GABARITO IME. Matemática
|
|
|
- Renato Coradelli Bicalho
- 9 Há anos
- Visualizações:
Transcrição
1 GABARITO IME Matemática
2 Sistema ELITE de Ensino IME - 016/017 GABARITO COMENTADO Questão 01 Seja M uma matriz real. Defina uma função f na qual cada elemento da matriz se a b desloca para a posição seguinte no sentido horário, ou seja, se M =, implica que c d c a f ( M) =. Encontre todas as matrizes simétricas reais na qual M = f (M). d b a b + + a b a b a b ab bc M= M = = b c b c b c ab + bc b + c b a f (M) = c b a + b = b a = 0 + = ab bc a a + b = b M = f ( M) a = c ou ab + bc = a ab = a 1 + = = b c b b Se 0 0 b = 0 M1 = a = b = b ou c = b = 1 M = 1 0 Se 1 1 M = b = a + = a = a = ± M4 = S =,,,
3 Sistema ELITE de Ensino IME - 016/017 Questão 0 Resolva a inequação, onde x. 9x ( 1 x + 1) > 4 x x x > 4 < ou > 1 x x x + 1 Faremos x + 1 = A, A 0 x = A 1 i) x A 1 A 1 < < + < 0 1 x A 1 A A A + 1 < 0 1 A ( A 1) < 0 ( 1 A) A 1 > 0 x + 1 > 1 x + 1 > 1 x > 0 ou ii) x A 1 > > 0 1 x A A + A > 0 (1 A) ( A 1)( A + ) > 0 (1 A) A + < 0 A < ( não pode, pois, A 0) Portanto, x > 0.
4 Sistema ELITE de Ensino IME - 016/017 Questão 0 Resolve o sistema de equações, onde x e y log (log x) log (log y) = 1 14 ( y x) = Fazendo a seguinte substituição: = a x b y =, b > 0 para que exista y log (log ) Temos que o sistema passa a ser: a b ( ) ( ) log log log log = 1 a b 14. = a b log ( ) ( ) = log log log 1 a b+ 14 = log ( ) ( ) = a log b 1 a b+ 14 = a log = 1 b a b + = 14 a = b 6b + a = 49 6b + b = 49 b + b 14 = 0 b = 11 ou b = 1 (não serve, pois b > 0) 6 b = 11 e a = Para os valores em x e y temos: 6 11 x = e y =. 4
5 Sistema ELITE de Ensino IME - 016/017 Questão 04 Classifique o sistema abaixo como determinado, possível indeterminado e impossível de acordo com os valores reais de m. ( m ) x + y z = m + 1 x + my + z = m + mx + ( m + 1) y + ( m + 1) z = m + m 1 m 1 = m = m p m m + m m 1 L por L L 1 L = ( m ) mm ( 1) ( m ) 4( m 1) = m m + m m 8 4m + 4 = mm ( m + ) = mm ( 1)( m ) i) Se m {0,1,} P 0 o Sistema é possível e determinado. ii) x + y z = 1 y + z = Se m = 0 x + z = z = y y + z = y + z = x = ( y) x = 4y 4 x = y todo termo da forma (y, y, y) é solução o Sistema é possível e indeterminado. iii) x + y z = 5y = 7 Se m = 1 x + y + z = incompatíveis 8y = = x 4y z 4 O sistema é impossível 5
6 Sistema ELITE de Ensino IME - 016/017 iv) y z = y z = Se m = x + y + z = 6 + incompatíveis y z = = 4x 6y z 11 o sistema é impossível Resumindo: m {0, 1, } Sistema possível e determinado m = 0 Sistema possível e indeterminado m {1, } Sistema impossível Questão 05 Sejam os complexos z = a + bi e w = 47 + ci, tais que z + w = 0. Determine o valor de a, b e c, sabendo que esses números são inteiros e positivos. Primeiramente: z + w = 0 a + a b. i ab b. i c. i = 0 a ab a b b + c. i = 0 ( ) ( ) ( ) a ab + 47 = 0 ( I) e a b b + c = 0 II a ab a b a, como a é um número inteiro, este De (I) temos: + = = ( ) é divisor de 47, logo: ( ) ( ) ( ) a = 1 47 = b 1 b = 48 b = 4 já que b é positivo ou a = 47 1 = b a b = 10 b. Como a= 1 eb = 4, temos em (II) que: c = 0 c = 5 Logo a = 1, b = 4 e c = 5. 6
7 Sistema ELITE de Ensino IME - 016/017 Questão 06 Enunciado Um triângulo ABC tem o seu vértice A na origem do sistema cartesiano, seu baricentro é o ponto D(,) e seu circuncentro é o ponto E(55/18,5/6). Determine: a equação da circunferência circunscrita ao triângulo ABC; as coordenadas dos vértices B e C. A) Circunferência com centro E e raio EA = + 50 x y = : x + y = B) 9 9 AM = AD = (,) =, M =, EM = + = + = + 1= EMC : MC = EC EM = = MC MC = EM 1 Colocando os pontos no plano de Argand-Gauss 7
8 Sistema ELITE de Ensino IME - 016/ MC = EM i x + ( y ) i = + i i x = x = x + ( y ) i = 1+ i i y = 1 y = 4 C = (, 4) B + C M = B = M C = (9, 6) (, 4) B = (6,) 8
9 Sistema ELITE de Ensino IME - 016/017 Questão 07 cos x sen x Se + = 1, calcule o valor S. cos y sen y cos y + cos y sen y sen y S = + cos x sen x cos x cos y senx + = 1 cos x seny + sen x cos y = sen y cos y seny = cosy 4 cos y cos y Sabendo que: sen sen 4 sen y = y y cos y + cos y seny seny Logo: = + cos x senx cosy + 4 cos y cos y seny seny + 4 sen y = + cosx senx cos y sen y =4 + = 4T cos x senx onde T cos y sen y sen x cos y + cos x sen y = + = cos x senx sen x cos x sen x cos y(1 sen y) + cos x sen y(1 cos y) T = sen x cos x sen y cos y sen x cosy + cos x sen y + ( sen y cos y) (sen x seny + cos x cos y) T = sen x cosx (sen x cos y + cos x sen y) (sen x seny + cos x cos y + 1) T = sen x cos x cos y seny T = + (sen x seny + cos x cos y + 1) cos x senx senx cos y cos x seny T = sen y cos y + cos y + + sen y + sen y cosy+ cos x cos x senx senx senx cos x sen x cos y + sen y cos x T = cos x senx sen y cos y sen x cos x 1 ( sen y cos y) T = 1 + sen y cos y + = 1 sen x cos x sen x cos x Logo = 4 9
10 Sistema ELITE de Ensino IME - 016/017 Questão 08 Seja A = {1,,,4}. Quantas funções de A para A têm exatamente elementos em seu conjunto imagem? Entre as 56 funções de A para A, sorteiam-se as funções f e g, podendo haver repetição. Qual a probabilidade da função composta f g ser uma função constante? (a) 4 6 Escolha de elementos na imagem: C = Total de funções com esta imagem: Total não serve = 4 (imagem com 1 elemento) = 14 Logo: n o de funções = 6 14 = 84 (b) A função g pode ter imagem com: (I) 1 elemento: n o funções g: 4 n o funções f: este elemento pode se corresponder com 4 elementos os outros elementos podem se corresponder com 4 elementos Logo: = 4 5 = 64 4 (II) elementos: n o funções g: 84 (item a acima) n o funções f: estes elementos podem se corresponder com 4 elementos. Os outros elementos podem se corresponder com 4 elementos. Logo: = = 6 4 (III) 4 elementos: n o funções g: 4! = 4 n o funções f: estes 4 elementos podem se corresponder com 4 elementos Logo: 4 4 =
11 Sistema ELITE de Ensino IME - 016/017 (IV) elementos: n o funções g: = = 144 n o funções f: estes elementos podem se corresponder com 4 elementos, o outro elemento pode se corresponder com 4 elementos. Logo: = Total de funções (f g = constante) = ( ) 4 = N o de casos possíveis = = P = = =
12 Sistema ELITE de Ensino IME - 016/017 Questão 09 Em um triângulo ABC, a medida da bissetriz interna AD é a média geométrica entre as medidas dos segmentos BD e DC, e a medida da mediana AM é a média geométrica entre os lados AB e AC. Os pontos D e M estão sobre o lado BC de medida a. Pede-se determinar os lados AB e AC do triângulo ABC em função de a. Aplicando o teorema das bissetrizes, temos: m = n = a m = ac e n = ab c b b + c b + c b + c Pelo teorema de Stewart nas cevianas AD e AM : ( mn) c b b c + = 1 + = am mn an an am b c + = b + c = a 1 ab ac a a b + c b + c ( bc ) ( ) c b a + = 1 b c = a a a a a a a a De ( 1 ) e ( ): b = e c =. 4 4 ( ) 1
13 Sistema ELITE de Ensino IME - 016/017 Questão 10 1 Em um cone equilátero são inscritas duas esferas de raios R e R, conforme a figura + 1 abaixo. Um plano secante ao cone é traçado de forma que este seja tangente às duas esferas. Determine em termos de R o maior segmento possível que une dois pontos da curva formada pela interseção do referido plano com o cone. Lema: Pelo teorema de Dandelin o corte na superfície cônica é uma elipse com eixo maior = a, onde DE = a A maior distância entre pontos desse corte é o eixo maior dessa elipse e, portanto, é igual a DE. r = tg 0 AD = r = r AD AD = R + 1 1
14 Sistema ELITE de Ensino IME - 016/017 R AE = tg 0 AE = R = R + + DE = AE AD = R R = R ( ) DE 6 = = = + 1 R R R Demonstração do lema: Seja P um ponto do corte e F 1 e F os pontos de contato do plano de corte com as esferas. PF 1 e PR são duas tangentes traçadas de P à esfera menor PF 1 = PR PF e PS são duas tangentes traçadas de P à esfera maior PF = OS PF 1 + PF = PR + PS = RS = DE L.G. de P: Elipse de focos F 1 e F e eixo maior DE. 14
15 Sistema ELITE de Ensino IME - 016/017 Comentário da prova Nesse ano a prova veio abrangente, cobrando vários tópicos do ensino médio como matrizes, inequações, logaritmos, sistemas, números complexos, geometria analítica, trigonometria, análise combinatória e geometria plana, além de tópico raros no ensino médio, como seções cônicas e teorema de Dandelin. O nível de dificuldade veio difícil quando comparado a outros vestibulares e moderado quando comparado a outros anos do IME, possibilitando uma boa distribuição de notas entre os candidatos. As questões mais fáceis são a 1 e a 4 e as mais difíceis são a 7 e a 8. A questão 10 foi muito acessível para o candidato que soubesse o teorema de Dandelin. Mais uma vez queremos parabenizar a banca por uma bela prova que selecionará os melhores candidatos. Equipe de Matemática Álvaro Neto André Felipe Kessy Jhones Marcelo Xavier Rafael Sabino Ricardo Secco 15
16 Sistema ELITE de Ensino IME - 016/017 16
GABARITO IME. Matemática
GABARITO IME Matemática Sistema ELITE de Ensino IME - 04/05 Questão 0 GABARITO COMENTADO Os inteiros a, a, a,..., a 5 estão em PA com razão não nula. Os termos a, a e a 0 estão em PG, assim como a 6, a
A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?
Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:
MATEMÁTICA IME a a.a a r a a 9r a 2a r r a 9a r r 7a r 0 r 7a. Questão 1.
MATEMÁTICA IME 06 Questão. Os inteiros a, a, a 3,..., a 5 estão em PA com razão não nula. Os termos a, a e a 0 estão em PG, assim como a 6, a j e a 5. Determine j. Solução: Sendo a PA: a, a,..., a 5 e
IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 5 - Complementos De onde veio o nome seção cônica? Seções cônicas são as seções formadas pela interseção
5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:
MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
GABARITO COMENTADO. log 1. Solução: Primeiramente, as únicas condições de existências que devem ser satisfeitas são x 0 e x 1 e x 3
Sistema ELITE de Ensino IME - 014/015 Questão 01 GABARITO COMENTADO Determine os valores reais de x que satisfazem a inequação: 4 1 log 1 x log x 9 Primeiramente, as únicas condições de existências que
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:
1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
1º S I M U L A D O - ITA IME - M A T E M Á T I C A
Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}
NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B
NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento
PROFESSOR FLABER 2ª SÉRIE Circunferência
PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de
02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a
01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância
Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.
GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual
GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA
GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 6 de outubro de 010 Questão 01 GABARITO DISCURSIVA A base de um prisma reto ABCA 1 B 1 C 1 é um triângulo com o lado AB igual ao lado
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.
SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO GEOMETRIA 2ºANO 1) Se o ponto P(2m-8, m) pertence ao eixo das ordenadas, então: a) m é um número primo b) m é primo e par c) m é um quadrado perfeito d) m = 0 e) m
GEOMETRIA ANALÍTICA 2017
GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -
Exercícios de Matemática Geometria Analítica
Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais
Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.
MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais
Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago
olos Olímpicos de Treinamento Curso de Geometria - Nível 2 rof. Cícero Thiago Aula 11 otência de ponto e eixo radical 1. Definição Seja Γ uma circunferência de centro O e raio R. Seja um ponto que está
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),
PONTOS NOTAVEIS NO TRIANGULO
1. (Udesc) Observe a figura. Sabendo que os segmentos BC e DE são paralelos, que o ponto I é incentro do triângulo ABC e que o ângulo BIC é igual a 105, então o segmento AC mede: a) 5 b) 10 c) 0 d) 10
MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2
[ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen cos tg sec x =, cos x 0 cos x sen x tg x =, cos x 0 cos x cos x cotg x =, sen x 0 sen x sen x + cos x = ) a n = a + (n ) r ) A = onde
Turma preparatória para Olimpíadas.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected] Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura
Sistema ELITE de Ensino EFOMM 2017/2018
Sistema ELITE de Ensino EFOMM 017/018 PROVA BRANCA PROVA VERDE PROVA AZUL PROVA AMARELA 1 C 1 E 1 C 1 D 1 C 1 E 1 B 1 E D D C C E D C B D B E E D E E C 4 C 4 D 4 C 4 D 4 B 4 D 4 C 4 E 5 B 5 E 5 A 5 E 5
GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).
GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d
Geometria Analítica - AFA
Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-
Professor Mascena Cordeiro
www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)
Matemática 1 a QUESTÃO
Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é
Prova Vestibular ITA 2000
Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar
ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C
02 O resto da divisão por 11 do resultado da expressão
0 Num colégio verificou-se que 0não alunos têm pai e mãe professores. Qual o número de alunos do colégio, sabendo-se que 55 alunos possuem pelo menos um dos pais professor e que não eistem alunos irmão?
GAAL: Exercícios 1, umas soluções
GAAL: Exercícios 1, umas soluções 1. Determine o ponto C tal que AC = 2 AB, sendo A = (0, 2), B = (1, 0). R: Queremos C tal que AC = 2 AB. Temos AB = (1 0, 0 ( 2)) = (1, 2), logo 2 AB = (2, 4). Então queremos
Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a.
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFPE) Determine o ponto médio dos segmentos seguintes, que têm medidas inteiras:
ELEMENTOS DE GEOMETRIA Exercícios
ELEMENTOS DE GEOMETRIA Exercícios Mestrado em Matemtica para o Ensino - DMFCUL 004/00. Determine a equação da circunferência com centro (, e raio 3.. Determine os pontos de intersecção da recta y = com
Planificar o estudo para o exame de 2019
explicamat Planificar o estudo para o exame de 2019 Este documento apresenta o índice do resumo explicamat para o Exame Nacional de Matemática A de 2019 Em primeiro lugar deves ter conhecimento dos temas
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.
NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg
Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette
Lista de Estudo para a Prova de 1º Ano Prof. Lafayette 1. Um triângulo ABC é retângulo em A e os ângulos em B e C são, respectivamente, de 30 e 60. A hipotenusa mede 4. a) Faça um desenho representativo.
1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}
1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)
AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98.
AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98. ÍNDICE: Estatística e conteúdos abordados na prova de 2018 1... 5 Prova
o anglo resolve a prova de Matemática do ITA
o anglo resolve a prova de Matemática do ITA Código: 858005 É trabalho pioneiro. Prestação de serviços com tradição de confiabilidade. Construtivo, procura colaborar com as Bancas Examinadoras em sua tarefa
Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis
Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,
Potência de ponto e eixo radical
Polos Olímpicos de Treinamento Curso de Geometria - Nível 3 Prof. Cícero Thiago Aula 11 Potência de ponto e eixo radical Chamaremos de Eixo radical o lugar geométrico dos pontos que possuem a mesma potência
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano
NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.
MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = det M : determinante da matriz M M : inversa da matriz M MN : produto das matrizes M e N AB
GABARITO ITA MATEMÁTICA
GABARITO ITA MATEMÁTICA Sistema ELITE de Ensino ITA - 014/01 GABARITO 01. D 11. B 0. C 1. E 0. D 1. C 04. E 14. D 0. D 1. E 06. E 16. A 07. B 17. E 08. B 18. A 09. C 19. A 10. A 0. C Sistema ELITE de Ensino
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 3 - Parábolas Definição 1.1: Dados um ponto no plano F e uma reta d no plano, é denominada Parábola
Aula 10 Triângulo Retângulo
Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,
Simulado Nacional ITA
Simulado Nacional ITA Matemática Durate o simulado é proibido consultar qualquer tipo de material e o uso de calculadora. As respostas devem ser submetidas em paperx.com.br em até duas horas a partir do
LISTA DE EXERCÍCIOS 3º ANO
Questão Considere a figura. (3-3 ) cm O trajeto ACDB tem comprimento mínimo quando B, D e H são colineares. Com efeito, se D' é um ponto da reta DK e C' é o pé da perpendicular baixada de D' sobre a reta
Exercícios de Aprofundamento Matemática Geometria Analítica
1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados
ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...
Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO
Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: MATEMÁTICA Série: º ANO ATIVIDADES DE REVISÃO PARA O REDI (º BIMESTRE) ENSINO MÉDIO Data: /0/0. x y Questão 0) Dados os sistemas S : e x y
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROVA DE MATEMÁTICA A prova manteve a característica dos anos anteriores quanto à boa qualidade, contextualização e originalidade nos enunciados. Boa abrangência: 01) Funções (relação entre
Caderno 2: 55 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 2: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Lista 23 - GEOMETRIA ANALÍTICA - II
Lista - GEOMETRIA ANALÍTICA - II 1) (UFSM) Sejam o ponto A(, ) e a reta r, bissetriz do 1 o quadrante. A equação da reta que passa pelo ponto A, perpendicular à reta r, é (A) y = + - y = y = - + 8 y +
Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?
X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões
Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.
MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios
1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:
7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0
MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +
FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (9) -7 O ELITE RESOLVE IME 00 PORTUGUÊS/INGLÊS Você na elite das universidades! FUVEST 00 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (9) 5-0 O ELITE RESOLVE FUVEST
A) 1 hora. B) 1 dia. C) 20 minutos. D) 30 minutos. E) 45 minutos.
MATEMÁTCA 01. Júnior marca com Daniela às 1 horas para juntos assistirem a um filme, cuja sessão inicia às 16 horas. Como às 1 horas, Daniela não chegou, Júnior resolveu esperar um tempo t 1 igual a 1
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar 2º. BIMESTRE
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar º. BIMESTRE I PORCENTAGEM 1. Qual o montante, após dois anos, em uma aplicação que rende 10% ao semestre ( juros compostos), sabendo que o capital
Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza
Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza Hipérbole É o conjunto de todos os pontos de um plano cuja diferença das distâncias, em valor absoluto, a dois pontos fixos desse plano é constante.
Matemática 2 Módulo 9
Matemática Módulo 9 GEOMETRIA ANALÍTICA VI COMENTÁRIOS ATIVIDADES PARA SALA. Se duas circunferências são concêntricas, então os seus centros são coincidentes. Temos a circunferência λ : x + y 4x y + =
Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta
Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.
O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.
Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A 10. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0.
FICHA DE TRABALHO N.º 3 (GEOMETRIA ANALÍTICA DO ESPAÇO) TURMAS:11.ºA/11.ºB 2017/2018 (JANEIRO DE 2018) No âmbito da Diferenciação Pedagógica (conjunto de exercícios com diferentes níveis de dificuldade:
Matemática D Extensivo V. 3
Extensivo V. Resolva Aula 9 9.0) C 9.01) B Em AC, temos: 8 x + 7 x = 9 6 = x x = PQRO é um losango. Assim, os ângulos opostos são iguais. + 00 = 60 = 80 o Aula 10 9.0) B 10.01) Comprimento:. = Comprimento:.
(segmentos direcionados, ou seja, a razão será negativa se tiverem sentidos opostos).
Semana Olímpica 014 Nivel 3: Coordenadas Baricêntricas. Régis Prado Barbosa Coordenadas Baricêntricas são um jeito diferente de fazer contas em problemas de geometria, mais exatamente de usa vetores. Essa
BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO
BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO DOMÍNIO: Trigonometria e funções trigonométricas 1. Considera o triângulo PQR e as medidas apresentadas na figura ao lado. O comprimento do lado QR é: (A) 4 (C)
TD GERAL DE MATEMÁTICA 2ª FASE UECE
Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:
x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50
0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas
Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é
QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.
1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1
14 a lista de exercícios - SMA0300 - Geometria Analítica Estágio PAE - Alex C. Rezende Medida angular, distância, mudança de coordenadas, cônicas e quádricas 1. Seja θ = ang (r, s). Calcule sen θ nos casos
NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos
NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C
madematica.blogspot.com Página 1 de 35
PROVA DE MATEMÁTICA EsPCEx 011/01 MODELO A (ENUNCIADOS) 1) Considere as funções reais f x x, de domínio f x máximo e mínimo que o quociente g y a) e 1 b) 1 e 1 4,8 e g y pode assumir são, respectivamente
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
Unicamp - 2 a Fase (17/01/2001)
Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$
