AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS
|
|
|
- Lucca Salazar Ávila
- 9 Há anos
- Visualizações:
Transcrição
1 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA 1.1 A QUAÇÕ D MAXWLL Todos os poblemas de eleicidade e magneismo podem se esolvidos a pai das equações de Mawell: v 1. Lei de Gauss: φ. nda ˆ. Lei de Gauss paa o magneismo: 3. Lei de Faada: e C v. dl d d. dl µ I + µ ε Q ε.ˆ nda nda ˆ 4. Lei de Ampee: C d d. nda ˆ
2 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA 1. A QUAÇÃO D ONDA PARA ONDA LTROMAGNTICA Revisão da equação de onda numa coda: (, ) 1 (, ) Onde : Y(,) - posição de ponos de uma coda num insane. ϑ T µ - velocidade da onda T - ensão da coda µ - densidade linea de massa λ - compimeno de onda K π λ - é o numeo de onda
3 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA sen( K ω ) ω πf Cuja solução é:, Agoa mosaemos que as equações de Mawell acaeam uma equação de onda. Paa isso, consideemos que: A análise é no vácuo (sem coenes e sem cagas eléica) e são função do empo e uma coodenada: d X ( ondas planas ) Considee o seguine elemeno de volume no vácuo: O cálculo do fluo eléico aavés dos elemenos de áea: Áea :Campo não depende de Z enão Φ e Áea :Campo Y não depende de Y enão Φ e Áea :Campo X não depende de X.
4 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA não: φ φ e ( ).. d e, pois não em cagas inenas: d e, logo X não depende de Campo eléico que vaia no espaço deve se pependicula a dieção de popagação (esa mesma análise pode se feia paa o campo magnéico) não, vamos assumi que o campo eléico em ( ) vaia com :
5 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA Po ouo lado emos que: não: Logo: Pela Lei de Faada:. dl ( ). ( 1). [ ( ). ( 1)] nda ˆ... dl.ˆ nda (.. ) C.. (.. ) As conibuições ( 1 ) e ( ) se cancelam pois elas são iguais. e eisem uma componene dependene de enão deve eisi uma componene que depende do empo ou q.(i)
6 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA Assumimos que eisa uma componene enão ela depende de. Pela Lei de Ampee: d d. dl µ ˆ ε. nda Usando o pocedimeno aneio paa cada lado da equação acima µ ε q.(ii )
7 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA LTROMAGNÉTICA Deivando a equação (I) com elação a e a equação (II) com elação a, Temos : e i l d µ ε e igualando os emos em, emos: > quação de onda paa Y ε µ Agoa, deivando a equação (I) com elação a e a equação (II) com Relação a e igualando os emos em, emos: > quação de onda paa Z Onde a velocidade de popagação é: (velocidade da ε µ / ϑ Onde a velocidade de popagação é: (velocidade da lu) c s m / µ ε ϑ
8 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA A solução desas equações podem se dadas pó: sen ( K ϖ) ) sen ( K ϖ ) e Já vimos que: K ω deivando K. cos( K ϖ) sen( K ϖ ) > Logo: inegando K ω c
9 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA Concluímos que: As equações de mawell geaam equações de ondas ( eleomagnéicas ) paa popagação de e no vácuo, e são pependiculaes ene si e a dieção de popagação, são em fase, Popagam-se se a velocidade da lu ( c ), e A dieção de popagação é X Gáfico:
10 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA Veo Poning: H µ Valo médio de significa: Inensidade da onda eleomagnéica ( I ), negia média po unidade d de empo po unidade d de áea, Densidade do fluo de enegia. Paa vemos isso, calculamos: a enegia po unidade de volume associada a : η e 1 1 ε ² ε sen²( K ϖ) e a enegia po unidade de volume associada a : η m 1 1 ² π π ²( ) onde sen K ϖ ε µ c
11 Ou A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA 1 η m ε sen²( K ϖ) ηe Poano a enegia po unidade de volume é dada po: η η m + η e ε sen²( K ϖ ) sen²( K ϖ ) µ c ² Logo, a enegia po unidade de áea e empo seá: η c sen²( K ϖ ) sen ( K ϖ ). sen ( K ϖ ) µ c µ c µ. ηc. H µ Logo, podemos conclui que o módulo do veo Poning é igual a poência Insanânea da adiação eleomagnéica po unidade de áea: P H ). nda ˆ.ˆ nda (
12 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA Podemos, ainda calcula o valo médio quadáico da enegia po unidade de áea e empo {( sen ² θ ) 1/ } que seá chamada de inensidade da adiação med eleomagnéica (I): I med med c ηmed. med µ c µ µ Pessão de adiação (p ) de uma onda eleomagnéica: O momeno anspoado po uma onda eleomagnéica é igual a enegia anspoada dividido po c. Logo o momeno po unidade de empo ( foça ) po unidade de áea (pessão) pode se dado po: P I c
13 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA emplo: Uma lâmpada de 1W emie ondas eleomagnéicas unifomes. Calcula a inensidade id d (I), a pessão de adiação (p) e os campos eléicos e magnéicos a 3m da lâmpada admiindo que 5W apaeçam com adiação eleomagnéica. Dados: onda eleomagnéica com P5W e aio3m, a) Cálculo da inensidade I: Temos que: 5.ˆ > > P P nda P A IA I 4π ² med 4π.3² logo: I,44 W/m²
14 A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA b) Cálculo da Pessão de adiação: 9 P I,44 1, c 3.1 pa (muio pequena compaada com a pessão amosféica 1 5 Pa ) c) O valo máimo do campo magnéico é: I c µ µ 1/ 7 9 (µ p ) [(4π.1 )(1,47.1 )] 6,8. 1 c) O valo máimo do campo eléico: 8 T c 18,V / m
15 Rodolfo fanca e Rodolfo fanca e sebasiao acacio
Exemplos de fontes emissoras de ondas eletromagnéticas
emplos de fones emissoras de ondas eleromagnéicas Luz visível emiida por um filameno de lâmpada incandescene missoras de rádio e TV Osciladores de micro-ondas Aparelhos de raios X Diferem enre si, apenas
Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v
Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos
Exercícios propostos
Eecícios poposos 01 Esceva uma equação da ea nos casos a segui a) passa pelo pono P(, 1,) e em a dieção do veo u (,1,1 ) b) passa pelos ponos A(1,, 1) e B(0,,) 0 Veifique, em cada um dos iens abaio, se
carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi
PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:
PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas
Energia no movimento de uma carga em campo elétrico
O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.
carga da esfera: Q densidade volumétrica de carga: ρ = r.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga
Aula 6: Aplicações da Lei de Gauss
Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de
carga da esfera: Q densidade volumétrica de carga: ρ = r.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão
a) A energia potencial em função da posição pode ser representada graficamente como
Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >
ONDAS ELETROMAGNÉTICAS
LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo
PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:
UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão
2- FONTES DE CAMPO MAGNÉTICO
- FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a
Princípios de conservação e Equação de Evolução
Pincípios de consevação e Equação de Evolução Os pincípios fundamenais da Mecânica aplicam-se a copos maeiais e po isso em fluidos aplicam-se a uma poção de fluido e não a um volume fixo do espaço. Ese
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça
Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. 21 aula - 29mai/2007
Eleomagneismo II o Semese de 7 Nouno - Pof. Alvao Vannui aula - 9mai/7 Iniiamos o esudo da Emissão de adiação Eleomagnéia. Iniialmene, alulando os poeniais ϕ e A paa o Dipolo Eléio osilane, obivemos: A
3.1 Potencial gravitacional na superfície da Terra
3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +
Aula Invariantes Adiabáticos
Aula 6 Nesta aula, iemos inicia o estudo sobe os invaiantes adiabáticos, finalizando o capítulo 2. Também iniciaemos o estudo do capítulo 3, onde discutiemos algumas popiedades magnéticas e eléticas do
Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell
Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes
ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2ª LISTA DE EXERCÍCIOS. (Atualizada em abril de 2009)
ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Pofesso : Humbeo Anônio Baun d Azevedo ª LISTA DE EXERCÍCIOS (Aualizada em abil de 009 1 Dados A (1, 0, -1, B (, 1,, C (1, 3, 4 e D (-3, 0, 4 Deemina: a
AULA 2 CONDUÇÃO DE CALOR
Noas de aula de PME 36 Pocessos de ansfeência de Calo 0 AULA CONDUÇÃO DE CALOR CONDUÇÃO DE CALOR Conduibilidade ou Conduividade éica Da Lei de Fouie da condução de calo e-se ue o fluo de calo é dieaene
Ondas Electromagnéticas
Faculdad d ngnhaia Ondas lctomagnéticas Op - MIB 7/8 Pogama d Óptica lctomagntismo Faculdad d ngnhaia Anális Vctoial (visão) aulas lctostática Magntostática 8 aulas Ondas lctomagnéticas 6 aulas Óptica
CÁLCULO DIFERENCIAL E INTEGRAL II 014.2
CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do
Capítulo 11. Corrente alternada
Capíulo 11 Correne alernada elerônica 1 CAPÍULO 11 1 Figura 11. Sinais siméricos e sinais assiméricos. -1 (ms) 1 15 3 - (ms) Em princípio, pode-se descrever um sinal (ensão ou correne) alernado como aquele
n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss
Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,
DINÂMICA ATRITO E PLANO INCLINADO
AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes
Seção 24: Laplaciano em Coordenadas Esféricas
Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente
7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais
7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas
Introdução à Análise Diferencial dos Movimentos dos Fluidos
Inodção à Análise Difeencial dos Moimenos dos Flidos Eqação de conseação de massa (coninidade) Definições ailiaes: Fnção coene Deiada maeial Aceleação Roação de flidos Eqação de Conseação de Qanidade de
Campo Elétrico Carga Distribuída
Aula _ Campo lético Caga Distibuída Física Geal e peimental III Pof. Cláudio Gaça Capítulo Campos léticos de distibuições contínuas de caga elética Fundamentos: (Lei de Coulomb Pincípio da Supeposição)
Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas
Electostática OpE - MIB 7/8 ogama de Óptica e Electomagnetismo Análise Vectoial (evisão) aulas Electostática e Magnetostática 8 aulas Campos e Ondas Electomagnéticas 6 aulas Óptica Geomética 3 aulas Fibas
Exercícios resolvidos
Excícios solvidos 1 Um paallpípdo ABCDEFGH d bas ABCD m volum igual a 9 unidads Sabndo-s qu A (1,1,1), B(2,1,2), C(1,2,2), o véic E pnc à a d quação : x = y = 2 z (AE, i) é agudo Dmin as coodnadas do véic
Área projectada. Grandezas Radiométricas
Áea pojectada Conceito de áea pojectada (fontes extensas) Tata-se da áea pojectada num plano pependicula à diecção de popagação da p dω da Também se aplica paa o caso de uma supefície eflectoa (emboa aí
MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO
AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de
3.3 Potencial e campo elétrico para dadas configurações de carga.
. Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas
F-328 Física Geral III
F-328 Física Geal III Aula exploatóia Cap. 23 UNICAMP IFGW 1 Ponto essencial O fluxo de água atavessando uma supefície fechada depende somente das toneias no inteio dela. 2 3 1 4 O fluxo elético atavessando
. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E
7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas
Introdução ao Método de Elementos Finitos
Intodução ao Método de Elementos Finitos Jaime Atuo Ramíe Unidade 1 1 Método de Elementos Finitos Apesentação do cuso O que se estuda aqui? O que é peciso sabe? O que amos fae? 2 Apesentação do cuso O
Ondas Eletromagnéticas Resumo
Ondas Eletromagnéticas Resumo SEL SEL 317 Sistemas de comunicação Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Atenção! Este material didático é planejado para servir de apoio às
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA ANDERSON HOFFMANN
UIVERSIDADE FEDERAL DE SATA CATARIA CETRO DE CIÊCIAS FÍSICAS E MATEMÁTICAS DEPARTAMETO DE MATEMÁTICA ADERSO HOFFMA UMA ITRODUÇÃO AO PROBLEMA DE -CORPOS Floianópolis, 8 de novembo de 9 AGRADECIMETOS A
DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA
ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo
Asas Finitas Escoamento permamente e incompressível
Escoamento pemamente e incompessível Caacteização geomética da asa - Espessua finita muito meno do que a envegadua e a coda - Foma geomética deteminada po: a) Planta (vaiação de coda e ângulo de flecha)
4.4 Mais da geometria analítica de retas e planos
07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no
Superfícies Sustentadoras
Supefícies Sustentadoas Uma supefície sustentadoa gea uma foça pependicula ao escoamento não petuado, foça de sustentação, astante supeio à foça na diecção do escoamento não petuado, foça de esistência.
TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.
CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,
TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.
CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,
Teoria clássica das vibrações. Cap 22 ASHCROFT- MERMIN Cap 4 KITTEL
Teoia clássica das vibações Cap ASHCOFT- MEMIN Cap 4 KITTEL Hoje: Falhas do modelo da ede estática tica Teoia clássica do cistal hamônico Calo específico de um cistal clássico Lei de Dulong-Petit Teoia
Quasi-Neutralidade e Oscilações de Plasma
Quasi-Neutalidade e Oscilações de Plasma No pocesso de ionização, como é poduzido um pa eléton-íon em cada ionização, é de se espea que o plasma seja macoscopicamente uto, ou seja, que haja tantos elétons
