PROCESSOS ESTOCÁSTICOS
|
|
|
- Maria do Mar Sacramento Borja
- 9 Há anos
- Visualizações:
Transcrição
1 PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos Editora, CAMARGO, C. C. de, Confiabilidade Aplicada à Sistemas de Potência, Rio de Janeiro: Livros Técnicos e Científicos Editora, Santa Catarina: FEESC,
2 PROCESSO ESTOCÁSTICO Fenômeno que varia em algum grau, de forma imprevisível, à medida que o tempo passa. Variação do tráfego em um cruzamento; Variação diária no tamanho do estoque de uma empresa; Variação minuto a minuto do índice IBOVESPA; Variação no estado de um sistema de potência; Variação no número de chamadas feitas a uma central telefônica. 2
3 Imprevisibilidade? A observação de uma seqüência de tempo inteira do processo, em ocasiões diferentes, sob condições presumivelmente diferentes: Seqüências resultantes diferentes. Comportamento de um sistema para uma seqüência ou intervalo de tempo inteiro: O resultado será uma função (ou seqüência de valores) e não apenas um número. 3
4 Parâmetros do Processo Para analisar o processo estocástico é preciso especificar o período de tempo T envolvido: quando ele será observado. Se T é contínuo, T = {t : 0 t < ): Trata-se de um Processo Estocástico de Parâmetros Contínuos: Poisson. Se T é discreto, T = {0, 1, 2,...}: Trata-se de um Processo Estocástico de Parâmetros Discretos: Séries Temporais em geral. 4
5 Realizações do Processo A cada ponto t do conjunto T observa-se uma medida ou variável aleatória X t. Se o ponto amostral for indicado por s: X t (s) para t T. Tal função de t é chamada de processo estocástico ou aleatório. Uma única função X t, que corresponde a um único ponto amostral s é chamada de realização do processo estocástico. 5
6 Estados do Processo O conjunto de valores que X t pode assumir é chamada de Espaço de Estados, e os valores específicos de X t em dado momento são os Estados do Processo. Se X t representa alguma contagem: Espaço de Estados poderia ser uma seqüência finita ou infinita de inteiros. Processo de Estado Discreto ou Cadeia Aleatória. Se X t representa uma medida: Espaço de Estados poderia ser um intervalo de números reais. Processo de Estado Contínuo. 6
7 Quantidade Parâmetros x Estados Processo de Parâmetros Discretos e Estados Discretos Estoque de peças em uma loja ao fim da semana Semana 7
8 Parâmetros x Estados Processo de Parâmetros Discretos e Estados Contínuos Médias amostrais dos diâmetros de pistões. X-bar: 74,001 (74,001); Sigma:,00979 (,00979); n: 5, 74,014 74,001 73,
9 Chamadas Parâmetros x Estados Processo de Parâmetros Contínuos e Estados Discretos No. de chamadas recebidas por um call-center em 6 horas Tempo 9
10 Parâmetros x Estados Processo de Parâmetros Contínuos e Estados Contínuos Eletroencefalograma 10
11 Análise de um Processo Estocástico Para um valor t, X t será uma variável aleatória que descreve o estado do processo no tempo t. Dada qualquer coleção finita t 1, t 2,..., t n de tempos, então X t1, X t2,..., X tn constituem um conjunto de n variáveis aleatórias com distribuição conjunta. A estrutura de probabilidades do processo X t determinada desde que: é totalmente Distribuição conjunta de cada conjunto de variáveis aleatórias é determinada. Função de densidade de cada conjunto de variáveis aleatórias é determinada. 11
12 Análise de um Processo Estocástico Consiste em determinar as distribuições conjuntas e usá-las para prever comportamento futuro, dado o comportamento passado. 12
13 Seqüências Independentes Seqüências de variáveis aleatórias independentes com distribuições idênticas como resultante de repetições independentes da mesma experiência aleatória, onde a cada realização um valor ou medida é associado. Exemplo: equipamento eletrônico tem um capacitor que é reposto toda vez que ele falha. Tempo de vida X: X 1, X 2,... Cada valor será positivo: processo de Renovação 13
14 Processos de Nascimento e Morte Modelam as alterações em uma população. Estado do processo no instante t (X t ) representa o tamanho da população no instante t. Exemplos: pacotes presentes em uma rede local, fila com servidor único. Assume-se que nascimentos e/ou mortes múltiplos ocorrem ao mesmo tempo com probabilidade zero. As transições ocorrem apenas entre estados vizinhos. 14
15 Processos de Nascimento e Morte 1 nascimento 1 nascimento K - 1 K K morte 1 morte 15
16 Processos de Nascimento e Morte k : taxa de mortes quando a população é k. k : taxa de nascimentos quando a população é k. 0 =0: não há mortes quando a população é zero. 0 0: podem ocorrer nascimentos quando a população é zero. k P k = k-1 P k-1 k0 P 1, 0 k 16
17 Processo de Poisson Processo de nascimento puro pois a taxa de nascimento é constante:. P k (t) = [(t) k e - t ]/k! Para k 0 e t 0. Probabilidade de haver k nascimentos no intervalo (0,t). Número médio de nascimentos no intervalo (0,t) = t. Processo de Parâmetros Contínuos e Estados Discretos. 17
18 Processo de Poisson Evento: nenhuma chegada nos primeiros t minutos P o (t) 0 ( t) e 0! t t Equivalente à primeira chegada após o tempo t. Seja t uma variável aleatória que represente o tempo de 0 até a 1ª chegada: P(T > t) = e - t P(T t) = 1 - e - t = F(T) f(t) = F(T)/t = e - t T tem distribuição exponencial: E(T)=1/ V(T)=1/ 2 e 18
19 Processos de Markov Processos sem memória : probabilidade de X t assumir um valor futuro depende apenas do estado atual (desconsidera estados passados). P(X n =x n X 1 =x 1,X 2 =x 2,...,X n-1 =x n-1 ) = P(X n =x n X n-1 =x n-1 ) para n = 0, 1, 2,... Seja X t um processo de Markov, i e j estados, e t tempos: P ij = P[X( + t) = j X() = i] 0 e t 0 Se P ij independe do tempo então o processo de Markov é dito ESTACIONÁRIO ou homogêneo. 19
20 Processos de Markov Parâmetros Estados Discretos Contínuos Discretos Cadeias de Markov com tempo discreto Cadeias de Markov com tempo contínuo Contínuos Processos de Markov com tempo discreto Processos de Markov com tempo contínuo 20
21 Cadeias de Markov Processo de Markov de parâmetros contínuos e estados discretos. Propriedades: O sistema observado pode ser descrito como estando em um estado de um conjunto de estados Si, discretos e exaustivos e mutuamente exclusivos; Trocas de estado são possíveis em qualquer intervalo de tempo; A probabilidade de mais do que uma troca durante um intervalo infinitesimal de tempo é desprezível. 21
22 Matriz de transição O conjunto P(X n X n-1 ) para n = 1, 2,... constitui as probabilidades de transição de um passo: probabilidades iniciais. Matriz N+1 por N+1 de elementos p ij que satisfaz: p ij 0 ij = 0, 1, 2,..., N p ij = 1 para j=1,...,n e i. P p ij p p... p N0 p p p N p p p 0N 1N... NN 22
PROCESSOS ESTOCÁSTICOS
PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas e Sinais CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos
Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo
Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n
Noções de Processos Estocásticos e Cadeias de Markov
Noções de Processos Estocásticos e Cadeias de Markov Processo Estocástico Definição: Processo Estocástico é uma coleção de variáveis aleatórias indexadas por um parâmetro t R (entendido como tempo). X={
Processos Estocásticos e Cadeias de Markov Discretas
Processos Estocásticos e Cadeias de Markov Discretas Processo Estocástico(I) Definição: Um processo estocástico é uma família de variáveis aleatórias {X(t) t T}, definidas em um espaço de probabilidades,
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Teoria de Filas Aula 10
Aula Passada Comentários sobre a prova Teoria de Filas Aula 10 Introdução a processos estocásticos Introdução a Cadeias de Markov Aula de Hoje Cadeias de Markov de tempo discreto (DTMC) 1 Recordando...
MOQ-12 Cadeias de Markov
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-12 Cadeias de Markov Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Roteiro Introdução Processos Estocásticos
Cadeias de Markov em Tempo Continuo
Cadeias de Markov em Tempo Continuo Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulos 6 Taylor & Karlin 1 / 44 Análogo ao processo
Propriedade Markoviana
Cadeias de Markov Cadeias de Markov É um tipo especial de processo estocástico, que satisfaz as seguintes condições: o parâmetro n é discreto (ex: tempo) o espaço de estados E é discreto (coleção de estados
Avaliação e Desempenho Aula 5
Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade
Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato
Distribuição de Probabilidade Variáveis Aleatórias Discretas Prof.: Joni Fusinato [email protected] [email protected] Distribuição de Probabilidade Descreve a chance que uma variável pode assumir
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
PROCESSOS ESTOCÁSTICOS. Modelagem de falhas, Técnicas de Markov para modelagem da confiabilidade de sistemas
ROCESSOS ESTOCÁSTICOS Modelagem de falhas, Técnicas de Markov para modelagem da confiabilidade de sistemas Modelagem de falhas Confiabilidade de sistemas Necessário modelar o comportamento do sistema,
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Universidade Federal do Ceará
Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições
Processos de Poisson
Processos de Poisson Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulo 5 Taylor & Karlin 1 / 37 Distribuição de Poisson Seja a variável
Modelagem de um sistema por cadeias de Markov
Modelagem de um sistema por cadeias de Markov Sistemas sem memória : somente o estado imediatamente anterior influencia o estado futuro. rocesso estacionário: probabilidades de transição de um estado para
TE802 Processos Estocásticos em Engenharia
TE802 Processos Estocásticos em Engenharia Cadeias de Markov 20/11/2017 Andrei Markov Em 1907, Andrei Markov iniciou um estudo sobre processos onde o resultado de um experimento depende do resultado de
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é
Processos Estocásticos. Professora Ariane Ferreira
Professora Conteúdos das Aulas 2 1.Apresentação da disciplina e introdução aos (PE) 2.Conceitos de Probabilidades 3.Variaveis aleatorias 4.Introdução aos 5.Processos de Poisson 6.Cadeias de Markov 7.Passeio
Distribuições discretas de probabilidades. Cap. 8 Binomial, Hipergeométrica, Poisson
Distribuições discretas de probabilidades Cap. 8 Binomial, Hipergeométrica, Poisson Definições Variável aleatória: função que associa a cada elemento do espaço amostral um número real. Exemplo: diâmetro
EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.
EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
Lista de Exercícios - SCE131
Lista de Exercícios - SCE131 Prof. Eduardo F. Costa - ICMC - USP http://www.icmc.usp.br/ efcosta Parte 1 - Cadeia de Markov (a tempo discreto) Exercício 1. Seja uma cadeia de Markov com probabilidades
TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017
TE802 Processos Estocásticos em Engenharia Processos Aleatórios 18 de outubro de 2017 Processo Aleatório Processo Aleatório (ou Estocástico), X(t): Função aleatória do tempo para modelar formas de onda
Embasamento Analítico
1 Embasamento Analítico Capítulo 3 Crovella, M, Krishnamurthy, B. Internet Measurement: infrastructure, traffic & applications. John Wiley & Sons, 2006. Embasamento Analítico 2 Probabilidade (Jain Cap.
Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.
PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses
Processos Estocásticos aplicados à Sistemas Computacionais
Processos Estocásticos aplicados à Sistemas Computacionais Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Distribuições Discretas Uniforme Bernoulli Binomial Poisson
4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC
4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3
TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.
TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio
Cadeias de Markov. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Cadeias de Markov Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulos 3 e 4 Taylor & Karlin 1 / 71 Cadeias de Markov Seja X 0, X 1,...
TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina. TE802 Conceitos Básicos de Teoria de Probabilidade. Evelio M. G.
TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 23 de agosto de 2017 Informação sobre a disciplina Segundas e Quartas feiras das 09:30 às 11:20 horas Professor:
Introdução aos Proc. Estocásticos - ENG 430
Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos
Módulo III: Processos de Poisson, Gaussiano e Wiener
Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo
Conceitos Básicos, Básicos,Básicos de Probabilidade
Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar
Avaliação e Desempenho Aula 18
Avaliação e Desempenho Aula 18 Aula passada Fila com buffer finito Fila com buffer infinito Medidas de interesse: vazão, número médio de clientes na fila, taxa de perda. Aula de hoje Parâmetros de uma
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 20
Teoria das Filas aplicadas a Sistemas Computacionais Aula 20 Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia
Processos Estocásticos
Processos Estocásticos Quarta Lista de Exercícios 12 de fevereiro de 2014 1 Sejam X e Y duas VAs que só podem assumir os valores 1 ou -1 e seja p(x, y) = P (X = x, Y = y), x, y { 1, 1} a função de probabilidade
AULA 07 Distribuições Discretas de Probabilidade
1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:
Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:
Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir
Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza
Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória
Cap. 8 - Variáveis Aleatórias
Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON
Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios
Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios Prof. Eduardo Simas ([email protected]) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE
Simulação com Modelos Teóricos de Probabilidade
Simulação com Modelos Teóricos de Probabilidade p. 1/21 Algumas distribuições teóricas apresentam certas características que permitem uma descrição correta de variáveis muito comuns em processos de simulação.
Distribuição de Probabilidade. Prof.: Joni Fusinato
Distribuição de Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Modelos de Probabilidade Utilizados para descrever fenômenos ou situações que encontramos na natureza, ou
I. INTRODUÇÃO Generalidades
1 I. INTRODUÇÃO 1.1. Generalidades Qualquer sistema real opera sempre em ambientes onde a incerteza impera, principalmente quando o sistema envolve, pela sua natureza, ações humanas imprevisíveis ou desgaste
Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades
SISTEMAS DE MANUTENÇÃO E CONFIABILIDADE TP077
SISTEMAS DE MANUTENÇÃO E CONFIABILIDADE TP077 6 DISPONIBILIDADE DE EQUIPAMENTOS 6.1 INTRODUÇÃO Diversas teorias em confiabilidade pressupõem o descarte dos componentes de interesse após a primeira falha.
Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.
Prof. Lorí Viali, Dr. [email protected] http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada
Aula - Equações de Chapman-Kolmogorov
Equações de Chapman-Kolmogorov Prof. Magnos Martinello Aula - Equações de Chapman-Kolmogorov Universidade Federal do Esprito Santo-UFES 2011 Equações de Chapman-Kolmogorov 1/17 Introdução As equações de
Modelos Probabilísticos
Modelos Probabilísticos Somente para lembrar... Modelos são extremamente importantes para o estudo do desempenho de um sistema antes de implementá-lo na prática! Foguete proposto tem confiabilidade? Devemos
Modelagem e Análise Aula 9
Modelagem e Análise Aula 9 Aula passada Equações de fluxo Tempo contínuo Aula de hoje Parâmetros de uma fila Medidas de desempenho Cálculo do tempo de espera Resultado de Little Parâmetros da Fila chegada
Estatística (MAD231) Turma: IGA. Período: 2018/2
Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e
Capítulo 3. Introdução à Probabilidade E à Inferência Estatística
Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos
Probabilidade. Objetivos de Aprendizagem. UFMG-ICEx-EST. Cap. 2 - Probabilidade Espaços Amostrais e Eventos. 2.1.
2 ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES E AXIOMAS DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL
1 Distribuições Discretas de Probabilidade
1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Análise da dados através de gráficos Introdução a Simulação Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes
Cadeias de Markov de Tempo Contínuo (CTMC)
Cadeias de Markov de Tempo Contínuo (CTMC) Cadeia de Markov Contínua (1) A análise de cadeias de Markov contínuas (CTMCs) é bem similar a análise em tempo discreto, com a diferença de que as transições
INTRODUÇÃO À TEORIA DAS FILAS
INTRODUÇÃO À TEORIA DAS FILAS Uma fila é caracterizada por: Processo de chegada dos fregueses à fila Tempo de serviço dedicado pelo servidor a cada freguês Número de servidores Espaço disponível para espera
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Somas aleatórias Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes Números Simulação de Sistemas Discretos É
5. PRINCIPAIS MODELOS CONTÍNUOS
5. PRINCIPAIS MODELOS CONTÍNUOS 2019 5.1. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros e ( < ) se sua função densidade de probabilidade é dada por f ( x )={ 1 β α, α x β
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Bioestatística e Computação I
Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Probabilidade Condicional Independência de Eventos Teorema da Probabilidade Total Lei de Bayes Aula de hoje Exemplo Lei de Bayes Variáveis Aleatórias
Processos Estocásticos
Licenciatura em Matemática Aplicada e Computação PROCESSOS ESTOCÁSTICOS 2002/03 Colectânea de Exercícios Capítulo 1 Introdução aos Processos Estocásticos Exercício 1.1 O número de sinais emitidos por uma
Pesquisa Operacional II
Pesquisa Operacional II Modelo de Filas Professor: Roberto César A Notação de Kendall Um modelo de fila pode ser descrito pela notação: A/B/c/K/m/Z em que: A = distribuição dos intervalos entre chegadas;
Distribuições discretas de probabilidade
4 Distribuições discretas de probabilidade x = número de respostas corretas x = número de chegadas pontuais Estatística Aplicada Larson Farber x = número de funcionários que alcançou a cota de vendas x
Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2011
Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2011 Cadeias de Markov Em 1907, Andrew Markov iniciou um estudo sobre um modelo onde o resultado
