Conjunto de Valores. A Função de Probabilidade (fp)

Tamanho: px
Começar a partir da página:

Download "Conjunto de Valores. A Função de Probabilidade (fp)"

Transcrição

1 Prof. Lorí Viali, Dr. htt:// Bernoulli Binomial Binomial Negativa ou Pascal Geométrica Hiergeométrica Uniforme Poisson Eerimento Qualquer um que corresonda a aenas dois resultados. Estes resultados são anotados or ou fracasso e ou sucesso. A robabilidade de ocorrência de sucesso é reresentada or e a de insucesso or q. Conjunto de Valores X(S) {, } f () P(X ) se se

2 A Função de Distribuição (FD),,8,6,4, F() P(X ) q se < se < se, Função de Distribuição Características Eectância ou Valor Eserado E(X).f ().q +. Variância q V ( X ( ).q + E ( X. ) ) - E(X) ( ) q Suonha que um circuito é testado e que ele seja rejeitado com robabilidade,. Seja X o número de circuitos rejeitados em um teste. Determine a distribuição de X. Como se trata de um único teste, a variável X é Bernoulli com %, assim a distribuição é:,9 f () P(X ), se se

3 Eerimento Como eistem aenas duas situações: A ocorre e A não ocorre, ode-se determinar a robabilidade de A não ocorrer como sendo q. A VAD definida or X número de vezes que A ocorreu nas n reetições de E é denominada BINOMIAL. Conjunto de Valores X(S) {,,, 3,..., n} n f () P(X ) q n,8,6,4,,,8,6,4, A Função de Distribuição (FD) n k F() P(X ) q k k n-k se < se n se > n Função de Distribuição,,9,8,7,6,5,4,3,,

4 Características Eectância ou Valor Eserado n n E(X).f (). q n Variância V(X) E(X ) - E(X) n n E(X ). q n(n -) + n V(X) E(X ) - E(X) n(n ) + n (n) n + n n( ) nq Assim: E (X) σx n nq Suonha que um circuito é testado e que ele seja rejeitado com robabilidade,. Seja X o número de circuitos rejeitados em testes. Determine a distribuição de X. Como se tratam de testes a variável X é Binomial com %, assim a distribuição é: f () P(X ) (,) ara.(,9),,,..., Uma fábrica recebe um lote de eças das quais cinco são defeituosas. Suonhamos que a fábrica aceite todas as eças se não houver nenhuma defeituosa em uma amostra aleatória de eças selecionadas ara inseção. Determinar a robabilidade de o lote ser aceito. Tem-se: n e 5/,5 f() P(X ),5 59,87%,95 4

5 Tem-se: n e 5/ 5% Então: f () P(X ).(,5).(,95) 59,87% Eerimento A distribuição Geométrica, também, está relacionada com o eerimento de Bernoulli. A diferença é que, agora, o que é fiado é o rimeiro sucesso e não o número de tentativas, isto é, X número de tentativas realizadas até se conseguir o rimeiro sucesso. Conjunto de Valores X(S) {,, 3,...} f () P(X ) q,4 A Reresentação Gráfica A Função de Distribuição (FD), F() P(X ) - q se < se A distribuição G(,4) 5

6 A Função de Distribuição (FD),,8,6,4, A distribuição acumulada da G(,4) Características Eectância ou Valor Eserado E(X).f ().q Variância V(X) E(X ) - E(X) q V(X). q Suonha que um jogador de futebol converta 3 de cada 4 enalidades cobradas. Determine a robabilidade de ele tentar 4 enalidades até converter a rimeira? Neste caso, tem-se: (3/4) 75% e q (/4) 5% X Número de tentativas antes do rimeiro sucesso, é, então, uma G(,75) f() P(X ),75.,5 - ara,, 3, Portanto: f(4) P(X 4),75.,5 3,7% 6

7 Eerimento A distribuição binomial negativa é também conhecida como de Pascal ou de Pólya. Ela fornece o número de falhas até um número fio de sucessos. Um eerimento que aresenta uma distribuição binomial negativa satisfaz as seguintes condições: Condições Cada tentativa aresenta aenas dois resultados: sucesso ou fracasso; O eerimento consiste de uma seqüência de tentativas indeendentes; A robabilidade de sucesso ermanece constante em todas as tentativas; Conjunto de Valores O eerimento continua até que um total de r sucessos sejam observados, onde r é um valor inteiro maior do que um, fiado de antemão. X(S) {r, r +, r +,...} f () P(X ) r r q r,6 A Reresentação Gráfica A Função de Distribuição (FD),4, F() k - r q k r r - k r se se < r r A distribuição BN(3;,4) 7

8 A Função de Distribuição (FD),,8,6,4, A distribuição acumulada da BN(;,4) Características Eectância ou Valor Eserado r r E(X).f (). q r r r Variância V(X) E(X ) - E(X) r r r rq V(X). q r r r Suonha que um jogador de basquete acerte 4 a cada 5 lances livres. Seja X o número de tentativas ara obter o terceiro acerto. Determine a robabilidade que ele recise fazer 6 lances, isto é, P(X 6). Neste caso, tem-se: r 3, (4/5) 8% e q % X Número de tentativas ara obter o terceiro acerto é, então, uma BN(3;,8) f () P(X ),8, r 3 3 onde 3, 4, 5, 6,, 7, f (6) P(X 6),8., 5 3 3,8.,,4 4,% Observações: Eiste uma relação entre a Binomial e a Pascal (Binomial Negativa). Na Binomial fia-se o tamanho da amostra (número de rovas de Bernoulli) e observa-se o número de sucessos. 8

9 Na Binomial Negativa fia-se o número de sucessos e observa-se o tamanho da amostra (número de rovas de Bernoulli) necessário ara obter o número fiado de sucessos. Eerimento: A distribuição Binomial é deduzida com base em n reetições de um eerimento de maneira indeendente (isto é, constante), ou retiradas com reosição de uma oulação finita. Se a eeriência consistir na seleção de objetos, sem reosição, de uma oulação finita, de tamanho N, onde r aresentam uma característica N r não aresentam esta característica, então eistirá deendência entre as reetições. Conjunto de Valores Neste caso a variável aleatória X número de objetos com a característica r em uma amostra de tamanho n, terá uma distribuição denominada de Hiergeométrica. : má{, n N+r},..., mín{r, n} r f () P(X ) N n N n r 9

10 ,3,,,,, H(; 5; 5) A Função de Distribuição (FD) se < j r N r k n F( ) P ( X ) se j k j N n se > k onde j má{, k mín{r, n - N + r} n},,9,8,7,6,5,4,3,, Função de Distribuição H(; 5; 5) σ X Características Eectância ou Valor Eserado E (X) Desvio Padrão nq n N n N Onde r N Uma fábrica recebe um lote de eças das quais cinco são defeituosas. Suonhamos que a fábrica aceite todas as eças se não houver nenhuma defeituosa em uma amostra aleatória de eças selecionadas ara inseção. Determinar a robabilidade de o lote ser aceito. Pela Hiergeométrica: N, r 5, n f () P(X ) 58,38%

11 Pela Binomial: n e 5/ 5% f() P(X ).(,5).(,95) 59,87% Eerimento: A distribuição uniforme é a mais simles das variáveis discretas. A variável assume os valores:,,..., n semre com igual robabilidade. Definição: Uma variável aleatória X que assume os valores,,..., n édita uniforme discreta se todos os valores ocorrem com a mesma robabilidade, isto é, f( i ) /n. Conjunto de Valores X(S) {,,..., n },,5 A Reresentação Gráfica f (i) P(X i) / n A distribuição U()

12 A Função de Distribuição (FD) A Função de Distribuição (FD), F( i) P( i) i n se < se i,8,6,4, A distribuição acumulada da U() Características Eectância ou Valor Eserado Variância n E(X) i.f ( i) i V(X) E(X ) - E(X) (X) [ n n ( ) ] V i i n n i i Suonha que um dado honesto é lançado. Seja X valor da face voltada ara cima. Determinar a distribuição de X Σ f() /6 /6 /6 /6 /6 /6

13 Eerimento Na Binomial a variável que interessa é o número de sucessos em um intervalo discreto (n reetições de um eerimento). Muitas vezes, entretanto, o interesse é o número de sucessos em um intervalo contínuo, como o temo, área, suerfície, etc. Para determinar a f() de uma distribuição deste tio, será suosto que: (i) Eventos definidos em intervalos não sobreostos são indeendentes; (ii) Em intervalos de mesmo tamanho as robabilidades de um mesmo número de sucessos são iguais; (iii) Em intervalos muito equenos a robabilidade de mais de um sucesso é desrezível; (iv) Em intervalos muito equenos a robabilidade de um sucesso é roorcional ao tamanho do intervalo. Definição: Se uma variável satisfaz estas quatro roriedades ela é dita VAD de POISSON. Se X é uma VAD de POISSON, então a função de robabilidade de X é dada or: f () ara P(X ),,,.... λ! λ é denominada de taa de sucessos e λ - P(),5,,9,6,

14 A Função de Distribuição (FD) Função de Distribuição - P(),,9 F() P(X ) k -λ e. λ k! k se < se,8,7,6,5,4,3,, Características: Eectância ou Valor Eserado E(X) λ Desvio Padrão σx λ O número de consultas a uma base de dados comutacional é uma VAD de Poisson com λ 6 em um intervalo de dez segundos. Qual é a robabilidade de que num intervalo de 5 segundos nenhum acesso se verifique? A taa de consultas é de seis em dez segundos em cinco segundos teremos uma taa de λ 3 consultas. Então: -3 e. f() P(X )! e -3 4,98% 3 Considerando o eemlo dado na Hiergeométrica, que foi resolvido, também, ela Binomial, é ossível ainda utilizar a Poisson. Para isto devese fazer λ n. 4

15 Então: λ.,5,5. -,5 e. f () P(X )! e -,5 6,65 % Binomial: 59,85% Hiergeométrica: 58,38% Poisson: 6,65% Como ode ser visto, nesse caso, é ossível utilizar três modelos ara resolver um único roblema. 5

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. [email protected] http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Revisão de Probabilidade

Revisão de Probabilidade 05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G. EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes

Leia mais

Distribuição de uma proporção amostral

Distribuição de uma proporção amostral Distribuição de uma roorção amostral Estatística II Antonio Roque Aula 4 Exemlo Ilustrativo: Suonha que se saiba que em uma certa oulação humana uma roorção de essoas igual a = 0, 08 (8%) seja cega ara

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M /r

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

1 Distribuições Discretas de Probabilidade

1 Distribuições Discretas de Probabilidade 1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma

Leia mais

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr.

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. [email protected] http://www.pucrs.br/~viali Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Deartamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEEC, MEMec o semestre 011/01 1 o Teste B 1/04/01 11:00 Duração: 1 hora e 30 minutos Justifique

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de

Leia mais

Função par e função ímpar

Função par e função ímpar Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

3. ANÁLISE DE DADOS EXPERIMENTAIS

3. ANÁLISE DE DADOS EXPERIMENTAIS 3. AÁLISE DE DADOS EXPEIMETAIS 3. Introdução. Todo dado eerimental deve ser analisado através de algum tio de rocedimento. Um bom eerimentalista deve fazer todo o esforço ossível ara eliminar todos os

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 2 Leitura obrigatória: Devore, seções 3.4, 3.5 (hipergeométrica), 3.6 Aula 5-1 Objetivos Nesta parte 01 aprendemos a representar,

Leia mais

AULA 16 - Distribuição de Poisson e Geométrica

AULA 16 - Distribuição de Poisson e Geométrica AULA 16 - Distribuição de Poisson e Geométrica Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuição de Poisson Em muitas situações nos deparamos com a situação em que o número de ensaios

Leia mais

4. PRINCIPAIS MODELOS DISCRETOS

4. PRINCIPAIS MODELOS DISCRETOS 4. PRINCIPAIS MODELOS DISCRETOS 2011 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão 4 Nome: N.º Turma: Aresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto [email protected] Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Noções de Testes de Hipóteses

Noções de Testes de Hipóteses Noções de Testes de Hióteses Outro tio de roblema da Inferência Estatística é o de testar se uma conjectura sobre determinada característica de uma ou mais oulações é, ou não, aoiada ela evidência obtida

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

Cap. 5 Variáveis aleatórias discretas

Cap. 5 Variáveis aleatórias discretas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 5 Variáveis aleatórias discretas APOIO: Fundação de

Leia mais

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras;

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras; Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Eperimento Aleatório Eperiência para o qual o modelo probabilístico é adequado. Eemplos E : Joga-se uma moeda quatro vezes e observa-se

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão.4 Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

c. De quantas formas diferentes podemos ir de A até C, passando por B, e depois voltar para A sem repetir estradas e novamente passando por B?

c. De quantas formas diferentes podemos ir de A até C, passando por B, e depois voltar para A sem repetir estradas e novamente passando por B? Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - IFMT Camus Várzea Grande Aula - Análise Combinatória e Probabilidade Prof. Emerson Dutra E-mail: [email protected] Página

Leia mais

Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza

Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada

Leia mais

Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato

Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato Distribuição de Probabilidade Variáveis Aleatórias Discretas Prof.: Joni Fusinato [email protected] [email protected] Distribuição de Probabilidade Descreve a chance que uma variável pode assumir

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Tipos de Modelos. Exemplos. Efeito. Causas. Exemplos. Causas. Efeito. Modelo determinístico. Modelo probabilístico. Determinístico.

Tipos de Modelos. Exemplos. Efeito. Causas. Exemplos. Causas. Efeito. Modelo determinístico. Modelo probabilístico. Determinístico. Tipos de Modelos Sistema Real Determinístico Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração clássica v at Aceleração relativística v at + a t c Modelo probabilístico

Leia mais

Tipos de Modelos. Determinístico. Sistema Real. Probabilístico. Prof. Lorí Viali, Dr. FAculdade de Matemática - Departamento de Estatística - PUCRS

Tipos de Modelos. Determinístico. Sistema Real. Probabilístico. Prof. Lorí Viali, Dr. FAculdade de Matemática - Departamento de Estatística - PUCRS Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M 2 /r 2 Aceleração clássica v at Aceleração relativística v 1 + at a 2 c t 2

Leia mais

Modelos Probabilisticos Discretos

Modelos Probabilisticos Discretos Modelos Probabilisticos Discretos Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: [email protected] Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

AULA 15 - Distribuição de Bernoulli e Binomial

AULA 15 - Distribuição de Bernoulli e Binomial AULA 15 - Distribuição de Bernoulli e Binomial Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variável Aleatória de Bernoulli Podemos dizer que as variáveis aleatórias mais simples entre as

Leia mais

SÉRIE: Probabilidade Texto 1: PROBABILIDADE UNIVARIADA 1. INTRODUÇÃO CONCEITOS DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS...

SÉRIE: Probabilidade Texto 1: PROBABILIDADE UNIVARIADA 1. INTRODUÇÃO CONCEITOS DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS... SUMÁRIO 1. INTRODUÇÃO...3 1.1. MODELOS...3 1.1.1. Modelo determínistico...3 1.1.2. Modelo não-determinístico ou probabilístico...3 1.2. EXPERIMENTO ALEATÓRIO (NÃO-DETERMINÍSTICO)...4 1.2.1. Características

Leia mais

Distribuições de probabilidade de variáveis aleatórias discretas

Distribuições de probabilidade de variáveis aleatórias discretas Distribuições de probabilidade de variáveis aleatórias discretas Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Cronograma 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Poisson

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Probabilidade condicionada; acontecimentos independentes 12.

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Probabilidade condicionada; acontecimentos independentes 12. Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Probabilidade condicionada; acontecimentos indeendentes º no Nome: Nº: Turma: Demonstre que se e são acontecimentos indeendentes,

Leia mais

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas;

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; Prof. Lorí Viali, Dr. [email protected] http://www.pucrs.br/famat/viali Eperiência na qual o resultado é incerto. E : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; E : Joga-se uma

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

Teste de hipóteses para médias e proporções amostrais

Teste de hipóteses para médias e proporções amostrais Teste de hióteses ara médias e roorções amostrais Prof. Marcos Pó Métodos Quantitativos ara Ciências Sociais Hiótese estatística Hiótese é uma exlicação rovisória roosta ara um fenômeno, assível de ser

Leia mais

1 INTRODUÇÃO À TEORIA DA PROBABILIDADE

1 INTRODUÇÃO À TEORIA DA PROBABILIDADE INTRODUÇÃO À TEORIA DA PROBABILIDADE A Estatística, desde as suas origens antigo Egito 000 anos a.c. até meados do século XIX, se reocuava aenas com a organização e a aresentação de dados de observação

Leia mais

Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade

Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado 3 Como determinar se um experimento é Binomial.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

4. PRINCIPAIS MODELOS DISCRETOS

4. PRINCIPAIS MODELOS DISCRETOS 4. PRINCIPAIS MODELOS DISCRETOS 2019 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa

Leia mais

Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas

Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas 1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma

Leia mais

Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:

Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5: Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Seja X uma variável aleatória com conjunto de valores X(S). Se o conjunto de valores for infinito não enumerável então a variável

Leia mais

Exames Nacionais. Prova Escrita de Matemática A 2009 VERSÃO Ano de Escolaridade Prova 635/1.ª Fase. Grupo I

Exames Nacionais. Prova Escrita de Matemática A 2009 VERSÃO Ano de Escolaridade Prova 635/1.ª Fase. Grupo I Exames Nacionais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n. 7/00, de 6 de Março Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

Teorema do Limite Central

Teorema do Limite Central Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Modelos Binomial e Poisson

Modelos Binomial e Poisson Modelos Binomial e Poisson Cristian Villegas [email protected] http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso

Leia mais

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

Aluno (a): Data: / / Professor (a): ESTEFÂNIO FRANCO MACIEL Série: 2º Turma:

Aluno (a): Data: / / Professor (a): ESTEFÂNIO FRANCO MACIEL Série: 2º Turma: Aluno (: Data: / / 08. Professor (: ESTEFÂNIO FRANCO MACIEL Série: º Turma: LISTA DE PREPARAÇÃO PARA A BIMESTRAL I Questão 0) O número de valores de x, ara os quais os coeficientes binomiais 6 e x 6 x

Leia mais

Distribuições amostrais

Distribuições amostrais Distribuições amostrais Tatiene Correia de Souza / UFPB [email protected] October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição

Leia mais

Modelos Binomial e Poisson

Modelos Binomial e Poisson Modelos Binomial e Poisson Cristian Villegas [email protected] Outubro de 2013 Apostila de Estatística (Cristian Villegas) 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais