Algoritmos Probabilísticos
|
|
|
- Ângela Teixeira
- 6 Há anos
- Visualizações:
Transcrição
1 Algoritmos Probabilísticos Gilson Evandro Fortunato Dias Orientador: José Coelho de Pina Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Ciência da Computação MAC0499 p. 1
2 Algoritmos Probabilísticos Fazem escolhas aleatórias durante a sua execução. MAC0499 p. 2
3 Vantagens Costumam ser mais eficientes que algoritmos determinísticos. E na maior parte dos casos são também mais simples e fáceis de implementar. MAC0499 p. 3
4 Desvantagens A resposta pode ter alguma probabilidade de estar certa. Ou o algoritmo é eficiente com alguma probabilidade. MAC0499 p. 4
5 Como eles se comportam? A análise probabilística ajuda-nos a definir a complexidade e o comportamento destes algoritmos. A entrada do problema é escolhida aleatoriamente de acordo com alguma distribuição de probabilidade. MAC0499 p. 5
6 Como eles se comportam? A análise probabilística ajuda-nos a definir a complexidade e o comportamento destes algoritmos. A entrada do problema é escolhida aleatoriamente de acordo com alguma distribuição de probabilidade. Temos como exemplo a análise do Quicksort-Aleatorizado. MAC0499 p. 6
7 st-caminhos em Grafos Seja G um grafo com n = V e m = E. Para s e t em V (G), existe um caminho de s a t? MAC0499 p. 7
8 st-caminhos em Grafos Seja G um grafo com n = V e m = E. Para s e t em V (G), existe um caminho de s a t? Uma busca em largura ou em profundidade consomem Ω(n) para achar um st-caminho. MAC0499 p. 8
9 Cadeia de Markov Processo Estocástico: Y = {X(t) : t T }. Se T é enumerável, então Y é um processo de tempo discreto. Um processo estocástico de tempo discreto X 0,X 1,X 2,... é uma cadeia de Markov se Pr(X t = a t X t 1 = a t 1,...,X 0 = a 0 ) = Pr (X t = a t X t 1 = a t 1 ). MAC0499 p. 9
10 Passeio Aleatório Um passeio aleatório é uma cadeia de Markov. MAC0499 p. 10
11 Passeio Aleatório Um passeio aleatório é uma cadeia de Markov. Se a partícula está no vértice i e tem d(i) arestas que saem de i, então a partícula vai para um vértice vizinho j com probabilidade 1 d(i). MAC0499 p. 11
12 O algoritmo Começa um passeio aleatório a partir de s. Se achar um caminho em até 4n 3 passos, devolva sim. Caso contrário, devolva não. MAC0499 p. 12
13 Funciona? Se não existe caminho, o algoritmo devolve a resposta certa. Pode errar a resposta se não achar o caminho em 4n 3 passos. MAC0499 p. 13
14 Funciona? Se não existe caminho, o algoritmo devolve a resposta certa. Pode errar a resposta se não achar o caminho em 4n 3 passos. Seja X o número de passos dados pelo passeio. Qual é a probabilidade de X > 4n 3? MAC0499 p. 14
15 Cover Time de G O cover time de um grafo G é o máximo do tempo esperado que um passeio aleatório começando em v, para todo v V, leva para atingir todos os vértices de G. O cover time é limitado superiormente por 4 V. E. E[X] < 4nm 4n(n(n 1)) 2 = 2n 3 2n 2 < 2n 3. MAC0499 p. 15
16 Desigualdade de Markov Seja Y uma variável aleatória que assume valores positivos. Para todo a > 0, Pr(Y a) E[Y ] a. MAC0499 p. 16
17 Desigualdade de Markov Seja Y uma variável aleatória que assume valores positivos. Para todo a > 0, Pr(Y a) E[Y ] a. Então a Pr(X 4n 3 ) 2n3 4n 3 = 1 2. MAC0499 p. 17
18 Conclusões O algoritmo devolve a resposta certa com probabilidade 1 2. E precisa de menos espaço: O(log n) bits. MAC0499 p. 18
19 Disciplinas Relacionadas MAC0328 Algoritmos em Grafos MAC0338 Análise de Algoritmos MAC0323 Estruturas de Dados MAE0228 Noções de Probabilidade e Processos Estocásticos MAC0499 p. 19
20 Referências Sítios do projeto: MAC0499 p. 20
Introdução aos Processos Estocásticos em Engenharia Elétrica 1
Introdução aos Processos Estocásticos em Engenharia Elétrica 10 de março de 2014 Introdução aos Processos Estocásticos em Engenharia Elétrica 1 Conteúdo 1 Modelos Matemáticos - Determinísticos e Probabiĺısticos
Cadeias de Markov. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Cadeias de Markov Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulos 3 e 4 Taylor & Karlin 1 / 71 Cadeias de Markov Seja X 0, X 1,...
Teoria dos Grafos Aula 3
Teoria dos Grafos Aula 3 Aula passada Exemplo (mapas) Definições Algumas propriedades Aula de hoje Representando grafos Matriz e lista Comparando tempos de acesso Grafo G=(V, E) Grafo V = conjunto de vértices
Resolvendo o problema de snapshot em redes DTN utilizando algoritmos distribuídos
Resolvendo o problema de snapshot em redes DTN utilizando algoritmos distribuídos Maurício José Da Silva Orientador Ricardo Augusto Rabelo Oliveira PPGCC, Universidade Federal de Ouro Preto 11 de julho
1. Computação Evolutiva
Computação Bioinspirada - 5955010-1 1. Computação Evolutiva Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 1.7. Outras Metaheurísticas Populacionais 1.7.1. Metaheurísticas Populacionais
Processos Estocásticos aplicados à Sistemas Computacionais
Processos Estocásticos aplicados à Sistemas Computacionais Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia
Aula 14. Aula de hoje. Aula passada
Aula 14 Aula passada Autovalores, autovetores, decomposição Convergência para estacionaridade Tempo de mistura Spectral gap Tempo de mistura de passeios aleatórios Aula de hoje Caminho amostral Teorema
Avaliação Quantitativa de Sistemas
Avaliação Quantitativa de Sistemas Contexto A Avaliação Quantitativa de Sistemas permite a avaliação de sistemas antes mesmo da sua implementação física. Dessa forma, é possível avaliar um sistema projetado
Como modelar o comportamento de um sistema? MAB-515
Como modelar o comportamento de um sistema? MAB-515 Possibilidades de modelagem PARAMETRIZA modelo matemático experimento real AJUDA A COMPREENDER SIMULAÇÃO SOLUÇÃO ANALÍTICA MEDIDAS EXPERIMENTAIS NO MODELO
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Análise da dados através de gráficos Introdução a Simulação Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Somas aleatórias Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes Números Simulação de Sistemas Discretos É
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Introdução à simulação Geração de números aleatórios Lei dos Grandes Números Aula de hoje Geração de variáveis aleatórias: Transformada Inversa
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 20
Teoria das Filas aplicadas a Sistemas Computacionais Aula 20 Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia
PRE29006 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS # 06. Eercícios. Considere uma variável aleatória
Complexidade de algoritmos Notação Big-O
Complexidade de algoritmos Notação Big-O Prof. Byron Leite Prof. Tiago Massoni Engenharia da Computação Poli - UPE Motivação O projeto de algoritmos é influenciado pelo estudo de seus comportamentos Problema
Algoritmo de Dijkstra Estudo e Implementação
Teoria dos Grafos 0/0 Algoritmo de Dijkstra Estudo e Implementação Professora: Claudia Boeres Alunos: José Alexandre Macedo Maycon Maia Vitali Problema do Caminho Mínimo Qual o caminho mínimo entre um
Estatística 4 - Variáveis Aleatórias Unidimensionais
Estatística 4 - Variáveis Aleatórias Unidimensionais UNESP FEG DPD Prof. Edgard - 11 4-1 VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS Variável Aleatória X é uma Função que associa um número real a cada Evento
1 Conceitos Iniciais. 1.1 Grafos
1 Conceitos Iniciais O objetivo deste capítulo é revisar conceitos básicos, mas fundamentais, sobre grafos, passeios aleatórios (random walks) com especial destaque aos passeios aleatórios sobre grafos
Plano. Aspectos Relevantes de HMMs. Teoria de HMMs. Introdução aos Modelos Escondidos de Markov
Plano Esta apresentação é para pessoas sem conhecimento prévio de HMMs Introdução aos Modelos Escondidos de Markov 2004 Objetivos: Ensinar alguma coisa, não tudo (Visão geral, sem muitos detalhes). Tentar
Teoria dos Grafos Aula 14
Teoria dos Grafos Aula 14 Aula passada MST Aula de hoje Construção de algoritmos Paradigma guloso Escalonando tarefas no tempo (interval scheduling) Projetando Algoritmos Dado um problema P, como projetar
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
1/7 1/ se hoje não chove, amanhã não vai chover com probabilidade p 00 = 6/7;
6/7 nao chove 1/7 chove 1/3 "0" /3 "1" Figura 1: Todas as transições com suas respectivas probabilidades representadas através de um grafo. Notem que para cada estado, a soma das probabilidades das flechas
MAE GABARITO DA LISTA 2-04/10/2016
MAE5709 - GABARITO DA LISTA - 04/0/06 Exercício.7.5. Primeira Parte Seja P uma matriz de transição sobre um espaço de estados finito S. Mostre que uma distribuição π é invariante para P se e somente se
Técnicas de Projeto de Algoritmos
UNIVERSIDADE NOVE DE JULHO - UNINOVE Pesquisa e Ordenação Técnicas de Projeto de Algoritmos Material disponível para download em: www.profvaniacristina.com Profa. Vânia Cristina de Souza Pereira 03 _ Material
Teoria da Informação
Charles Casimiro Cavalcante [email protected] Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Programa de Pós-Graduação em Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/
Processos Estocásticos e Cadeias de Markov Discretas
Processos Estocásticos e Cadeias de Markov Discretas Processo Estocástico(I) Definição: Um processo estocástico é uma família de variáveis aleatórias {X(t) t T}, definidas em um espaço de probabilidades,
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1
Técnicas de Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas de Inteligência Artificial Aula 9 Algoritmos Genéticos Max Pereira Algoritmos Genéticos Algoritmos Genéticos São técnicas de busca e
Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto
Algoritmo Genético Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução 2. Conceitos Básicos 3. Aplicações 4. Algoritmo 5. Exemplo Introdução São técnicas de busca
Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013
Teoria dos Grafos Aula 5 - Estruturas de Dados para Grafos Profª. Alessandra Martins Coelho março/2013 Estrutura é o que caracteriza o próprio grafo e independe da forma como ele é representado. A representação
Tópicos Avançados em Algoritmos
Tópicos Avançados em Algoritmos Armando Matos 2008 Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto 2 Tópicos Avançados de Algoritmos Armando B. Matos DCC-FC-UP 2009
2. Complexidade de Algoritmos
Introdução à Computação II 5952011 2. Complexidade de Algoritmos Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 2.1. Introdução 2.1.1. Revisão de Pseudo-Código 2.1.2.
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos
Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos Teobaldo L. Bulhões Júnior a a Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ, Brazil
Redes Complexas Aula 14
Redes Complexas Aula 14 Aula passada Busca em redes Explorando estrutura Navegação em redes Algoritmo eficiente e estrutura Aula de hoje Resilience ( robustez ) Tipo de falhas Influência da estrutura Análise
Técnicas de Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas de Inteligência Artificial Aula 9 Algoritmos Genéticos Max Pereira Algoritmos Genéticos São técnicas de busca e otimização. Uma metáfora
Pesquisa Operacional Introdução. Profa. Alessandra Martins Coelho
Pesquisa Operacional Introdução Profa. Alessandra Martins Coelho julho/2014 Operational Research Pesquisa Operacional - (Investigação operacional, investigación operativa) Termo ligado à invenção do radar
HORÁRIO ESCOLAR - CIÊNCIA DA COMPUTAÇÃO 2017 Atualizado 02/02/2017 INGRESSANTES A PARTIR DE 2010
HORÁRIO ESCOLAR - CIÊNCIA DA COMPUTAÇÃO 2017 Atualizado 02/02/2017 INGRESSANTES A PARTIR DE 2010 1 0 ANO - 1 0. SEMESTRE (Grade Curricular Nova) Cálculo Diferencial e Lógica Matemática Discreta Integral
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema
AULA 13. Algoritmos p.526/582
AULA 13 Algoritmos p.526/582 Ordenação em tempo linear CLRS 8.2 8.3 Algoritmos p.527/582 Ordenação por contagem Recebe vetores A[1.. n] e B[1.. n] e devolve no vetor B[1.. n] os elementos de A[1.. n] em
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008
Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Introdução São técnicas de busca e otimização. É a metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin.
Projeto e Análise de Algoritmos NP Completude. Prof. Humberto Brandão
Projeto e Análise de Algoritmos NP Completude Prof. Humberto Brandão [email protected] Universidade Federal de Alfenas versão da aula: 0.4 Introdução Problemas intratáveis ou difíceis são comuns
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
5COP096 TeoriadaComputação
Sylvio 1 Barbon Jr [email protected] 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema
Lucas Santana da Cunha 23 de maio de 2018 Londrina
Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ 23 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real aos resultados de um experimento
Mecanismos de Interrupção e de Exceção, Barramento, Redes e Sistemas Distribuídos. Sistemas Operacionais, Sistemas
Arquitetura de Computadores, Arquitetura de Computadores Organização de Computadores, Conjunto de Instruções, Sistemas Operacionais, Sistemas Operacionais, Sistemas Mecanismos de Interrupção e de Exceção,
AULA 1 - Modelos determinísticos vs Probabiĺısticos
AULA 1 - Modelos determinísticos vs Probabiĺısticos Susan Schommer Econometria I - IE/UFRJ O que é Econometria? Aplicação de métodos estatísticos e matemáticos para analisar os dados econômicos, com o
Programação de Sistemas Distribuídos e Concorrência
Programação de Sistemas Distribuídos e Concorrência Aula 4 15/08/09 Prof Carlos Eduardo 1 Descentralizadas Arquiteturas centralizadas são distribuições verticais (componentes logicamente diferentes em
Oalgoritmo de Dijkstra
Dijkstra Oalgoritmo de Dijkstra O algoritmo de Dijkstra, concebido pelo cientista da computação holandês Edsger Dijkstra em 1956 e publicado em 1959, soluciona o problema do caminho mais curto num grafo
PRE29006 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável
Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32
Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).
Canais discretos sem memória e capacidade do canal
Canais discretos sem memória e capacidade do canal Luis Henrique Assumpção Lolis 17 de outubro de 2013 Luis Henrique Assumpção Lolis Canais discretos sem memória e capacidade do canal 1 Conteúdo 1 Canais
Agentes de Procura Procura Estocástica. Capítulo 3: Costa, E. e Simões, A. (2008). Inteligência Artificial Fundamentos e Aplicações, 2.ª edição, FCA.
Agentes de Procura Procura Estocástica Capítulo 3: Costa, E. e Simões, A. (2008). Inteligência Artificial Fundamentos e Aplicações, 2.ª edição, FCA. AGENTES DE PROCURA ESTOCÁSTICA 1 Procura Aleatória O
DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação. Disciplina: MACS 11º ano 2014/2015
AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Disciplina: MACS 11º ano 2014/2015 Início Fim Nº de
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 Metaheurística: São técnicas de soluções que gerenciam uma interação entre técnicas de busca local e as estratégias de nível superior para criar um processo de
Mediana. Aula 09. Menor. i-ésimo menor elemento. Algoritmo de Seleção. -ésimo menor elemento. Mediana é o n+1. -ésimo menor ou o n+1
Mediana Aula 09 Algoritmo de Seleção Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Baseado em slides do Prof. Paulo Fiofilof Mediana é o n+1 2 -ésimo menor ou o n+1 2 -ésimo
