PRE29006 LISTA DE EXERCÍCIOS #
|
|
|
- Suzana Canejo Prada
- 9 Há anos
- Visualizações:
Transcrição
1 INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS # 06. Eercícios. Considere uma variável aleatória X cuja função densidade de probabilidade está mostrada abaio. h a (a) Determine o valor da constante h em função da constante a. (b) Determine e esboce a função de distribuição acumulada de X. (c) Determine Pr[X a/].. [, Eercício.4.30] Uma variável aleatória contínua X é definida pela seguinte função densidade de probabilidade: k, se 0 <, f X () = (a) Determine e esboce a função de distribuição acumulada de X. (b) Calcule a probabilidade de X assumir valores maiores que /. (c) Calcule a probabilidade de que, em 4 eperimentos independentes, a variável X assuma pelo menos uma vez um valor maior que /. 3. [3, Problem 4.33] Determine a função massa de probabilidade de uma variável aleatória X que representa o número de eperimentos de Bernoulli necessários para alcançar o segundo sucesso. Desafio: Generalize para o n-ésimo sucesso.
2 4. [4] Considere duas variáveis aleatórias discretas X e Y distribuídas conjuntamente de acordo com a tabela abaio. X Y 0 0 0,0 0,0 0,0 0,04 0,08 0,08 0,06 0, 0, (a) Determine as funções massa de probabilidade marginais de X e Y. (b) Determine as funções massa de probabilidade de X + Y e XY. (c) São X e Y independentes? (d) Determine as funções massa de probabilidade condicionais de X, dado Y = 0, e de Y, dado X =. (e) Determine Pr[X, Y ] e Pr[X Y = 0]. 5. Considere uma variável aleatória X cuja função de distribuição acumulada está mostrada abaio, em que a e b são constantes tais que 0 < a < b. F X () b a a b Determine e esboce a função densidade de probabilidade de X. Sua resposta deve estar em função de a e b. 6. Seja U uma variável aleatória contínua distribuída uniformemente no intervalo [0, 4]. Seja X uma outra variável aleatória, que depende de U da seguinte maneira: Dado que 0 U, então X é distribuída uniformemente no intervalo [0, ]. Caso contrário, tem-se X = 3. (a) Determine e esboce a função densidade de probabilidade de X. (b) Determine e esboce a função de distribuição acumulada de X. (c) Determine Pr[X ], Pr[X 3] e Pr[ X 3].
3 7. Sejam B, B, B 3 três variáveis aleatórias discretas independentes, cada qual distribuída uniformemente sobre o conjunto 0, }. Sejam X = B + B + B 3 e Y = B B B 3. (a) Determine a função massa de probabilidade conjunta de X e Y. (b) Determine e esboce as funções massa de probabilidade marginais de X e Y. (c) São X e Y variáveis aleatórias dependentes ou independentes? Justifique. 8. Considere a variável aleatória X definida através do seguinte eperimento probabilístico. Um dado honesto é lançado. Se o resultado for, então X =. Se o resultado for ou 3, então X = 0. Se o resultado for 4, então X =. Se o resultado for 5 ou 6, então X Unif(, ). (a) Determine e esboce a função densidade de probabilidade de X. (b) Determine Pr[ X 3]. (c) Determine Pr[X X 3]. 9. O tempo de espera X, em minutos, de um usuário em um sistema de filas é zero, se ele encontra o sistema livre, ou eponencialmente distribuído, se ele encontra o sistema ocupado mais precisamente, f X ocupado () = e u(). As probabilidades de ele encontrar o sistema livre ou ocupado são de 5 % e 75 %, respectivamente. (a) Determine e esboce a função densidade de probabilidade de X. (b) Determine a probabilidade de o usuário esperar mais do que minuto. 0. [, Eercício 3.8] Considere a função densidade de probabilidade conjunta f X,Y (, y) = π, se + y, (a) Determine a função densidade de probabilidade condicional f X Y =y (). (b) Verifique se X e Y são ou não variáveis aleatórias estatisticamente independentes. (c) Calcule a probabilidade de X ser positivo sendo dado que Y é positivo. (d) Calcule a probabilidade de X ser maior que Y. 3
4 . [, Eercício 3.9] Considere duas variáveis aleatórias X e Y distribuídas conjuntamente de acordo com a função densidade de probabilidade k(3 y), se 0 4 e 0 y, f X,Y (, y) = (a) Determine o valor da constante k. (b) Determine e esboce as densidades marginais de X e Y. (c) São X e Y independentes? (d) Calcule Pr[Y > X].. [, Eercício 3.9] Considere duas variáveis aleatórias X e Y com função densidade de probabilidade conjunta constante e diferente de zero apenas na área sombreada da figura abaio. y (a) Determine a função densidade de probabilidade conjunta de X e Y. (b) Determine e esboce a funções densidade de probabilidade marginais de X e Y. (c) Determine Pr[Y > / X /]. 3. Considere duas variáveis aleatórias X e Y com função densidade de probabilidade conjunta dada por k, se (, y) R, f X,Y (, y) = k, se (, y) R, onde k é uma constante positiva e R e R são as regiões sombreadas da figura abaio. y R R 4
5 (a) Determine o valor da constante k. (b) Determine e esboce as funções densidade de probabilidade marginais de X e de Y. (c) Determine e esboce as funções de distribuição acumuladas de X e de Y. (d) Determine a função densidade de probabilidade condicional de X dado que Y = y. Esboce a função densidade de probabilidade obtida, em função de, para y = 3/ e y = 3/. 4. Considere duas variáveis aleatórias X e Y com função densidade de probabilidade conjunta f X,Y (, y) constante e diferente de zero apenas na área sombreada da figura abaio. y (a) Determine e esboce as funções densidade de probabilidade marginais de X e de Y. (b) Determine e esboce as funções de distribuição acumuladas marginais de X e de Y. (c) Determine a função densidade de probabilidade condicional de X dado que Y = y. Esboce a função densidade de probabilidade obtida, em função de, para y = / e y = 3/. 5. [, Eercício 3.] Uma régua de comprimento unitário é quebrada em um ponto aleatório. O pedaço da esquerda é novamente quebrado. Seja X a variável aleatória que define, a partir da etremidade esquerda da régua, o ponto em que a régua é quebrada pela primeira vez e Y a variável aleatória que define o segundo ponto de quebra. (a) Determine as funções densidade de probabilidade marginais f X () e f Y (y) e as funções densidade de probabilidade condicionais f X Y =y () e f Y X= (y). (b) Calcule a probabilidade de que um triângulo possa ser formado com as três peças obtidas. (Lembre-se de que, num triângulo, o comprimento de qualquer um dos lados é menor que a soma dos comprimentos dos outros dois lados.) 5
6 Referências [] J. P. A. Albuquerque, J. M. P. Fortes, and W. A. Finamore, Probabilidade, Variáveis Aleatórias e Processos Estocásticos. Editora Interciência, 008. [] P. L. O. Costa Neto and M. Cymbalista, Probabilidades, nd ed. Editora Edgard Blücher, 006. [3] S. M. Kay, Intuitive Probability and Random Processes using MATLAB R. Springer, 006. [4] L. A. Peternelli, Estatística I: Notas de Aula. Universidade Federal de Viçosa, 00. Respostas 0, se < 0,. (a) h = a. (b) F X() =, se 0 a, a, se > a. 0, se < 0,. (a) F X () =, se 0,, se >. (c) 4. (b). (c) p X () = ( )( p) p, =,,.... p X () = 4. (a) p X (0) = 0,50, p X () = 0,0, p X () = 0,30. p Y (0) = 0,0, p Y () = 0,40, p Y () = 0,40. ( ) ( p) n p n, =,,.... n (b) p X+Y (0) = 0,0, p X+Y () = 0,4, p X+Y () = 0,34, p X+Y (3) = 0,0, p X+Y (4) = 0,. p XY (0) = 0,60, p XY () = 0,08, p XY () = 0,0, p XY (3) = 0, p XY (4) = 0,. (c) Sim. (d) p X Y =0 (0) = 0,50, p X Y =0 () = 0,0, p X Y =0 () = 0,30. p Y X= (0) = 0,0, p Y X= () = 0,40, p Y X= () = 0,40. (e) 0,30 e 0,70. /(b a), se a < < b, 5. f X () = 6. (a) f X () = 8 [0 ] δ(). 0, se < 0, (b) F /8, se 0 <, X() = /4, se < 3,, se 3. (c) 8,, 7 8. /8, se (, y) = (0, 0), /8, se = 0, 3/8, se (, y) = (, 0), 3/8, se =, 7/8, se y = 0, 7. (a) p X,Y (, y) = (b) p X () = p Y (y) = 3/8, se (, y) = (, 0), 3/8, se =, /8, se y =. /8, se (, y) = (4, ). /8, se = 4. (c) 3. 6 (d) X e Y são dependentes. 8. (a) f X () = 6 δ( + ) + 3 δ() + δ( ) + 6 [ ]. (b) 4. (c) (a) f X () = 4 δ() e u(). (b) 3 4e 0,76. 6
7 0. (a) f X Y =y () = y, se y, (b) X e Y são dependentes. (c). (d).. (a) k = 6. (b) f, se 0 4, X() = 4 (c) Sim. (d) 5 4., se e 0 y,. (a) f X,Y (, y) = (definido apenas para y ) 3 y, se 0 y, f Y (y) = 4 (b) f X () =, se, f Y (y) = ( y), se 0 y, (c) (a) k = 3. /3, se, /3, se y, (b) f X () = /3, se, f Y (y) = /3, se y, (c)., se,, se, (d) f X Y =3/ () = f X Y = 3/ () = /6, se <, /3, se 0 < y <, 4. (a) f X () = /3, se < <, f Y (y) = /3, se < y <, (b). /, se < <, /4, se <, (c) f X Y =/ () = f X Y =3/ () =, se 0, ln y, se 0 y, 5. (a) f X () = f Y (y) =, se y, f X Y =y () = ln y (definido apenas para 0 y ), se 0 y, f Y X= (y) = (definido apenas para 0 ) (b) ln 0,93. 7
PRE29006 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável
PROCESSOS ESTOCÁSTICOS
PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas e Sinais CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Somas aleatórias Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes Números Simulação de Sistemas Discretos É
Estatística 4 - Variáveis Aleatórias Unidimensionais
Estatística 4 - Variáveis Aleatórias Unidimensionais UNESP FEG DPD Prof. Edgard - 11 4-1 VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS Variável Aleatória X é uma Função que associa um número real a cada Evento
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Avaliação e Desempenho Aula 5
Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Análise da dados através de gráficos Introdução a Simulação Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes
Distribuições Contínuas de Probabilidade
Distribuições Contínuas de Probabilidade Uma variável aleatória contínua é uma função definida sobre o espaço amostral, que associa valores em um intervalo de números reais. Exemplos: Espessura de um item
A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).
Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,
Cap. 4 - Probabilidade
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa
PLANO DE ENSINO. NOME DA DISCIPLINA: Estatística e Probabilidade CÓDIGO: 63 EMENTA
PLANO DE ENSINO NOME DA DISCIPLINA: Estatística e Probabilidade CÓDIGO: 63 CURSO: Licenciatura em Matemática SEMESTRE: 6º PRÉ-REQUISITOS: Cálculo 2 CARGA HORÁRIA TEÓRICA: 67h / 80 aulas CARGA HORÁRIA PRÁTICA:
MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso
Acadêmico(a) Turma: Capítulo 7: Limites
Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores
5. PRINCIPAIS MODELOS CONTÍNUOS
5. PRINCIPAIS MODELOS CONTÍNUOS 04 5.. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros α e β (α β) se sua função densidade de probabilidade é dada por f ( ) β α 0, Notação:
IND 1115 Inferência Estatística Aula 6
Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Probabilidade Condicional Independência de Eventos Teorema da Probabilidade Total Lei de Bayes Aula de hoje Exemplo Lei de Bayes Variáveis Aleatórias
Lista de Exercícios 2 1
Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual
SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2
SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística
COM29008 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES COM98 LISTA DE EXERCÍCIOS # 8. Exercícios. [, 9.5] Um processo estocástico gaussiano,
MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ 3 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 2 3 4 5 6 7 8 9 0 2 3 4 5 e 6 Introdução à probabilidade (eventos, espaço
Distribuição de Probabilidade Conjunta
. DISTRIBUIÇÃO DE ROBABILIDADE CONJUNTA O nosso estudo de variável aleatória e de suas funções de probabilidade até agora se restringiram a espaços amostrais unidimensionais nos quais os valores observados
Exercícios sobre Polinômios
uff Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Eercícios sobre Polinômios Prof Saponga Rua Mário Santos Braga
Excel INTERMEDIÁRIO Estatística. Prof. Cassiano Isler Turma 3
Excel INTERMEDIÁRIO Prof. Cassiano Isler 2017.1 - Turma 3 s s Prof. Cassiano Isler Excel INTERMEDIÁRIO - Aula 4 2 / 29 s COSTA NETO, P. L. O.. 2. ed. São Paulo: Edgard Blücher (2002). GÓMEZ, Luis Alberto.
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017
AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Probabilidade e Estatística
Plano de Curso Probabilidade e Estatística UAEst/CCT/UFCG Ementa Fenômeno aleatório versus fenômeno determinístico. Espaço amostral e eventos. Introdução à teoria das probabilidades. Abordagem axiomática
Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014
Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 1. O diâmetro X de{ um cabo elétrico é uma variável aleatória com densidade de probabilidade K(2x x dada por 2 ), 0 x 1 0, x < 0 ou x > 1. (a)
Lista de exercícios 2 Métodos Estatísticos Básicos
Lista de exercícios 2 Métodos Estatísticos Básicos Prof. Regis Augusto Ely 1 de julho de 2014 1 Variáveis aleatórias unidimensionais 1. Suponha que a variável aleatória X tenha os valores possíveis 1,
MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições
Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa
Introdução aos Proc. Estocásticos - ENG 430
Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017
padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições
Estatística Aplicada I
Estatística Aplicada I ESPERANCA MATEMATICA AULA 1 25/04/17 Prof a Lilian M. Lima Cunha Abril de 2017 EXPERIMENTO RESULTADOS EXPERIMENTAIS VARIÁVEL ALEATÓRIA X = variável aleatória = descrição numérica
AULA 9 - Variável aleatória bidimensional discreta
AULA 9 - Variável aleatória bidimensional discreta Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variáveis aleatórias bidimensionais Definition Sejam ɛ um experimento e S um espaço amostral
Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril
Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
PROBABILIDADE & ESTATÍSTICA
PROBABILIDADE & ESTATÍSTICA Lilian de Souza Vismara Mestre Eng. Elétrica ESSC / USP Licenciada em Matemática UFSCar PROBABILIDADE & ESTATÍSTICA VARIÁVEIS ALEATÓRIAS DISTRIBUIÇÕES DE PROBABILIDADE Lilian
M. Eisencraft 6.3 Funções de correlação 81. R YX (τ) R YY (τ). (6.19) R XY (τ) = R YX ( τ) (6.20)
M. Eisencraft 6.3 Funções de correlação 81 R XY (τ) = E[X(t)Y(t+τ)] e (6.17) R YX (τ) = E[Y(t)X(t+τ)]. (6.18) As propriedades de correlação de dois processos X(t) e Y(t) podem ser mostradas convenientemente
AULA 15 - Distribuição de Bernoulli e Binomial
AULA 15 - Distribuição de Bernoulli e Binomial Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variável Aleatória de Bernoulli Podemos dizer que as variáveis aleatórias mais simples entre as
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Cálculo III-A Módulo 1
Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Prezado aluno, Cálculo III-A Módulo Seja bem-vindo à nossa disciplina. Este teto possui - salvo
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Introdução à simulação Geração de números aleatórios Lei dos Grandes Números Aula de hoje Geração de variáveis aleatórias: Transformada Inversa
Lista de Exercícios - Modelos Probabilísticos 1 INE 7002 GABARITO LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS
Lista de Exercícios - Modelos Probabilísticos INE 72 GABARITO LISTA DE EERCÍCIOS MODELOS PROBABILÍSTICOS 35) a) Binomial: cada realização tem apenas 2 resultados possíveis, o número de realizações é conhecido,
Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE
Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de
Compressão e Codificação de Dados. Primeiro Exame e Segundo Teste
Compressão e Codificação de Dados. Primeiro Exame e Segundo Teste Mestrado em Engenharia Electrotécnica e de Computadores, IST 7 de Janeiro de 2012 Nome: Número: NOTAS: Exame (3 horas): tudo. Segundo teste
Programa Analítico de Disciplina EST106 Estatística I
Programa Analítico de Disciplina Departamento de Estatística - Centro de Ciências Exatas e Tecnológicas Número de créditos: 4 Teóricas Práticas Total Duração em semanas: 15 Carga horária semanal 4 0 4
Algoritmos Probabilísticos
Algoritmos Probabilísticos Gilson Evandro Fortunato Dias Orientador: José Coelho de Pina Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Ciência da Computação MAC0499 p.
Análise e Previsão de Séries Temporais Aula 1: Introdução às séries temporais. Eraylson Galdino
Análise e Previsão de Séries Temporais Aula 1: Introdução às séries temporais [email protected] Agenda Séries Temporais: Definições Exemplos Modelos simples com média zero: Ruído I.I.D Processo Binário Random
Aula 11. Variáveis Aleatórias Contínuas Bidimensionais
Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto
Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios
Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Prof. Eduardo Simas ([email protected]) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade
2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).
1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
