RETA NUMÉRICA DOS NÚMEROS INTEIROS
|
|
|
- Washington Vilaverde de Almeida
- 8 Há anos
- Visualizações:
Transcrição
1 RETA NUMÉRICA DOS NÚMEROS INTEIROS Prof. a : Patrícia Caldana O conjunto dos números inteiros é representado por (Z). Um número é considerado inteiro quando não apresenta casas decimais, ou seja, números após uma vírgula. Pertencem a esse conjunto os números inteiros positivos, inteiros negativos e o zero. Veja um exemplo da representação desse conjunto: Z = { -5, - 4, - 3, - 2, - 1, 0, + 1, + 2, + 3, + 4, + 5 } RETA NUMÉRICA A reta numérica do conjunto dos inteiros é infinita. Representamos essa ocorrência colocando uma seta nos dois lados da reta. Veja: Os números na reta numérica são dispostos em relação ao zero. Assim, os números positivos ficam do lado direito da reta, e os negativos, do lado esquerdo. O lado positivo é organizado de forma crescente, ou seja, do menor termo numérico para o maior. Exemplo: Z = {0, + 1, + 2, + 3, + 4, + 5 } Ordem crescente: 1 < 2 < 3 < 4 < 5 <... Já os números do lado negativo da reta são organizados de forma decrescente, isto é, do maior para o menor. Exemplo: Z = { - 5, - 4, - 3, - 2, - 1, 0} Ordem decrescente: - 1 > - 2 > - 3 > - 4 > - 5 >... Em relação aos termos negativos, podemos chamá-los ainda de mais negativos ou menos negativos em relação ao zero. Exemplo:
2 O número - 5 é mais negativo em relação ao -1. Isso acontece porque o - 5 está mais distante do zero na reta numérica. O número - 2 é menos negativo em relação ao - 4. Isso acontece porque o - 2 está mais próximo do zero. Veja a representação da reta numérica dos inteiros: Ao observar todos os termos de uma reta numérica, é possível concluir que a ordem geral da reta é crescente, pois os números são organizados do menor para o maior. Na imagem da reta acima, temos que 9 é o menor número representado na reta numérica e que + 8 é o maior. Para praticar um pouco os conceitos estudados, faremos alguns exemplos. Exemplos 1) Organize os números do conjunto A na reta numérica: A = { -2, + 6, -9, + 8, - 8, - 1, + 5, 0, - 3} Resolução: 2) As temperaturas, na maior parte dos países, é medida em graus Celsius ( C). Existem alguns países que são muito frios, como: Islândia, com temperaturas que chegam a - 40 C; Mongólia, com temperaturas que chegam a - 20 C; Canadá, que chega a apresentar, de noite, temperatura de - 39 C; Groenlândia, com temperaturas de até - 9 C. Organize todas as temperaturas em uma reta numérica e indique qual país é o menos frio e qual é o mais frio.
3 Resolução: O país mais frio é a Islândia, pois a sua temperatura é a mais distante do 0 C. O país menos frio é a Groenlândia, pois sua temperatura está mais próxima do zero. 3) Observe os números abaixo e utilize os símbolos de (<) menor e (>) maior para estabelecer as relações. a) -5 < +3-5 é menor que + 3 b) 0 > é maior que - 4 c) > é maior que -100 d) -1 < 0-1 é menor que 0 e) + 10 > é maior que - 15
4 RETA NUMÉRICA EXERCÍCIOS Prof. a : Patrícia Caldana 1. Na cidade de Urupema, em determinada noite, foram registradas as seguintes temperaturas: 7 C, 3 C, 0 C, 13 C - 3 C, - 1 C. Escreva estas temperaturas na reta numérica. 2. Considere os pontos A, B, C, D e O sobre a reta numérica, na qual O é a origem. Responda justificando cada um deles. a) D está relacionado com um número negativo? b) B está relacionado com um número negativo? c) O está relacionado com um número negativo? d) A está relacionado com um número negativo? 3. Na reta numérica, indique os pontos A, de coordenada -5 ; C, de coordenada 3 ; B, simétrico de A em relação à origem; e D, simétrico de C em relação à origem. A seguir, determine a distância entre os pontos: O 0 a) A e B... c) C e D... b) A e D... d) B e D..
5 4. Veja a reta numérica só de números inteiros: Agora diga a que número inteiro corresponde cada um dos pontos: a) R... b) L... c) M d) P e) N f) Q O sinal < (menor) e o sinal > (maior) estão fazendo uma comparação entre os números. Escreva V se a sentença for verdadeira: a) b) 0 5 c) 0 9 d) e) Imagine que os números estão representados em uma reta numérica só de números inteiros, através de pontos. Diga qual o número inteiro representado pelo ponto que vem imediatamente: a) à esquerda de b) à direita de c) à direita de d) à esquerda de e) à esquerda de Dê o valor de: a) 1... b) c) 6... d) O valor absoluto de 5 é igual a... e) A distância em unidades int eiras entre o zero e o número 9 é igual a...
6 INTERVALOS NA RETA NUMÉRICA Prof. a : Patrícia Caldana Considere as seguintes afirmações: O tempo entre um período de aula e outro. O tempo entre uma badalada de sino e outra. O espaço entre as fendas de uma grade. O espaço de tempo entre duas épocas O espaço de tempo entre duas oscilações sonoras A distância entre dois pontos. O que se poderia dizer quanto as afirmações? Todas as afirmações nos dão a ideia subjetiva de intervalo. A partir delas vamos estudar Intervalos Numéricos, os quais serão estudados no Conjunto dos Números Reais ( ). Intervalos Numéricos Intervalos Numéricos são subconjuntos do conjunto dos números reais ( ). Exemplo: Considere a reta dos números Reais numérico. A distância entre dois pontos quaisquer sobre a reta real representa um intervalo Representações dos Intervalos Numéricos Considere a reta dos números Reais: No final da reta usa-se ponto fechado ou aberto, de acordo com o tipo de intervalo. Observação: as notações podem ser [a, b] para intervalo fechado e (a, b) para intervalo aberto. Usa-se colchetes ou parênteses respectivamente para fechado ou aberto
7 Tipos de Intervalos Numéricos a) Intervalo fechado: b) Intervalo aberto: c) Intervalo Semi Aberto à esquerda: d) Intervalo Semi Aberto à direita:
8 e) Intervalo que tende ao infinito: Observação: o intervalo pode tender ao infinito para a direita ou para a esquerda.
9 EXERCÍCIOS SOBRE INTERVALOS Prof. a : Patrícia Caldana Observação: as notações podem ser [a, b] para intervalo fechado e ]a, b[ para intervalo aberto. Saiba mais em: 1) (Exercício Resolvido) Seja A = [2,7] e B [5,9[. Determine: a) A B b) A B c) A B
10 2) Represente na reta real os seguintes intervalos: a) ]-3;4] b) [1;4] c) [2; [ d) ]- ;1] 3) Sendo A=]-1;3] e B=[3;5[, determine: a) A U B b) A B 4) Sendo A=[1;4] e B=]-1;2], determine: a) A U B b) A B
ALUNO(a): Data da prova: 29/05. O sinal de menos ( ) colocado antes de um número indica o oposto desse número. Assim: 11 é o oposto de 11.
GOIÂNIA, / / 2015 PROFESSOR: DISCIPLINA: Matemática SÉRIE: 7º ALUNO(a): Data da prova: 29/05 No Anhanguera você é + Enem 1.Dois números de sinais contrários são opostos? Justifique. O sinal de menos (
E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos
A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em
Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não
1 Conjunto dos números naturais N
Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de
CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo
CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números
Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:
Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção
Capítulo 1 Números Reais
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {
a) de Curitiba b) de Salvador c) de Porto Alegre d) de São Paulo e) do Rio de Janeiro f) de São Joaquim
MATEMÁTICA 7º ANO - PARTE 1 Conjunto dos números inteiros 1. A figura seguinte indica a temperatura de algumas cidades brasileiras em um determinado dia. Observando-a e usando números inteiros positivos
AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10
Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari [email protected] www.fcav.unesp.br/amanda MATEMÁTICA I AULA 1: PRÉ-CÁLCULO Profa. Dra. Amanda L. P. M. Perticarrari CONJUNTOS NUMÉRICOS
Professor: Fábio Soares - Disciplina: Métodos Quantitativos ADMINISTRAÇÃO
Unidade 1 - Números Reais: representações O principal motivo para que a maioria dos cursos comecem por um breve estudo dos números reais é o fato de no Cálculo e na Análise, estuda-se o comportamento de
CÁLCULO I. 1 Número Reais. Objetivos da Aula
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral
Figura 1 Compras do supermercado Fonte: Microsoft Office
CONJUNTOS NUMÉRICOS CONTEÚDOS Número naturais Números inteiros Números racionais Números irracionais Números reais AMPLIANDO SEUS CONHECIMENTOS Os números estão presentes nas mais diversas situações do
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
Prof. a : Patrícia Caldana
CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos
A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.
Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos
o altímetro é um aparelho que registra altitudes: alturas medidas em relação ao nível do mar. As
Acesse: http://fuvestibular.com.br/ o altímetro é um aparelho que registra altitudes: alturas medidas em relação ao nível do mar. As altitudes podem ser positivas, quando estão acima do nível do mar, ou
1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z)
CAPÍTULO 1 Capítulo 1 1.1 Conjuntos Numéricos Conjunto dos Números Naturais (N) Os números naturais são em geral associados à ideia de contagem, e o conjunto que os representa é indicado por N. N = {0,
Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades
Capítulo 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades SISTEMA DE COORDENADAS LINEARES Um sistema de coordenadas lineares é uma representação gráfica dos números reais como os pontos
Plano de Recuperação Semestral EF2
Série/Ano: 7º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para
Definimos como conjunto uma coleção qualquer de elementos.
Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de
Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 6 29 de março de 2010 Aula 6 Pré-Cálculo 1 Implicações e teoria dos conjuntos f (x) =g(x) u(x)
o altímetro é um aparelho que registra altitudes: alturas medidas em relação ao nível do mar. As
o altímetro é um aparelho que registra altitudes: alturas medidas em relação ao nível do mar. As altitudes podem ser positivas, quando estão acima do nível do mar, ou negativas, quando estão abaixo do
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
QUERIDO(A) ALUNO(A):
1 QUERIDO(A) ALUNO(A): SEJA BEM-VINDO AO CURSO LIVRE MATEMÁTICA PARA CONCURSOS I. ESTE CURSO OBJETIVA PRIORITARIAMENTE QUE VOCÊ DESENVOLVA COMPETÊNCIAS SIGNIFICATIVAS ATRAVÉS DOS TEMAS ABORDADOS PARA USO
Pré-Cálculo. Humberto José Bortolossi. Parte 1. Departamento de Matemática Aplicada Universidade Federal Fluminense. Parte 1 Pré-Cálculo 1
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 1 Parte 1 Pré-Cálculo 1 Apresentação do curso Parte 1 Pré-Cálculo 2 Conteúdo do curso Números
Plano de Recuperação Semestral 1º Semestre 2016
Disciplina: MATEMÁTICA Série/Ano: 7º ANO Professores: Tammy, Marcelo L., Rafael, Anderson, Chico. Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane
Conjunto dos Números Inteiros. Prof Carlos
Conjunto dos Números Inteiros Prof Carlos Vamos revisar o conjuntos dos Números Naturais N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,...} N* = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,...} Existem números que vêm antes
Ensino Fundamental 1I Data: / /2015
Estudante: Educador: Patrícia Passos C. Curricular: Matemática 7º Ano/Turma: Ensino Fundamental 1I Data: / /015 01) Jonas está contente com o seu primeiro dia de trabalho. Ele vai ser ascensorista (cabineiro)
INTERVALOS, INEQUAÇÕES E MÓDULO
Revisão de Pré-Cálculo INTERVALOS, INEQUAÇÕES E MÓDULO Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, outubro 2016 Direitos
Cálculo Diferencial e Integral Química Notas de Aula
Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: [email protected]. ÍNDICE 1. INTRODUÇÃO Esta notas de aula
Números e Operações. Nome: N.ª: Ano: Turma:
MATEMÁTICA 3º CICLO FICHA 1 Números e Operações Números Racionais Nome: N.ª: Ano: Turma: Data: / / 20 Os números 1, 2, 3, 4, 5, chamam-se números naturais. O conjunto dos números naturais representa-se
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos
Matemática Básica. Capítulo Conjuntos
Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo
Fundamentos de Matemática
Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,
Colégio Paulo VI Aluno (a): Nº.: 7 º Ano Ensino Fundamental Turma: Turno: Matutino
Colégio Paulo VI Aluno (a): Nº.: 7 º Ano Ensino Fundamental Turma: Turno: Matutino Professora: Alessandra Disciplina: Matemática Data / /2011 1ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA ORIENTAÇÕES:
Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos
1 Bases Matemáticas Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos Rodrigo Hausen 10 de outubro de 2012 v. 2012-10-15 1/34 Relembrando: representação geométrica para os reais 2 Uma
(- 48) = = - 6 (saldo negativo)
Os Jogos Olímpicos são separados em duas fases históricas: a Antiga e a Moderna. a era Antiga, realizou-se a primeira Olimpíada no ano 776 a.c. (776 anos antes de Cristo), e a última, no ano 394 d.e. (394
ÁLGEBRA. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 3 _ Introdução às Funções Professor Luciano Nóbrega Maria Auxiliadora 2 A FUNÇÃO 3 É como uma máquina onde entram que são transformados e saem suas Matematicamente... elementos IMAGENS y
Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1
Resumo de Aula: Notação científica. 1- Introdução Este resumo não trata exatamente sobre física, é sobre uma das formas que expressamos os resultados numéricos em ciências em geral (e na física em particular).
Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Com esta apostila espera-se levar o aluno a: Apostila organizada por: Vanderlane Andrade Florindo Silvia
Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }
Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais
Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05
RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim
Módulo e Função Modular
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA-UERJ DISCIPLINA: MATEMÁTICA (FUNÇÕES) PROF S : QUARANTA / ILYDIO / 1 a SÉRIE ENSINO MÉDIO Módulo e Função Modular Função definida por mais de uma sentença
2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica:
. Números Inteiros Sempre que estamos no inverno as temperaturas caem. Algumas cidades do Sul do Brasil chegam até mesmo a nevar. Quando isso acontece, a temperatura está menor do que zero. Em Urupema,
Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre
A melhor maneira de nos prepararmos para o futuro é concentrar toda a imaginação e entusiasmo na execução perfeita do trabalho de hoje. Dale Carnegie 1. Conjuntos Numéricos 1) Pense e Responda: a) Qual
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha
MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 SUMÁRIO Apresentação ------------------------------------------------- 2 Capítulo 2
Dos inteiros aos reais
Dos inteiros aos reais Ordenação de números inteiros relativos Para além dos números positivos, na vida real utilizam-se outros números para representar situações, tal como temperatura negativas, saldos
Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.
MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa
AULA 02 CONJUNTOS NUMÉRICOS. Figura 1 Conjuntos numéricos
AULA 02 CONJUNTOS NUMÉRICOS Figura 1 Conjuntos numéricos AULA 01 CONJUNTOS NUMÉRICOS Para trabalharmos com números, devemos primeiramente ter um conhecimento básico de quais são os conjuntos ("tipos")
ATIVIDADE. b) A diferença de dois números inteiros é sempre um número inteiro. c) Existe número natural que não é número inteiro.
ATIVIDADE 1. Considere os números a seguir e responda: 5; -8; 0; 14; -100; 57; -18; 2/3; -0,4; -1 a) Quais deles são números naturais? b) Quais deles são números inteiros? c) Todo número natural é um número
Geometria Analítica. Cleide Martins. Turmas E1 e E3. DMat - UFPE Cleide Martins (DMat - UFPE ) VETORES Turmas E1 e E3 1 / 22
Geometria Analítica Cleide Martins DMat - UFPE - 2017.1 Turmas E1 e E3 Cleide Martins (DMat - UFPE - 2017.1) VETORES Turmas E1 e E3 1 / 22 Objetivos 1 Entender a denição de VETOR 2 Aprender a somar dois
Revisão de conceitos Matemáticos. Matemática e Fundamentos de Informática
Revisão de conceitos Matemáticos Matemática e Fundamentos de Informática 1 1 Conjuntos Teoria dos conjuntos Em Matemática, conjunto é uma coleção de objetos (chamados elementos). Os elementos podem representar
Aula 1 Revendo Funções
Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis
CONJUNTO DOS NÚMEROS INTEIROS: operações, propriedades e aplicações
CONJUNTO DOS NÚMEROS INTEIROS: operações, propriedades Existem números que vêm antes do zero? Vamos relembrar algumas aulas do Ensino Fundamental... Imagem: Tox Caution / Rursus / Public Domain Vamos pensar...
Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:
Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota:
Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Explique com as suas palavras por que zero é chamado de elemento neutro da adição. Questão 2 Qual é a única
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
Apresentação do curso
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Apresentação do curso Parte 1 Parte 1 Pré-Cálculo 1 Parte 1 Pré-Cálculo 2 Conteúdo do curso Números
C.N.C. Programação Torno
C.N.C. Programação Torno Módulo I Aula 04 Plano Cartesiano Coordenadas Absolutas e Incrementais A reta numérica Um exemplo de reta numérica, com alguns números representados nela. Observe as distâncias
Concurso Público Conteúdo
Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;
LTDA APES PROF. RANILDO LOPES SITE:
Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Rafael Carvalho 7º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos Rafael Carvalho 7º Período Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos
Plano de Recuperação Semestral 1º Semestre 2017
Disciplina: MATEMÁTICA Série/Ano: 7º ANO Professores: Tammy, Marcelo L., Rafael, Lots, Tiago Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos
MATEMÁTICA I. Ana Paula Figueiredo
I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos
INTRODUÇÃO À TEORIA DOS CONJUNTOS1
INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto
Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço
Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital 1. Como prever a natureza? (ou: apresentando uma função) 1.1. Visão
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2
EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...
INTRODUÇÃO À TEORIA DOS CONJUNTOS
1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1
2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.
ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS
CONJUNTO DOS NÚMEROS NATURAIS... 2 RETA NUMERADA... 2 CONJUNTO DOS NÚMEROS INTEIROS... 4 SUBCONJUNTOS DE Z... 5 NÚMEROS OPOSTOS... 5 VALOR ABSOLUTO DE UM NÚMERO INTEIRO... 6 CONJUNTO DOS NÚMEROS RACIONAIS...
1 Limites e Conjuntos Abertos
1 Limites e Conjuntos Abertos 1.1 Sequências de números reais Definição. Uma sequência de números reais é uma associação de um número real a cada número natural. Exemplos: 1. {1,2,3,4,...} 2. {1,1/2,1/3,1/4,...}
Matemática Conjuntos - Teoria
Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar
Veja, no quadro a seguir, as principais mudanças ocorridas nos símbolos indoarábicos,
PROJETO DE EXTENSÃO ENSINANDO E APREDENDO MATEMATICA UNAMA Universidade da Amazônia Nível Fundamental II (5ª série) Professora: Vanessa Costa 1. SISTEMAS DE NUMERAÇÃO INDO- ARÁBICO OU SISTEMAS DE NUMERAÇÃO
Monster. Concursos. Matemática 1 ENCONTRO
Monster Concursos Matemática 1 ENCONTRO CONJUNTOS NUMÉRICOS Conjuntos numéricos podem ser representados de diversas formas. A forma mais simples é dar um nome ao conjunto e expor todos os seus elementos,
Projeção ortográfica de sólidos geométricos
Projeção ortográfica de sólidos geométricos Introdução Na aula anterior você ficou sabendo que a projeção ortográfica de um modelo em um único plano algumas vezes não representa o modelo ou partes dele
Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido
Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado
CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...
ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início
MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari [email protected] www.fcav.unesp.br/amanda HORÁRIO DA DISCIPLINA Quinta-Feira: 9h (Turma 1) sala 38 Quinta-Feira: 14h (Turma 2) sala 38 DISPENSA
Unidade 1 Números inteiros
Sugestões de atividades Unidade 1 Números inteiros 7 MATEMÁTICA 1 Matemática 1. Indique com um número positivo ou negativo: a) um lucro de R$ 5.500,00; b) um prejuízo de R$ 5.500,00; c) 5 graus abaixo
Centro Educacional Sesc Cidadania. 1º trimestre - Disciplina: Matemática. Números Naturais
Centro Educacional Sesc Cidadania Ensino Fundamental Anos Finais Goiânia, janeiro/fevereiro de 2018 Professora: Mara Rúbia Matias 7º ano 1º trimestre - Disciplina: Matemática Atenção Você deve ter este
Z = {..., -4, -3, -2, -1, 0, +1, +2, +3,...}
Os números inteiros relativos são formados por todos os números inteiros negativos, pelo zero e por todos os números inteiros positivos. Z = {..., -4, -3, -2, -1, 0, +1, +2, +3,...} Ao conjunto dos números
AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2016/17
AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2016/17 Números Racionais e Potências NOME N.º Turma 1. Determine o valor das seguintes expressões. a) ( ) ( ) b) ( ) ( ) c) ( ) ( ) ( ) 2. a)
Sumário. 1 CAPÍTULO 1 Revisão de álgebra
Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção
Análise do Lugar das Raízes
Análise do Lugar das Raízes A característica básica da resposta transitória de um sistema de malha fechada, depende essencialmente da localização dos pólos de malha fechada. É importante, então, que o
g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2
Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (
