililitros de água, encontrado em 2004, para perto de mil, para o mesmo volume. (...) Para isso foi instalado o Centro de Controle Operacional de Esgotos, que ajuda a monitorar os afluentes. O programa é patrocinado pela EBX, do empresário Eike Batista.
5 ACAFE Considere que a diminuição da poluição desejada para a Lagoa Rodrigo de Freitas siga uma função exponencial, cujo domínio é o número de anos passados do início do processo de despoluição e que, ao final desse período, seja atingido o nível de mil coliformes fecais para cada 100 ml de água. Diante do exposto, analise as afirmações a seguir. I) Em 8 anos a poluição terá caído pela metade. Incorreto
6 ACAFE Considere que a diminuição da poluição desejada para a Lagoa Rodrigo de Freitas siga uma função exponencial, cujo domínio é o número de anos passados do início do processo de despoluição e que, ao final desse período, seja atingido o nível de mil coliformes fecais para cada 100 ml de água. Diante do exposto, analise as afirmações a seguir. II) Considere y o nível de poluição e x o número de anos passados: essa função pode ser representada por y = 1, ,4x. Incorreto
7 ACAFE Considere que a diminuição da poluição desejada para a Lagoa Rodrigo de Freitas siga uma função exponencial, cujo domínio é o número de anos passados do início do processo de despoluição e que, ao final desse período, seja atingido o nível de mil coliformes fecais para cada 100 ml de água. Diante do exposto, analise as afirmações a seguir. II) Em 5 anos a poluição restante será de 25% em relação a inicial. Correto
8 ACAFE Um novo nome para este código que está se tornando popular é "American National Standard Code for Information Interchange" (ANSCII). Entretanto, utilizaremos o termo consagrado, ASCII. É um código binário que usado em transferência de dados entre microprocessadores e seus dispositivos periféricos, e em comunicação de dados por rádio e telefone. Com 7 bits pode-se representar um total de (...)
9 ACAFE É correto afirmar que os 7 bits do código ASCII permite representar um total de: A 256 caracteres diferentes. B 64 caracteres diferentes. C 1024 caracteres diferentes. D 128 caracteres diferentes. Gabarito: D
10 ACAFE Como você viu no texto, o número binário 101 equivale ao número decimal 5. Para se fazer a conversão do número binário (que consiste em um sistema numérico de base 2) você pode seguir o exemplo abaixo: O número binário 101 em decimal é , ou seja, corresponde ao número decimal 5. Assim, é correto afirmar que o código ASCII é equivalente ao número decimal: A 113 B 91 C 45 D 54 Gabarito: B
11 ACAFE A probabilidade de que um médico acerte o diagnóstico de um paciente é de 95%. Dado que esse médico tenha errado o diagnóstico, a probabilidade de não ser processado pelo paciente é 90%. Qual a probabilidade de que o médico erre o diagnóstico e seja processado pelo paciente? A 4,5% B 3,2% C 0,5% D 3,8% Gabarito: C
12 ACAFE Para construção de uma tanque com formato de paralelepípedo aberto na parte superior para tratar água com volume igual a 30 m 3 foram utilizados dois tipos de material. O material para o fundo do tanque custou R$ 1000,00 por m 2, enquanto que para as laterais foram gastos R$ 600,00 por m 2. Sabendo que o comprimento da base é o dobro da sua largura, analise as afirmações a seguir sobre a função que determina o custo total do material utilizado nessa construção, de acordo com o comprimento da base.
13 ACAFE I) O gráfico desta função ocupará o primeiro e segundo quadrante do plano cartesiano. II) O domínio desta função são os valores assumidos pelo comprimento. III) Essa função pode ser expressa pela equação C(x) = 2000x x -1. A Apenas a afirmação II está correta. B As afirmações II e III estão corretas. C Apenas a afirmação III está correta. D Todas as afirmações estão corretas. Gabarito: B
14 Erivaldo FIM
CANDIDATO: DATA: 20 / 01 / 2010
UNIVERSIDADE ESTADUAL DO CEARÁ - UECE SECRETARIA DE EDUCAÇÃO A DISTÂNCIA - SEaD Universidade Aberta do Brasil UAB LICENCIATURA PLENA EM MATEMÁTICA SELEÇÃO DE TUTORES PRESENCIAIS CANDIDATO: DATA: 0 / 0
Erivaldo. Análise Combinatória, Probabilidade
Erivaldo Análise Combinatória, Probabilidade ACAFE 2013.01 Em computação, chama-se um dígito binário (0 ou 1) de bit, que vem do inglês Binary Digit. O "American Standard Code for Information Interchange"
3/14/2012. Programação de Computadores O Computador. Memória Principal representação binária
Programação de Computadores O Computador Memória Principal representação binária Prof. Helton Fábio de Matos [email protected] Agenda Memória principal. Memória secundária. O que são bytes e bits. Tecnologias
CADERNO DE EXERCÍCIOS 3E
CADERNO DE EXERCÍCIOS 3E Ensino Fundamental Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Área de círculo H21 Área do quadrado H21 Multiplicação com números decimais H16 2 Equação do 2º
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
Retas Tangentes à Circunferência
Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18
Projeto de Recuperação Final - 1ª Série (EM)
Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,
BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES
01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores
1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy
1ª Avaliação 1) Se = 3,666 e y = 0,777, calcule y ) Determine o conjunto solução do sistema de inequações: 7 0 1 3 0 3) Calcule m para que o gráfico de f( ) ( m 7m) no ponto de ordenada 10 = + corte o
Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.
1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis
Função Afim Fabio Licht
Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)
Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000?
PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - AGOSTO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Quantos
CONHECIMENTOS ESPECÍFICOS
De acordo com o comando a que cada um dos itens de 51 a 120 se refira, marque, na folha de respostas, para cada item: o campo designado com o código C, caso julgue o item CERTO; ou o campo designado com
Fundamentos de Arquiteturas de Computadores. Representação de números inteiros em complemento a 2
Fundamentos de Arquiteturas de Computadores Representação de números inteiros em complemento a 2 Representação complemento a 10 Como representar números negativos no sistema decimal com 3 algarismos? Divide
A) 1 hora. B) 1 dia. C) 20 minutos. D) 30 minutos. E) 45 minutos.
MATEMÁTCA 01. Júnior marca com Daniela às 1 horas para juntos assistirem a um filme, cuja sessão inicia às 16 horas. Como às 1 horas, Daniela não chegou, Júnior resolveu esperar um tempo t 1 igual a 1
MATEMÁTICA. 4 lll A reta que passa pelos pontos A e C intercepta o eixo das ordenadas no ponto
VESTIBULAR ACAFE INVERNO 07 MATEMÁTICA ) O gráfico a seguir, que passa pelos pontos A,B,C e D, representa o polinômio P(x). I O polinômio P(x) é um polinômio do segundo grau. ll O polinômio D ( x) x é
Campos dos Goytacazes/RJ Maio 2015
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
SISTEMAS DE NUMERAÇÃO (Unidade 2)
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ELETRÔNICA
CONJUNTOS NUMÉRICOS - LISTA 1
1. (Acafe 01) Analise as afirmações a seguir e assinale a alternativa correta. l. O número real x não pertence ao intervalo aberto de extremos e. Sabe-se que x 0 ou x 4. Pode-se concluir, então, que x
MATA49 Programação de Software Básico
MATA49 Programação de Software Básico Leandro Andrade leandrojsadcc.ufba.br PROF. LEANDRO ANDRADE 1 Sistemas de números PROF. LEANDRO ANDRADE 2 Conceitos básicos Os códigos binário pelo tamanho de
Módulo 5 Codificação Sistemas Multimédia Ana Tomé José Vieira
Módulo 5 Codificação Sistemas Multimédia Ana Tomé José Vieira Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro Sumário Códigos binários Representação de informação com
SSC512 Elementos de Lógica Digital. Sistemas de Numeração. GE4 Bio
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação Elementos de Sistemas de Numeração GE4 Bio GE4Bio Grupo de Estudos em Sinais Biológicos
Circuitos Lógicos Aula 5
Circuitos Lógicos Aula 5 Aula passada Sistemas numéricos Metodo de conversão Conversão entre sistemas Números fracionários Aula de hoje Conversão fracionária Método da multiplicação Código BCD Código ASCII
Transmissão de Sinais Digitais
Transmissão de Sinais Digitais Pedro Alípio [email protected] CC-DI Universidade do Minho Transmissão de Sinais Digitais p.1/19 Sumário Transmissão de sinais digitais Largura de banda Meios de Transmissão
Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (
Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD
Geometria Analítica - AFA
Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-
Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5.
Erivaldo UDESC Geometria Analítica Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) B( 3, 2 ) d 2 = ( 4 ) 2 + ( 3 ) 2 d = 5 P( 5, 2 ) Q( 3, 4 ) d 2 = ( 8 ) 2 + ( 6 ) 2 d =
Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica
1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO 1) Se o ponto P(2m-8, m) pertence ao eixo das ordenadas, então: a) m é um número primo b) m é primo e par c) m é um quadrado perfeito d) m = 0 e) m
PCS 3115 Sistemas Digitais I Códigos Prof. Dr. Marcos A. Simplicio Jr.
PCS 3115 Sistemas Digitais I Códigos Prof. Dr. Marcos A. Simplicio Jr. versão: 3.0 (Jan/2016) Adaptado por Glauber (2018) CÓDIGOS NUMÉRICOS 2 Códigos Numéricos Conjunto de cadeias com n bits: cadeias diferentes
Universidade Federal de Juiz de Fora Departamento de Matemática
Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Segunda Avaliação - Segundo Semestre Letivo de 2016-03/12/2016 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova
Colégio Militar de Porto Alegre 2/11
DE ENSINO BÁSICO, TÉCNICO E TECNOLÓGICO 013 Escolha a única resposta certa, assinalando-a com um X nos parênteses à esquerda QUESTÃO 1 O valor de 74 + 43 + 31+ 1+ 13 + 7 + 3 + 1 é igual a (A) 13 (B) 13
Representação Digital da Informação II
Representação Digital da Informação II José Costa Introdução à Arquitetura de Computadores Departamento de Engenharia Informática (DEI) Instituto Superior Técnico 2014-09-24 José Costa (DEI/IST) Representação
Avaliação Diagnóstica Matriz de Referência
SECRETARIA DE ESTADO DE EDUCAÇÃO DE MINAS GERAIS SUBSECRETARIA DE INFORMAÇÕES E TECNOLOGIAS EDUCACIONAIS SUPERINTENDÊNCIA DE AVALIAÇÃO EDUCACIONAL DIRETORIA DE AVALIAÇÃO DA APRENDIZAGEM Avaliação Diagnóstica
Erivaldo ACAFE ACAFE
Erivaldo ACAFE 2011.02 ACAFE 2012.01 ACAFE 2011.02 Segundo estudos realizados em um centro de pesquisas geológicas, a probabilidade de um terremoto ocorrer no mar de certa cidade é de 70%, e a probabilidade
Descrição da Escala Matemática - 9 o ano EF
Os alunos do 9º Ano do Ensino Fundamental 200 Associam a fração 1/12 com a imagem de um retângulo dividido em 12 partes iguais, das quais 1 está destacada. Identificam pontos no sistema cartesiano associados
Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5
Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
Ordenar ou identificar a localização de números racionais na reta numérica.
Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando
Atividades de Recuperação Paralela de Matemática
Atividades de Recuperação Paralela de Matemática 2º ANO Ensino Médio 1º Trimestre Leia as orientações de estudos antes de responder as questões. Conteúdos para estudos: ÁLGEBRA Medidas de arcos Ciclo trigonométrico
MATEMÁTICA. Professor Leonardo Nascimento. Resolução de prova ESPCEX
MATEMÁTICA Professor Leonardo Nascimento Resolução de prova ESPCEX QUESTÃO 01 ESPCEX Na figura abaixo está representado o gráfico da função polinomial f, definida no intervalo real [a,b]. Com base nas
RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m
ª QUESTÃO Numa figura, desenhada em escala, cada 0, cm equivale a m. A altura real de uma montanha que nesse desenho mede mm, é igual a: a) 0 m d) 00 m b) 0 m e) 70 m c) 00 m ª QUESTÃO Suponha que os ângulos
MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75
MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,
número de unidades deste produto que deve ser vendida para que se obtenha um lucro de 144 dólares é: a) 324 b) 543 c) 128 d) 342 e) 345
CONHECIMENTOS ESPECÍFICOS 1 Uma bomba d água eleva água para uma caixa que tem o formato e as dimensões (metros) indicadas pela figura abaixo Sabe-se que a bomba d água tem uma vazão de 50 litros por minuto
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Maria das Graças COMPONENTE CURRICULAR: MATEMÁTICA
Matemática Básica. Sistema de numeração. Decimal (Indo-Arábico): abc = a b c abc = 100a + 10b + c. Binário:
Erivaldo ACAFE Matemática Básica Sistema de numeração Decimal (Indo-Arábico): abc = a.10 2 + b.10 1 + c.10 0 abc = 100a + 10b + c Binário: 4 (10101) 2 = 1.2 + 0.2 + 1.2 + 0.2 + 1.2 0 3 = 16 + 0 + 4 + 0
Códigos. Códigos. Bits, Bytes & etc. 9/20/10
Códigos Códigos Introdução Códigos Numéricos Códigos Decimais Códigos Ponderados Códigos Reflectidos Códigos Alfanuméricos Bits, Bytes & etc. 2 1 Viu-se como representar números usando apenas os dois símbolos
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
Nenhum obstáculo é tão grande se a sua vontade de vencer for maior.
COLÉGIO MODELO LUIZ EDUARDO MAGALHÃES LISTA 1: PONTO E RETA MATEMÁTICA 3ª SÉRIE TURMA: II UNIDADE ------ CAMAÇARI - BA PROFESSOR: HENRIQUE PLÍNIO ALUNO (A): DATA: / /2016 Nenhum obstáculo é tão grande
CPV especializado na ESPM ESPM Resolvida Prova E 23/junho/2013
CPV especializado na ESPM ESPM Resolvida Prova E 3/junho/03 MATEMÁTICA. O valor numérico da expressão (x + 4x + 4). (x x) x 4 para x = 48 é: a) 4800 b) 00 c) 400 d) 3500 e) 800 Fatorando a expressão, temos:.
Matemática A. CEMresolve
Matemática A CEMresolve 1)(UFSC) ( F ) A operação de subtração definida no conjunto dos números inteiros possui a propriedade comutativa. 2)(UFSC) ( F ) O número racional representado 1/3 por também pode
INSTITUTO FEDERAL DE BRASILIA 3ª Lista GABARITO DATA: 14/09/2016
INSTITUTO FEDERAL DE BRASILIA ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA GABARITO DATA: 14/09/016 1) No plano cartesiano, 0xy, a circunferência C tem centro no ponto P (, 1), e a reta t é tangente a C no ponto
Sistemas Digitais Representação Digital de Informação
Sistemas Digitais Representação Digital de Informação João Paulo Baptista de Carvalho [email protected] Representação de números em Base b Base 10: 435 10 = 4 x 100 + 3 x 10 + 5 x 1 = 4 x 10 2
Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira
Universidade Federal de Ouro Preto Departamento de Matemática MTM11 - T8 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira 1. Determine a equação geral da elipse que satisfaça as condições
c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.
Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
PROVA DE MATEMÁTICA MÓDULO III DO PISM (triênio )
QUESTÕES OBJETIVAS PROVA DE MATEMÁTICA MÓDULO III DO PISM (triênio 004-006) 09. Num determinado jogo, cada participante recebe uma ficha circular (tipo uma moeda) com um número impresso em cada uma das
FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÃO POLINOMIAL DO 2º GRAU MÓDULO 9 FUNÇÃO QUADRÁTICA FUNÇÃO POLINOMIAL DO 2º GRAU Chamamos de função polinomial do segundo grau ou função quadrática, toda a função f : R R dada por uma lei de forma
Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função g(x) = arctan ( ln(x x + ) ) (justifique) e a equação da reta tangente ao seu
Prova de UFRGS
Prova de UFRGS - 212 1 Considere que o corpo de uma determinada pessoa contém 5,5 litros de sangue e 5 milhões de glóbulos vermelhos por milímetro cúbico de sangue Com base nesses dados, é correto afirmar
x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50
0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas
Interbits SuperPro Web
Ita analise combinatoria 1. (Ita 2016) Pintam-se N cubos iguais utilizando-se 6 cores diferentes, uma para cada face. Considerando que cada cubo pode ser perfeitamente distinguido dos demais, o maior valor
MATEMÁTICA ENSINO FUNDAMENTAL (ANOS INICIAIS)
ENSINO FUNDAMENTAL (ANOS INICIAIS) A proposta pedagógica dos colégios jesuítas está centrada na formação da pessoa toda e para toda vida; trabalhamos para realizar uma aprendizagem integral que leve o
Disciplina: FÍSICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA A BIMESTRAL (4º BIMESTRE) ENSINO MÉDIO
Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: FÍSICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA A BIMESTRAL (4º BIMESTRE) ENSINO MÉDIO Data: /11/2017. 1. Considerando que p(x) = 2x³ kx² +
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem LISTA FUNÇÕES
Questão 01 - A quantidade mensalmente vendida x, em toneladas, de certo produto, relaciona-se com seu preço por tonelada p, em reais, através da equação p = 2 000 0,5x. O custo de produção mensal em reais
INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA
Prova 3 Matemática QUESTÕES DISCURSIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA 1. Verifique se este caderno contém 05 questões discursivas e/ou qualquer tipo de defeito.
Matemática. Questão 1. 3 a série do Ensino Médio Turma. 1 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO
EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 1 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Sabemos que
Centro Educacional Sesc Cidadania
Centro Educacional Sesc Cidadania Prof.(a): Kátia Lima LRR - Matemática-II Se não existe esforço, não existe progresso (F. Douglas) ENSINO MÉDIO Aluno(a): ANO 3º TURMA DATA: 0/08/17 1.Se (p, q) são as
Assunto 1 - Conceitos. Prof. Miguel Damasco
Assunto 1 - Conceitos UD 1 - FUNDAMENTOS DE INFORMÁTICA Prof. Miguel Damasco a. Definição de Microcomputador Dispositivo eletrônico que recebe dados, processa os dados e fornece como saídas as informações.
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão
8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)
8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:
EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA 2º TRIMESTRE FORMULÁRIO
EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA º TRIMESTRE Nome: nº: Ano:ºA E.M. Data: / / 018 Professora: Lilian Caccuri x A x B ya y Ponto médio: M ; yb ya Coeficiente angular: m x x 1) As retas x - y = 3 e
QUESTÕES OBJETIVAS. Torneiras. Volume de água A B C fornecido (m³) 1º 5 dias 6 dias 6 dias 57 2º 6 dias 6 dias 7 dias 64 3º 7 dias 5 dias 6 dias 60
Triênio 006-008 QUESTÕES OBJETIVAS Questão 9: Para sortear um livro entre os 40 alunos da turma, o professor de Flávio colocou 40 bolas em uma urna, cada uma com o nome de um dos alunos. Uma das bolas
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como, pela observação da figura podemos constatar que os gráficos das duas funções se intersetam num ponto de ordenada
A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).
MAT 105- Lista de Exercícios 1. Prolongue o segmento com extremos em (1, -5) e (3, 1) de um comprimento de (10) unidades. Determine as coordenadas dos novos extremos. 2. Determine o centro e o raio da
MATEMÁTICA. Use este espaço para rascunho.
MATEMÁTICA Use este espaço para rascunho 01 Cubos brancos de 1cm de aresta foram dispostos formando o paralelepípedo representado abaixo Em seguida, a superfície total desse paralelepípedo foi pintada
n = S(n) + P(n) 10.a + b = (a+b) + (a.b) 10.a + b a b = a.b n = 10.a + b
Erivaldo ACAFE Matemática Básica Chamaremos de S(n) a soma dos algarismos do número inteiro positivo n, e de P(n) o produto dos algarismos de n. Por exemplo, se n = 47 então S(n) = 11 e P(n) 28. Se n é
Sistemas Digitais Módulo 3 Codificações BCD, Gray e ASCII e Números Fracionários
Universidade Federal de Uberlândia Faculdade de Computação Sistemas Digitais Módulo 3 Codificações BCD, Gray e ASCII e Números Fracionários Graduação em Sistemas de Informação Prof. Dr. Daniel A. Furtado
Programa Anual MATEMÁTICA EXTENSIVO
Programa Anual MATEMÁTICA EXTENSIVO Os conteúdos conceituais de Matemática estão distribuídos em 5 frentes. A) Equações do 1º e 2º graus; Estudo das funções; Polinômios; Números complexos; Equações algébricas.
Representação em nível de máquina
Universidade Federal de Uberlândia Faculdade de Computação Representação em nível de máquina Prof. Renato Pimentel 1 Endereçamento de memória 2 Localização de instruções e dados na memória Como a unidade
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis
Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,
Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções
Exame Quantitativo Questão 1: Se m é um número inteiro ímpar, qual desses é um número inteiro par? a) b) c) d) e) Questão 2:
Exame Quantitativo 2009 Questão 1: Se m é um número inteiro ímpar, qual desses é um número inteiro par? Questão 2: 1.247 15.000 1.253 36 7.500 Questão 3: Se então Questão 4: O dono de uma loja está embalando
Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO
Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: MATEMÁTICA Série: º ANO ATIVIDADES DE REVISÃO PARA O REDI (º BIMESTRE) ENSINO MÉDIO Data: /0/0. x y Questão 0) Dados os sistemas S : e x y
Coordenadas Cartesianas
GEOMETRIA ANALÍTICA Coordenadas Cartesianas EIXO DAS ORDENADAS OU EIXO DOS Y EIXO DAS ABSCISSAS OU EIXO DOS X EIXO DAS ORDENADAS OU EIXO DOS Y ORIGEM EIXO DAS ABSCISSAS OU EIXO DOS X COORDENADAS DE UM
Apresente suas soluções a caneta, de forma clara, justificando, em cada caso, o raciocínio que conduziu à resposta.
1) Fernando utiliza um recipiente, em forma de um cone circular reto, para encher com água um aquário em forma de um paralelepípedo retângulo. As dimensões do cone são: 20 cm de diâmetro de base e 20 cm
Equação da circunferência e Geometria Espacial
COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Equação da circunferência e Geometria Espacial Questão 01 No plano cartesiano,
