PROCESSOS ESTOCÁSTICOS
|
|
|
- Lucca Guimarães Desconhecida
- 9 Há anos
- Visualizações:
Transcrição
1 PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas e Sinais CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos Editora, 979. CAMARGO, C. C. de, Confiabilidade Aplicada à Sistemas de Potência, Rio de Janeiro: Livros Técnicos e Científicos Editora, Santa Catarina: FEESC, 98.
2 PROCESSOS ESTOCÁSTICOS KOVÁCS, Z.L. Teoria da Probabilidade e Processos Estocásticos. São Paulo: Edição Acadêmica, 996. JONES, P.W., SMITH, P. Stochastic Processes An Introduction. nd edition, Boca Raton: CRC Press, 009. KAY, S.M. Intuitive Probability and Random Processes using MATLAB, Springer, 006.
3 PROCESSO ESTOCÁSTICO Fenômeno que varia em algum grau, de forma imprevisível, à medida que o tempo passa. Variação do tráfego em um cruzamento; Variação diária no tamanho do estoque de uma empresa; Variação minuto a minuto do índice IBOVESPA; Variação no estado de um sistema de potência; Variação no número de chamadas feitas a uma central telefônica. 3
4 Imprevisibilidade? A observação de uma sequência de tempo inteira do processo, em ocasiões diferentes, sob condições presumivelmente diferentes: Sequências resultantes diferentes. Comportamento de um sistema para uma sequência ou intervalo de tempo inteiro: O resultado será uma função (ou sequência de valores) e não apenas um número. 4
5 Definição Realiza-se um experimento E com resultados formando um espaço S com subconjuntos denominados eventos, aos quais se associam probabilidades. Se a cada resultado s se puder associar uma função temporal real ou complexa X t, então, à família destas funções se dá o nome de processo estocástico. 5
6 Parâmetros do Processo Para analisar o processo estocástico é preciso especificar o período de tempo T envolvido: quando ele será observado. Se T é contínuo, T = {t : 0 t < ): Trata-se de um Processo Estocástico de Parâmetros Contínuos: Poisson. Se T é discreto, T = {0,,,...}: Trata-se de um Processo Estocástico de Parâmetros Discretos: Séries Temporais em geral. 6
7 Realizações do Processo A cada ponto t do conjunto T observa-se uma medida ou variável aleatória X t. Se o ponto amostral for indicado por s: X t (s) para t T. Tal função de t é chamada de processo estocástico ou aleatório. Uma única função X t (s ) que corresponde a um único ponto amostral s é chamada de função amostra ou realização do processo estocástico. 7
8 Estados do Processo O conjunto de valores que X t pode assumir é chamada de Espaço de Estados, e os valores específicos de X t em dado momento são os Estados do Processo. Se X t representa alguma contagem: Espaço de Estados poderia ser uma seqüência finita ou infinita de inteiros. Processo de Estado Discreto ou Cadeia Aleatória. Se X t representa uma medida: Espaço de Estados poderia ser um intervalo de números reais. Processo de Estado Contínuo. 8
9 Quantidade Parâmetros x Estados Processo de Parâmetros Discretos e Estados Discretos Estoque de peças em uma loja ao fim da semana Semana 9
10 Parâmetros x Estados Processo de Parâmetros Discretos e Estados Contínuos Médias amostrais dos diâmetros de pistões. X-bar: 74,00 (74,00); Sigma:,00979 (,00979); n: 5, 74,04 74,00 73,
11 Chamadas Parâmetros x Estados Processo de Parâmetros Contínuos e Estados Discretos No. de chamadas recebidas por um call-center em 6 horas Tempo
12 Parâmetros x Estados Processo de Parâmetros Contínuos e Estados Contínuos Eletroencefalograma
13 Caracterização de um Processo Estocástico Completa: são conhecidas todas as funções densidade de probabilidade conjuntas de todas as variáveis aleatórias que podem ser definidas, observando-se o processo em qualquer instante t T. Parcial: são conhecidas apenas as suas funções média e autocorrelação (ou autocovariância). 3
14 Caracterização de um Processo Estocástico De primeira ordem: F(x,t) = P[X t (s) x] f(x,t) = F/x conhecidas para t T. De segunda ordem: F(x,x ;t,t ) = P[X t (s) x,x t (s) x ] conhecidas para t e t T. De ordem m: Conhecida a função densidade de probabilidade conjunta das m variáveis aleatórias X t (s)... X tm (s) para qualquer conjunto de valores t i, i =,..., m 4
15 Média, autocorrelação e autocovariância Média (t) E X (t) E X t t x x f (x;t) x f (x;t)dx R(t R(t, t, t ) E X ) E X Autocorrelação t X t X t t x x x x x x f (x f (x, x ;t, x, t ;t, t )dx ) dx 5
16 Média, autocorrelação e autocovariância Autocovariância X (t ) X (t ) Rt,t (t ) (t ) C(t,t) E t t 6
17 Processos Estocásticos Estacionários Sentido estrito: para qualquer ordem m a função densidade de probabilidade conjunta de ordem m NÃO VARIA com o tempo. f(x,x,...,x m ;t,t,...,t m ) = f(x,x,...,x m ;t +Δ,t +Δ,...,t m+δ ) Sentido amplo E[X t ] = μ (constante) E[X t (t+)x t ] = R X txt() Estacionário em incrementos: se Y t = X t (t+) X t (t) for estacionário. 7
18 Ergodicidade Processo estocástico estacionário é ergódico se todas as suas estatísticas podem ser determinadas a partir de qualquer função X t (t,s) do processo, ou seja, através de médias temporais. Da média Da variância T T T T 0 T T T X T t (t) dt R( ) T d Quando T -> μ T = μ σ μt -> 0 8
PROCESSOS ESTOCÁSTICOS
PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos
TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017
TE802 Processos Estocásticos em Engenharia Processos Aleatórios 18 de outubro de 2017 Processo Aleatório Processo Aleatório (ou Estocástico), X(t): Função aleatória do tempo para modelar formas de onda
Introdução aos Proc. Estocásticos - ENG 430
Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos
PRE29006 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável
Processos de Poisson
Processos de Poisson Mauro C. M. Campos 1 SUMÁRIO I Alguns fatos sobre a distribuição exponencial 1 II Alguns fatos sobre a distribuição de Poisson 2 III Processos estocásticos em tempo contínuo 2 IV Processos
Processos estocásticos
36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges [email protected]
Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios
Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Prof. Eduardo Simas ([email protected]) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Avaliação e Desempenho Aula 5
Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios
Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia
Processos Estocásticos. Professora Ariane Ferreira
Professora Conteúdos das Aulas 2 1.Apresentação da disciplina e introdução aos (PE) 2.Conceitos de Probabilidades 3.Variaveis aleatorias 4.Introdução aos 5.Processos de Poisson 6.Cadeias de Markov 7.Passeio
Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf
Parte 7 Processos Estocásticos Ramiro Brito Willmersdorf [email protected] Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Processos Estocásticos 2 Classicação
Processos Estocásticos
Processos Estocásticos Luis Henrique Assumpção Lolis 26 de maio de 2014 Luis Henrique Assumpção Lolis Processos Estocásticos 1 Conteúdo 1 Introdução 2 Definição 3 Especificando um processo aleatório 4
PRE29006 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS # 06. Eercícios. Considere uma variável aleatória
Distribuições de Probabilidade
Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais
Modelagem de um sistema por cadeias de Markov
Modelagem de um sistema por cadeias de Markov Sistemas sem memória : somente o estado imediatamente anterior influencia o estado futuro. rocesso estacionário: probabilidades de transição de um estado para
PRINCÍPIOS DE COMUNICAÇÃO
PRINCÍPIOS DE COMUNICAÇÃO RUÍDO EM MODULAÇÕES ANALÓGICAS Evelio M. G. Fernández - 2011 Processo Aleatório (ou Estocástico): Função aleatória do tempo para modelar formas de onda desconhecidas. Processos
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Aula 1. Wilson Correa. June 27, 2017
Aula 1 Definições Básicas Wilson Correa June 27, 2017 Série de Tempo Definição Uma série de tempo é qualquer conjunto de observações ordenadas no tempo. Podem ser: Discretas. Ex: Valores Diários de Poluição,
Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2
Modelos para Séries Temporais Aula 1 Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2 Modelos para Séries Temporais Os modelos utilizados para descrever séries temporais
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
M. Eisencraft 6.3 Funções de correlação 81. R YX (τ) R YY (τ). (6.19) R XY (τ) = R YX ( τ) (6.20)
M. Eisencraft 6.3 Funções de correlação 81 R XY (τ) = E[X(t)Y(t+τ)] e (6.17) R YX (τ) = E[Y(t)X(t+τ)]. (6.18) As propriedades de correlação de dois processos X(t) e Y(t) podem ser mostradas convenientemente
Cálculo das Probabilidades I
Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da
Análise e Previsão de Séries Temporais Aula 1: Introdução às séries temporais. Eraylson Galdino
Análise e Previsão de Séries Temporais Aula 1: Introdução às séries temporais [email protected] Agenda Séries Temporais: Definições Exemplos Modelos simples com média zero: Ruído I.I.D Processo Binário Random
Processos de Poisson
Processos de Poisson Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulo 5 Taylor & Karlin 1 / 37 Distribuição de Poisson Seja a variável
Fundamentos de Estatística
Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA [email protected] Petrópolis, 9 de Fevereiro
Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza
Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada
Modelagem Estocástica e Quantificação de Incertezas
Modelagem Estocástica e Quantificação de Incertezas Rubens Sampaio [email protected] Roberta de Queiroz Lima [email protected] Departamento de Engenharia Mecânica DINCON 2015 Organização do curso
canal para sinais contínuos
Processos estocásticos, Entropia e capacidade de canal para sinais contínuos 24 de setembro de 2013 Processos estocásticos, Entropia e capacidade de canal para1 sin Conteúdo 1 Probabilidade de sinais contínuos
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.
EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes
A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).
Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,
Módulo III: Processos de Poisson, Gaussiano e Wiener
Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é
Momentos: Esperança e Variância. Introdução
Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros
Estatística Básica. Variáveis Aleatórias Contínuas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais
Estatística Básica Variáveis Aleatórias Contínuas Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Lembrando... Uma quantidade X, associada a cada possível resultado
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Distribuições Discretas Uniforme Bernoulli Binomial Poisson
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
Capítulo 3. Introdução à Probabilidade E à Inferência Estatística
Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos
Distribuições de Probabilidade
Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23
Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração
Distribuições Discretas
META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:
Universidade Federal do Ceará
Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
DISTRIBUIÇÃO NORMAL DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS ROTEIRO DISTRIBUIÇÃO NORMAL
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO NORMAL Definição:
Estatística (MAD231) Turma: IGA. Período: 2018/2
Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e
1 Variáveis Aleatórias
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis
DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO CONJUNTA Em muitos
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.
Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada
Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD
Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável
Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:
46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y
1 Distribuições Discretas de Probabilidade
1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma
CE Estatística I
CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,
Simulação com Modelos Teóricos de Probabilidade
Simulação com Modelos Teóricos de Probabilidade p. 1/21 Algumas distribuições teóricas apresentam certas características que permitem uma descrição correta de variáveis muito comuns em processos de simulação.
Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual
MOQ-12 Cadeias de Markov
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-12 Cadeias de Markov Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Roteiro Introdução Processos Estocásticos
Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato
Distribuição de Probabilidade Variáveis Aleatórias Discretas Prof.: Joni Fusinato [email protected] [email protected] Distribuição de Probabilidade Descreve a chance que uma variável pode assumir
