Cadeias de Markov de Tempo Contínuo (CTMC)
|
|
|
- Arthur Almada Franco
- 8 Há anos
- Visualizações:
Transcrição
1 Cadeias de Markov de Tempo Contínuo (CTMC)
2 Cadeia de Markov Contínua (1) A análise de cadeias de Markov contínuas (CTMCs) é bem similar a análise em tempo discreto, com a diferença de que as transições podem ocorrer em qualquer instante de tempo. Seja I = {0,1,2,...} o espaço de estados do processo e T =[0, ) o espaço do parâmetro de observação. Relembrando a propriedade Markoviana: P[X(t) = x X(t n )= x n,x(t n-1 )= x n-1,...,x(t 0 )= x 0 ] = P[X(t) = x X(t n )= x n ]
3 Cadeia de Markov Contínua (2) O comportamento do processo é caracterizado pela distribuição de probabilidades iniciais P[X(t 0 ) = k]; k = {0,1,2,3,...} e probabilidades de transição: p ij (v,t) = P( X(t) = j X(v) = i) Para 0 <= v <= t e i,j = 0,1,2,..., definimos p ij (t,t) = 1, se i = j = 0, caso contrário
4 O comportamento probabilístico é totalmente determinado pelas probabilidades de transição e a distribuição de probabilidades iniciais Cadeia de Markov Contínua (3) Definimos a pmf de X(t) no tempo t por π j (t) = P(X(t) = j), j = 0,1,2,...; t>=0 Aplicando o teorema da probabilidade total: π j (t) = p ij (v,t)π ι (v); para todo i Se v = 0, então: π j (t) = p ij (0,t)π ι (0); para todo i
5 Cadeia de Markov Contínua (4) As probabilidades de transições de uma CTMC satisfazem a equação de Chapman- Kolmogorov, para todos os estados i,j em I: p ij (v,t) = p ik (v,u)p kj (u,t), para todo k є I; 0<=v<u<t (Resultado obtido aplicando o teorema da probabilidade total)
6 Cadeia de Markov Contínua (5) Como calcular as probabilidades de transição para cadeias contínuas? p ij (t,t+h) =q ij (t).h + o(h), para i j p jj (t,t+h) =1-q jj (t).h + o(h), para i = j Onde q i j denota o número total de transições que ocorrem na CTMC por unidade de tempo. Quando h 0, a probabilidade de ocorrência de uma transição do estado i no tempo t para o estado j nas próximas h unidades de tempo é igual a taxa de transição no tempo t multiplicada pelo o intervalo de tempo h.
7 Cadeia de Markov Contínua (6) Utilizando a equação de Kolmogorov e a definição de π j (t), temos o vetor π de probabilidades em um tempo t, dado pelo seguinte sistema de equações diferenciais: dπ(t)/dt = π(t)q
8 Cadeia de Markov Contínua (7) O que representa a matriz Q?A matriz Q é denominada matriz geradora de uma CTMC, onde os elementos representam as taxas de mudanças entre os estados da cadeia. Exemplo: α 1 2 β Q = -α α β β Os elementos na diagonal são negativos, pois dado que o processo está no estado i em t, a probabilidade de se transferir a um estado diferente aumenta como tempo, e a probabilidade de permanecer no estado diminui, na mesma proporção.
9 Cadeia de Markov Contínua (8) Quais são as características da matriz Q? (1) Soma das linhas igual a zero (2) Elementos na diagonal são não-positivos (3) Elementos fora da diagonal são nãonegativos
10 Estado Estacionário Para cadeias de Markov irredutíveis, recorrente não nulas,o vetor de probabilidades em estado estacionário é dado por: π(t)q = 0 π i (t) = 1, para todo i Considerando que para t, não existe mais variação das probabilidades de permanência em cada um dos estados.
11 No entanto, toda CTMC possui sua equivalente DTMC (técnica de uniformização) e outros métodos numéricos podem ser aplicados para obtenção da medida de interesse. Estado Transiente Para observarmos a cadeia em um tempo finito, temos que π(t) = π(0)e Qt Ou seja, devemos calcular uma exponencial de matrizes, usando, por exemplo autovalores e autovetores.
12 Propriedade Markoviana... O tempo em que o processo passa em cada estado de uma CTMC é exponencialmente distribuído, dado a propriedade da falta de memória (memoryless) dos processos Markovianos.Neste caso, o parâmetro da distribuição exponencial é: Σ i j q ij (Provado usando estatística de ordem) No caso de DTMC, número de visitas antes de sair do estado é geometricamente distribuído
13 Birth-Death (1) Uma CTMC com o espaço de estados {0,1,2,...} é conhecida como um processo birth-death (nascimento-morte) se existem constantes λ i (i = 0,1,...) e µ i (i = 0,1,...) tais que as transições são dadas por: q i,i+1 = λ i q i,i-1 =µ i; q i,i = λ i +µ i q i,j = 0 i -j > 0
14 Birth-Death (2) A CTMC estará no estado k em t+ h se um dos seguintes eventos ocorre: 1) Se a CTMC está no estado k no tempo t, e não existem transições no intervalo (t,t+h]. p k,k (t,t+h) = 1 q k.h + o(h) = 1 - ( λ k + µ k ).h + o(h) 2) Se a CTMC está no estado k-1 no tempo t, e um nascimento ocorre no intervalo (t,t+h]. p k-1,k (t,t+h) = q k-1,k.h + o(h) = λ k-1.h + o(h)
15 Birth-Death (3) A CTMC estará no estado k em t+ h se um dos seguintes eventos ocorre: 3) Se a CTMC está no estado k+1 no tempo t, e uma morte ocorre no intervalo (t,t+h]. p k+1,k (t,t+h) = q k+1,k.h + o(h) = µ k+1.h + o(h) 4) Dois ou mais transições ocorrem no intervalo (t,t+h], resultando em X(t+h) = k, com probabilidade o(h).
16 Diagrama de estados Birth-Death (4)
17 Birth-Death (5) Usando o teorema da probabilidade total: P(X(t+h) = k)) = π k (t+h) =π k (t)p k,k (t,t+h) + π k-1 (t)p k- (t,t+h) + π (t)p (t,t+h) + o(h) 1,k k+1 k+1,k Dividindo por h, e fazendo h 0 dπ k (t)/dt = (λ k +µ k )π k (t) + λ k-1 π k-1 (t) + µ k+1 π k+1 (t) dπ 0 (t)/dt = λ 0 π 0 (t) + µ 1 π 1 (t)
18 Birth-Death (6) Se estamos interessados na distribuição de probabilidades em estado estacionário... 0 = (λ k +µ k )π k + λ k-1 π k-1 + µ k+1 π k+1 0 = λ 0 π 0 + µ 1 π 1 Manipulando as equações e considerando que π k =1, para todo k, temos: π k =(λ k-1 /µ k )π k-1 ; k>=1 π k = k-1 i=0 (λ i / µ i+1 )π 0 π 0 = 1/( ι >=0 j=1; κ 1 (λ i / µ i+1 ))
19 Equações de Equilíbrio A distribuição em estado estacionário, para alguns sistemas, pode ter uma fórmula fechada. Para tal, basta escrevermos as equações de equilíbrio (balance equations) onde: Taxa de entrada no estado j = Taxa de saída do estado j No caso do modelo birth-death, para um estado k, as taxas de entrada são iguais a: λ k-1 π k-1 + µ k+1 π k+1 e as taxas de saída são iguais a: (λ k +µ k )π k
20 Equações de Equilíbrio Em um caso mais geral, seja S um conjunto de estados, então: Taxa de entrada em S = Taxa de saída de S j S i S π i q ij = j S π j i S q ji
Processos Estocásticos e Cadeias de Markov Discretas
Processos Estocásticos e Cadeias de Markov Discretas Processo Estocástico(I) Definição: Um processo estocástico é uma família de variáveis aleatórias {X(t) t T}, definidas em um espaço de probabilidades,
Teoria de Filas Aula 10
Aula Passada Comentários sobre a prova Teoria de Filas Aula 10 Introdução a processos estocásticos Introdução a Cadeias de Markov Aula de Hoje Cadeias de Markov de tempo discreto (DTMC) 1 Recordando...
Noções de Processos Estocásticos e Cadeias de Markov
Noções de Processos Estocásticos e Cadeias de Markov Processo Estocástico Definição: Processo Estocástico é uma coleção de variáveis aleatórias indexadas por um parâmetro t R (entendido como tempo). X={
Cadeias de Markov em Tempo Continuo
Cadeias de Markov em Tempo Continuo Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulos 6 Taylor & Karlin 1 / 44 Análogo ao processo
Propriedade Markoviana
Cadeias de Markov Cadeias de Markov É um tipo especial de processo estocástico, que satisfaz as seguintes condições: o parâmetro n é discreto (ex: tempo) o espaço de estados E é discreto (coleção de estados
Classificação de estados em uma cadeia de Markov. Professora Eliana Carvalho
Classificação de estados em uma cadeia de Markov Professora Eliana Carvalho Classificação de estados em uma cadeia de Markov Os estados de uma cadeia de Markov podem ser classificados com base na probabilidade
Aula - Equações de Chapman-Kolmogorov
Equações de Chapman-Kolmogorov Prof. Magnos Martinello Aula - Equações de Chapman-Kolmogorov Universidade Federal do Esprito Santo-UFES 2011 Equações de Chapman-Kolmogorov 1/17 Introdução As equações de
Cadeias de Markov. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Cadeias de Markov Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulos 3 e 4 Taylor & Karlin 1 / 71 Cadeias de Markov Seja X 0, X 1,...
TE802 Processos Estocásticos em Engenharia
TE802 Processos Estocásticos em Engenharia Cadeias de Markov 20/11/2017 Andrei Markov Em 1907, Andrei Markov iniciou um estudo sobre processos onde o resultado de um experimento depende do resultado de
Modelagem de um sistema por cadeias de Markov
Modelagem de um sistema por cadeias de Markov Sistemas sem memória : somente o estado imediatamente anterior influencia o estado futuro. rocesso estacionário: probabilidades de transição de um estado para
Processos Estocásticos
Processos Estocásticos Quarta Lista de Exercícios 12 de fevereiro de 2014 1 Sejam X e Y duas VAs que só podem assumir os valores 1 ou -1 e seja p(x, y) = P (X = x, Y = y), x, y { 1, 1} a função de probabilidade
Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2011
Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2011 Cadeias de Markov Em 1907, Andrew Markov iniciou um estudo sobre um modelo onde o resultado
3. CADEIA DE MARKOV EM TEMPO DISCRETO
3. CADEIA DE MARKOV EM TEMPO DISCRETO 3. Definição Uma Cadeia de Markov em Tempo Discreto é um processo estocástico em que a variável t representa intervalos de tempo, { }e que segue a propriedade de Markov,
SISTEMAS REALIMENTADOS
SISTEMAS REALIMENTADOS Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Representação no Espaço de Estados É apropriada para sistemas que possuem várias entradas e várias
MOQ-12 Cadeias de Markov
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-12 Cadeias de Markov Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Roteiro Introdução Processos Estocásticos
Modelagem e Avaliação de Desempenho
Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016 Exemplos usados na apresentação foram obtidos de Introduction to Probability, C.M.Grinstead
Aula 14. Aula de hoje. Aula passada
Aula 14 Aula passada Autovalores, autovetores, decomposição Convergência para estacionaridade Tempo de mistura Spectral gap Tempo de mistura de passeios aleatórios Aula de hoje Caminho amostral Teorema
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 4
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 4 O Processo Média-Móvel Muitas vezes, a estrutura auto-regressiva não é suficiente para descrever totalmente
1/7 1/ se hoje não chove, amanhã não vai chover com probabilidade p 00 = 6/7;
6/7 nao chove 1/7 chove 1/3 "0" /3 "1" Figura 1: Todas as transições com suas respectivas probabilidades representadas através de um grafo. Notem que para cada estado, a soma das probabilidades das flechas
Modelos Probabilísticos Filas M/M/1, M/G/1. Profa. Jussara M. Almeida 1 o Semestre de 2014
Modelos Probabilísticos Filas M/M/1, M/G/1 Profa. Jussara M. Almeida 1 o Semestre de 2014 Modelos Probabilísticos de Filas R W S λ Notação de Kendall Fila G / G / 1 1 = um único servidor Distribuição dos
MAE GABARITO DA LISTA 2-04/10/2016
MAE5709 - GABARITO DA LISTA - 04/0/06 Exercício.7.5. Primeira Parte Seja P uma matriz de transição sobre um espaço de estados finito S. Mostre que uma distribuição π é invariante para P se e somente se
ESTATÍSTICA COMPUTACIONAL
ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Introdução Solução de equações não lineares
ÁLGEBRA LINEAR I - MAT0032
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de
Módulo III: Processos de Poisson, Gaussiano e Wiener
Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo
(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;
Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
1 Conceitos Iniciais. 1.1 Grafos
1 Conceitos Iniciais O objetivo deste capítulo é revisar conceitos básicos, mas fundamentais, sobre grafos, passeios aleatórios (random walks) com especial destaque aos passeios aleatórios sobre grafos
MAE125 Álgebra Linear /1 Turmas EQN/QIN
MAE25 Álgebra Linear 2 205/ Turmas EQN/QIN Planejamento (última revisão: 0 de junho de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na semana seguinte à aula e valem nota Todas
Como ganhar no Banco Imobiliário após infinitas jogadas
Como ganhar no Banco Imobiliário após infinitas jogadas Ian Bernardes Barcellos 16/10/2015 Ian Bernardes Barcellos Como ganhar no Banco Imobiliário após infinitas jogadas 16/10/2015 1 / 17 O Jogo Ian Bernardes
Representação de Fourier para Sinais 1
Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do
1 Auto vetores e autovalores
Auto vetores e autovalores Os autovalores de uma matriz de uma matriz n n são os n números que resumem as propriedades essenciais daquela matriz. Como esses n números realmente caracterizam a matriz sendo
Processos estocásticos
36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges [email protected]
Cadeias de Markov. 1. Introdução. Modelagem e Simulação - Cadeias de Markov
Cadeias de Markov. Introdução Nestas notas de aula serão tratados modelos de probabilidade para processos que evoluem no tempo de maneira probabilística. Tais processos são denominados Processos Estocásticos...
Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE
Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de
MAE125 Álgebra Linear /2 Turmas EQN/QIN
MAE25 Álgebra Linear 2 205/2 Turmas EQN/QIN Planejamento (última revisão: 26 de outubro de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na aula seguinte e valem nota Todas as
PROCESSOS ESTOCÁSTICOS
PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos
Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios
Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios Prof. Eduardo Simas ([email protected]) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE
MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.
MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A
Cadeias de Markov Introdução
Cadeias de Markov Introdução EAD 350 Pesquisa Operacional Segmento Modelos de Redes Prof. Nicolau Reinhard 1º Semestre de 2017 Referências básicas: Taha, H., Pesquisa Operacional 8ª edição, Pearson, Prentice
3 Filtro de Kalman Discreto
3 Filtro de Kalman Discreto As medidas realizadas por sensores estão sujeitas a erros, como pode ser visto no Capítulo 2. Os filtros são aplicados aos sinais medidos pelos sensores para reduzir os erros,
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 12
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 12 Regressão com Variáveis Não-Estacionárias Considere três processos estocásticos definidos pelas seguintes
PROCESSOS ESTOCÁSTICOS E APLICAÇÕES
PROCESSOS ESTOCÁSTICOS E APLICAÇÕES JOSÉ PEDRO GAIVÃO Conteúdo 1. Noções Gerais 2 1.1. Relembrar de teoria de probabilidades 2 1.2. Processos estocásticos 3 2. Esperança Condicional 5 2.1. Esperança condicional
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para
5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual
Laboratório de Simulação Matemática. Parte 6 2
Matemática - RC/UFG Laboratório de Simulação Matemática Parte 6 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 6] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago
G4 de Álgebra Linear I
G4 de Álgebra Linear I 20122 Gabarito 7 de Dezembro de 2012 1 Considere a transformação linear T : R 3 R 3 definida por: T ( v = ( v (1, 1, 2 (0, 1, 1 a Determine a matriz [T ] ε da transformação linear
P4 de Álgebra Linear I
P4 de Álgebra Linear I 2008.2 Data: 28 de Novembro de 2008. Gabarito. 1) (Enunciado da prova tipo A) a) Considere o plano π: x + 2 y + z = 0. Determine a equação cartesiana de um plano ρ tal que a distância
Processos Estocásticos
Processos Estocásticos Rui Alves Catarina Delgado Setembro de 1997 APRESENTAÇÃO Este texto concretiza uma ideia que já tem alguns anos, mas que vinha sendo adiada devido a afazeres de diversa natureza.
PRE29006 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável
Processos Estocásticos
Licenciatura em Matemática Aplicada e Computação PROCESSOS ESTOCÁSTICOS 2002/03 Colectânea de Exercícios Capítulo 1 Introdução aos Processos Estocásticos Exercício 1.1 O número de sinais emitidos por uma
Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios
Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que
Autovalores e Autovetores
Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução
UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado
UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 27/2 - Mestrado A prova é composta de 6 (seis) questões, das quais o candidato
Dou Mó Valor aos Autovalores
1. Definições Preliminares Dou Mó Valor aos Autovalores 21ª Semana Olímpica Maceió, AL Prof. Davi Lopes Nível U Dada uma matriz quadrada A n n de entradas complexas, podemos definir os conceitos a seguir,
Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas
Álgebra Linear I - Lista 12 Matrizes semelhantes. Diagonalização Respostas 1) Determine quais das matrizes a seguir são diagonalizáveis. Nos caso afirmativos encontre uma base de autovetores e uma forma
Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:
Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,
Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período
www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para encontrar o autovetor associado
Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM
Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna
(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas
Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011
APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy
PROCESSOS ESTOCÁSTICOS. Modelagem de falhas, Técnicas de Markov para modelagem da confiabilidade de sistemas
ROCESSOS ESTOCÁSTICOS Modelagem de falhas, Técnicas de Markov para modelagem da confiabilidade de sistemas Modelagem de falhas Confiabilidade de sistemas Necessário modelar o comportamento do sistema,
Modelagem e Avaliação de Desempenho
Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2018 Exemplos usados na apresentação foram obtidos de Introduction to Probability, C.M.Grinstead
5 Descrição entrada-saída
Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)
Processos Markovianos Introdução e Aplicações
Processos Markovianos Introdução e Aplicações Autores: Pedro Santana (04/35619) Yasmin Mendes (03/91158) Disciplina: Automação Controle para Prof.: Dr. João Yoshiyuki Sumário 1. Processos Estocásticos
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
P4 de Álgebra Linear I de junho de 2005 Gabarito
P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana
JORNADA DE FÍSICA TEÓRICA INSTITUTO DE FÍSICA TEÓRICA U.N.E.S.P. 19 a
JORNADA DE FÍSICA TEÓRICA 2010 INSTITUTO DE FÍSICA TEÓRICA U.N.E.S.P. 19 a 23-07-2010 Monday, July 19, 2010 1 CAMPOS CLÁSSICOS, QUÂNTICOS, DE CALIBRE E POR AÍ AFORA JORNADA DE FÍSICA TEÓRICA 2010 Instituto
Capítulo 2 Dinâmica de Sistemas Lineares
Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57
Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais
Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que
(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.
Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que
Jogos de Campo Médio. Diogo A. Gomes (IST - Lisbon) Trabalho conjunto com J. Mohr e R. Sousa (UFRGS - Brasil)
Jogos de Campo Médio Diogo A. Gomes (IST - Lisbon) Trabalho conjunto com J. Mohr e R. Sousa (UFRGS - Brasil) 1 Os jogos de campo médio ( mean field games ) modelam situações de conflítuo/competição que
Conceitos Básicos, Básicos,Básicos de Probabilidade
Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar
