I. INTRODUÇÃO Generalidades

Tamanho: px
Começar a partir da página:

Download "I. INTRODUÇÃO Generalidades"

Transcrição

1 1

2 I. INTRODUÇÃO 1.1. Generalidades Qualquer sistema real opera sempre em ambientes onde a incerteza impera, principalmente quando o sistema envolve, pela sua natureza, ações humanas imprevisíveis ou desgaste natural de máquina. Os modelos determinísticos certamente contribuem para a compreensão, em um nível básico, do comportamento dinâmico de um sistema. No entanto, por não poderem lidar com a incerteza, acabamos por ser insuficientes nos processos de tomada de decisão. Assim, recorre-se a Processos Estocásticos como uma forma de regularidade que eles apresentam para serem descritos por modelos probabilísticos. Pode definir-se um Processo Estocástico ( em inglês, Stochastic Process ou Random Process ) como um conjunto de variáveis aleatórias indexadas a um variável (geralmente a variável tempo), sendo representado por { ( ) }. Estabelecendo o paralelismo com o caso determinístico, onde uma função toma valores bem definidos ao longo do tempo, um processo estocástico toma valores aleatórios ao longo do tempo. Aos valores que ( ) pode assumir chamam-se estados e ao seu conjunto x espaços de estados. Como exemplos de processos estocásticos, poderemos considerar: 1) ( ) representa o estado de uma máquina (ligada/desligada) no memento t; 2) ( ) representa o número de clientes em uma loja no instante t; 3) ( ) representa o número de máquinas defeituosa no final de um dia t; 4) ( ) representa a cotação de uma ação na bolsa de valores no final de um dia t; 5) ( ) representa o nível de estoque de uma determinada peça no final de um dia t; 6) ( ) representa a condição de funcionamento de um componente no instante t; Os Processos Estocásticos representam sistemas nos quais o estado muda ao longo do tempo. Estas mudanças não são totalmente previsíveis, mas elas estão associadas a distribuição de probabilidade. Diversos fenómenos reais admitem a modelagem através dos processos estocásticos. Vejamos alguns: Exemplo 7 (cadeia de montagem) Os produtos finais de uma cadeia de montagem, após uma supervisão à que são submetidos, podem ser considerados defeituosos ou não. Se o n-ésimo produto não tiver defeito, fazemos, caso contrario. Suponha que um produto é defeituoso independentemente dos outros produtos e que a probabilidade de que isto aconteça é p, então é uma sequência de variáveis aleatórias independentes e identicamente distribuídas (i.i.d.) Bernoulli com parâmetros p de sucesso. Exemplo 8 (Estoque). Uma pequena loja de equipamentos eletrodomésticos vende um modelo tipo de máquina de lavar roupa. No entanto ela somente pode ter em estoque no máximo cinco unidades. Então se no final do dia a loja tem no estoque somente uma unidade ou nenhuma, o gerente manda buscar tantas unidades quantas forem necessárias para ter cinco na loja no dia seguinte antes de iniciar o expediente. Vamos chamar de a quantidade de unidades na loja no final do n-ésimo dia. Elas podem ser consideradas variáveis aleatórias (v.a.), pois é razoável supor que não temos como prever a quantidade de máquinas de lavar que serão compradas a cada dia. 2

3 Exemplo 9 (Mobilidade social) Consideremos a história de várias gerações de uma família que ao longo do tempo tem somente um filho. Neste modelo simples, a observação da classe social (alta, média ou baixa) da família para cada geração permitiria descrever sua evolução social ao longo do tempo. Se tivermos uma sociedade composta por famílias deste tipo, podemos escolher ao acaso uma família e para cada geração n chamar de à quantidade que valerá 1 se fora família de classe alta, 2 se ela for de classe média e 3 se for de classe baixa. Desta forma, cada será uma variável aleatória e a sua evolução ao longo do tempo, permitirá tirar conclusões sobre mudanças na estrutura da sociedade. Exemplo 10 (Lucro de uma companhia seguradora). Suponha que uma seguradora recebe c unidades monetárias (u.m.) pelo total dos prêmios que ela cobra dos segurados dentro de uma determinada carteira por período de tempo (mês, semestre, por exemplo). Assuma também que a seguradora coleta os prêmios regularmente e que as indenizações pagas quando os sinistros ocorrem. Além disto, não vamos considerar aqui eventuais despesas administrativas, ganhos ou perdas por investimentos, etecetera. Desta forma, a reserva desta seguradora será afetada somente pela cobrança dos prêmios ou por pagamentos de indenizações na ocorrências de sinistros. Em particular, o lucro da companhia no n-ésimo período ser c Zn u.m., sendo Zn o valor total de indenizações pago pela seguradora nesse período. Se chamarmos de Ln ao lucro da seguradora desde que essa carteira começa a operar até o final do n-ésimo período, teremos que O comportamento desta quantidade ao longo do tempo influenciará na saúde financeira da seguradora. Como se pode constatar pelos exemplos apresentados, há casos em que o tempo é considerado de forma discreta (... no final do dia t) e outros em que é tomado de modo contínuo (... no instante t). A variável tempo é, por definição, uma variável contínua, a qual pode ser discretizada se os fenómenos forem observados a intervalos regulares. Outra constatação que se pode fazer é que os estados tanto são valores que a variável ( ) pode assumir (número de clientes, número de máquinas, etc.) como estados (máquinas defeituosas, máquinas em funcionamento, etc.). Chamaremos processo estocástico a qualquer família de variáveis aleatória ( ), com t ϵ T e sendo T algum espaço de parâmetros. Quando T é enumerável diremos que o processo estocástico correspondente é a tempo discreto. Se T for um intervalo, o processo estocástico será chamado a tempo contínuo. Os valores que tornam as variáveis do processo serão chamados de estados e o conjunto E destes valores será o espaço de estados. Os processos estocásticos podem ter espaço de estados discreto ou espaço de estados contínuo em correspondência com a natureza do conjunto E. Nos exemplos 1 e 7 temos E={0,1}, no exemplo 8, E={0,1,2,3,4,5}, no exemplo 9, E={1,2,3}... OBS.: O comportamento probabilístico de um processo estocástico está caracterizado pelas relações de dependência entre distribuições conjuntas e suas marginais. Exemplo 11: Consideremos os vetores aleatórios discretos (X1,X2) e (Y1, Y2) com funções de probabilidade conjunta: X 1 \ X Y 1 \ Y /4 1/4 e 0 0 1/2 Estas funções de probabilidade são diferentes, no entanto as marginais coincidem. 3

4 1 1/4 1/4 1 1/ Classificação dos Processos Estocásticos Para classificar os processos estocásticos analisam-se (i) o espaço de estados, (ii) a natureza do conjunto T e (iii) as características estatísticas da variáveis que definem o processo. (i) Espaços de estados Se x for um conjunto de estados finito ou contável ( x = {0, 1, 2,... }, ou seja, o conjunto de inteiros nãonegativos), ( ) é um espaço de estados discretos ou, como é usualmente referido, uma cadeia. Para qualquer outro caso, o processo é designado por processo de estados contínuos. Dos exemplos apresentados, os exemplos 1, 2 e 6 são cadeias enquanto que o restante podem ser processos de estados contínuos. (ii) Variável temporal Se o conjunto T, que específica os valores da variável t, for finito ou contável, ( ) é um processo em tempo discreto e anotação usada é { ( ) }. Neste caso, T é normalmente o conjunto dos inteiro nãonegativos. Em caso contrário ( ) é designado por processo em tempo contínuo, sendo usada a notação { ( ) }. Dos exemplos apresentado, os exemplos 3, 4 e 5 são processo em tempo discreto uma vez que representam quantidades observadas dia a dia, enquanto que os restantes são processos estocásticos em tempo contínuo por representarem fenómenos observados em qualquer momento do dia (do tempo). (iii) Características estatísticas das variáveis aleatórias Um processo estocástico diz-se estacionário se o seu comportamento estocástico for independente do tempo, ou seja, se a função distribuição da(s) v.a. que o define(m) não variar no tempo. Um processo estocástico diz-se Markoviano ou de Markov se for estacionário e obedecer a propriedade de Markov ou da perda de memoria, isso é, se o seu comportamento futuro apenas for condicionado pelo estado presente, independentemente do seu histórico ou dos estados passados. De fato, para um processo de Markov é completamente irrelevante qualquer informação sobre estados passados ou sobre o tempo de permanência no estado presente. Em um processo estocástico as transições entre estados são causadas pela ocorrência de acontecimentos ou eventos, pelo que a variável aleatória diretamente restringida pela propriedade de ausência de memória é o tempo entre acontecimentos sucessivos (em inglês interenvent time ). Dados que, como iremos ver mais a diante, a única distribuição contínua que apresenta esta propriedade é a distribuição exponencial, num processo de Markov todos os tempos entre acontecimentos sucessivos tem de ser exponencialmente distribuídos. Um processo estocástico de Semi-Markov é uma generalização de um processo de Markov, já que para aquele, a informação sobre o tempo de permanência no estado atual deixa de ser irrelevante; contínua, contudo a ser irrelevante para o comportamento futuro qualquer informação sobre dos estados dos passados. 4

5 A consequência é que os tempos entre acontecimentos sucessivos deixam de estar restringidos à distribuição exponencial, podendo seguir qualquer distribuição de probabilidade. De acordo com a relação entre os espaços de parâmetro T como tempo temos: a) Estados Independentes: A relação de dependência entre variáveis aleatória mais simples que podemos pensar a ausência dela, Chamaremos de processos de estados independentes a aqueles processos estocásticos tal que todos os seus estados constituem uma família de variáveis aleatórias independentes. Um exemplo é o processo de Bernoulli de parâmetro p. b) Processos de Markov: consideraremos os instantes t1, t2,... tn ϵ T, com t1 < t2 <... < tn< t. Um processo X é chamado de processo de Markov quando para todos a, b, a1,..., an ϵ E vale, -, - Ou seja o estado depende da sua historia anterior nos instantes t 1, t 2,... t n desde que se conheça o presente e não do passado, assim utilizaremos o tempo presente para encontrar o tempo futuro. c) Martingais: Para os martingais vale o que pode ser previsto sobre o estado do processo num instante futuro sendo que são conhecidos n estados anteriores é exatamente o estado no instante presente. Ex.: Um exemplo de martingais aparece em jogos simples de azar como o seguinte. Suponhamos que no n-ésimo lançamento de uma moeda honesta acrescentamos um valor A ao capital do jogador se sair cara, e subtraímos a mesma quantidade se sair coroa. O jogador começa o jogo com capital igual a k e é admitido ter capital negativo. Vamos supor também que os lançamentos são independentes. Fazendo { Teremos que o capital do jogador no instante do n-ésimo lançamento será Se * + é um processo estocástico, então chamaremos de incremento correspondente ao intervalo (s,t) à variável aleatória. 5

6 O processo tem incrementos estacionários quando a distribuição de depende dos instantes s e t e para todos os ponto das distribuições s e t os valores dos incrementos sejam iguais. O processo de Poisson tem incrementos estacionários e independentes. Exemplo 12: Movimento Browniano Em 1827, o botânico escocês Robert Brown observou e descreveu o movimento irregular executado por pequenos grãos de pólen suspensos em água. Esta observação aparente mente sem muita importância, tornou-se especialmente relevante alguns anos depois. Embora L. Bachelier em 1900 e A. Einstein em 1905 tenham sido os primeiros a abordar quantitativamente o estudo deste fenômeno, foi o matemático norte americano Norbert Wierner quem em 1923 estudou e formalizou rigorosamente o modelo matemático motivado no fenômeno físico do movimento browniano. É por isso que ele é chamado de processo de Wiener ou movimento browniano, sendo que este último dá ênfase ao processo físico. Considerando o processo a tempo contínuo * + com espaço de estados E = r, que tem as seguintes características: ( i ) ; ( ii ) X tem incrementos independentes; ( iii ) ( ) ( ) ( ), i.e. ( ); ( iv ) X possui trajetórias contínuas X é conhecido como movimento Browniano em processo Estocástico de Wierner e tem incrementos estacionários e independentes. Veja o gráfico a seguir: Figura: 2 Trajetória do movimento Browniano 6

7 Vejamos pro exemplo, como calcular a função distribuição de probabilidade conjunta de instantes fixados s e t tais que. Se fizermos para dois { Usando a independência e a estacionariedade dos incrementos, teremos ( ) ( ) ( ), ( { }) ( ( ) { ( ) }) ( ) { ( )} Exercícios: O vetor ( ) segue a distribuição normal bivariada com vetor médio nulo e ( ) 1) Num cruzamento em T, aproximadamente 60% viram à direita. Defina X, como sento 1 ou 0 em dependendo se o p-ésimo carro virou à direita ou esquerda. Suponha que os motoristas decidem para onde virar independentemente um do outro. Então X = { * + é um processo estocástico de Bernolli com probabilidade 0,6 de sucesso. Num certo dia um pedestre observou o que faziam 10 carros que passaram consecutivamente e fez a anotação ( D, E, D, D, D, E, D, E, D, E ), onde D=direita e E=esquerda. Quais seriam os valores correspondente de; a. b. c. d. Represente em gráfico os instantes dos sucessos no processo de Bernoulli. 2) Para um processo de Bernoulli em p = 0,7 interprete e calcule as seguintes quantidades; a. ( ) b. ( ) c. ( ) 7

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

COMPRIMENTO MÁXIMO ESPERADO PARA AS CADEIAS DE CARAS Carlos José Borge

COMPRIMENTO MÁXIMO ESPERADO PARA AS CADEIAS DE CARAS Carlos José Borge COMPRIMENTO MÁXIMO ESPERADO PARA AS CADEIAS DE CARAS Carlos José Borge Gravitation Editora: R Dr Luiz Migliano, 761, Ap 54, bloco C, Cep: 05711-001, E-mail: cjborge@hotmailcom Resumo O comprimento máximo

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Classificação de Sistemas de Simulação. Profa. Dra. Soraia Raupp Musse

Classificação de Sistemas de Simulação. Profa. Dra. Soraia Raupp Musse Classificação de Sistemas de Simulação Profa. Dra. Soraia Raupp Musse Quem é real? Simulação de Sistemas SIMULAÇÃO IMPLICA NA MODELAGEM DE UM PROCESSO OU SISTEMA, DE TAL FORMA QUE O MODELO IMITE AS RESPOSTAS

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

I - Introdução à Simulação

I - Introdução à Simulação 1 I - Introdução à Simulação Simulação é, entendida como a imitação de uma operação ou de um processo do mundo real. A simulação envolve a geração de uma história artificial de um sistema para a análise

Leia mais

Probabilidade: aula 2, 3 e 4

Probabilidade: aula 2, 3 e 4 Probabilidade: aula 2, 3 e 4 Regras de contagem e combinatória Permutação Simples: Exemplo: De quantas maneiras 5 pessoas podem viajar em um automóvel com 5 lugares, se apenas uma delas sabe dirigir? Atividade:

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Estimando probabilidades

Estimando probabilidades A UA UL LA Estimando probabilidades Introdução Nas aulas anteriores estudamos o cálculo de probabilidades e aplicamos seu conceitos a vários exemplos. Assim, vimos também que nem sempre podemos calcular

Leia mais

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo PROGRAMA e Metas Curriculares Matemática A Estatística António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo O tema da Estatística nos Cursos Científico-Humanísticos de

Leia mais

Inteligência Artificial - IA. Agentes Inteligentes Cont.

Inteligência Artificial - IA. Agentes Inteligentes Cont. Agentes Inteligentes Cont. 1 Caracterização de agente - M. A. A. S. (P.E.A.S) Medida desempenho Ambiente Atuadores Sensores Agente filtro de e-mail Minimizar carga de leitura usuário mensagens do usuário

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

População e Amostra. População: O conjunto de todas as coisas que se pretende estudar. Representada por tudo o que está no interior do desenho.

População e Amostra. População: O conjunto de todas as coisas que se pretende estudar. Representada por tudo o que está no interior do desenho. População e Amostra De importância fundamental para toda a análise estatística é a relação entre amostra e população. Praticamente todas as técnicas a serem discutidas neste curso consistem de métodos

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

ESCOLA SECUNDÁRIA DE LOUSADA

ESCOLA SECUNDÁRIA DE LOUSADA ESCOLA SECUNDÁRIA DE LOUSADA 2012 2013 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA Curso Profissional de Técnico de Multimédia ELENCO MODULAR A7 Probabilidades 28 A6 Taxa de variação 36 A9 Funções de crescimento

Leia mais

27/8/2011. Princípios, Conceitos e Metodologia de Gestão 2o semestre de 2011 Professores: Alexandre Mota / Lia Mota Agosto/2011

27/8/2011. Princípios, Conceitos e Metodologia de Gestão 2o semestre de 2011 Professores: Alexandre Mota / Lia Mota Agosto/2011 Tomada de Decisão e Regras Nebulosas Princípios, Conceitos e Metodologia de Gestão 2o semestre de 2011 Professores: Alexandre Mota / Lia Mota Agosto/2011 Representação Matemática de Incertezas Padrões

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Agentes Inteligentes. Módulo 02 27/02/2013. Inteligência Artificial. Profª Hemilis Joyse

Agentes Inteligentes. Módulo 02 27/02/2013. Inteligência Artificial. Profª Hemilis Joyse Agentes Inteligentes Módulo 02 1 Agente É tudo que pode ser considerado capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por intermédio de atuadores. 2 Agente Tabela parcial

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

HEP-5800 BIOESTATÍSTICA. Capitulo 2

HEP-5800 BIOESTATÍSTICA. Capitulo 2 HEP-5800 BIOESTATÍSTICA Capitulo 2 NOÇÕES DE PROBABILIDADE, DISTRIBUIÇÃO BINOMIAL, DISTRIBUIÇÃO NORMAL Nilza Nunes da Silva Regina T. I. Bernal MARÇO DE 2012 2 1. NOÇÕES DE PROBABILIDADE 1. DEFINIÇÃO Considere

Leia mais

Teoria das Desições Financeiras II p.1/15

Teoria das Desições Financeiras II p.1/15 Teoria das Desições Financeiras II José Fajardo Barbachan IBMEC Business School Rio de Janeiro Teoria das Desições Financeiras II p.1/15 Probabilidade para Finanças Teoria das Desições Financeiras II p.2/15

Leia mais

AT = Maior valor Menor valor

AT = Maior valor Menor valor UNIVERSIDADE FEDERAL DA PARAÍBA TABELAS E GRÁFICOS Departamento de Estatística Luiz Medeiros DISTRIBUIÇÃO DE FREQUÊNCIA Quando se estuda uma massa de dados é de frequente interesse resumir as informações

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos Processos Estocásticos Luiz ffonso Guedes Sumário Probabilidade Variáveis leatórias Funções de Uma Variável leatória Funções de Várias Variáveis leatórias Momentos e Estatística Condicional Teorema do

Leia mais

Agrupamento de Escolas do Fundão

Agrupamento de Escolas do Fundão Agrupamento de Escolas do Fundão MATEMÁTICA P GPI 13 12º Ano CURRÍCULO DA DISCIPLINA E Nº DE AULAS PREVISTAS Período PLANIFICAÇÃO ANUAL Módulos a leccionar + Conteúdos Programáticos Módulo A6- Taxa de

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

Lista de Exercícios 4

Lista de Exercícios 4 Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

6ª Lista de Probabilidade I Professor: Spencer

6ª Lista de Probabilidade I Professor: Spencer 6ª Lista de Probabilidade I Professor: Spencer 1) Em um determinado processo de fabricação, 10% das peças são consideradas defeituosas. As peças são acondicionadas em caixas com 5 unidades cada uma, Pergunta-se:

Leia mais

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 Fundamentos de Testes

Leia mais

Variáveis Aleatórias Discretas - Esperança e Variância

Variáveis Aleatórias Discretas - Esperança e Variância Exemplo Um empresário pretende estabelecer uma firma para montagem de um componente mecânico. Cada peça é composta de duas partes, A e B, cada uma com uma chance específica de ser defeituosa. Só é possível

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

Física Experimental III

Física Experimental III Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Nome: N. o : 7. Total

Nome: N. o : 7. Total ESTATÍSTICA I 2. o Ano/Gestão 2. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: 14231 05.06.2015 Nome: N. o : TEÓRICA Espaço reservado a classicações PRÁTICA EM 1.a) 2.a) 3.a)

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

Introdução à. Macroeconomia

Introdução à. Macroeconomia Introdução à Prof. Fabini Hoelz Bargas Alvarez IBMEC-RJ / UCP O que é? É o estudo da economia como um todo, pois analisa a economia através de suas variáveis fortemente agregadas. Abrange o comportamento

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita 1 Preliminares Neste curso, prioritariamente, estaremos trabalhando com números inteiros mas, quando necessário,

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Probabilidade e Estatística 2011/2

Probabilidade e Estatística 2011/2 Probabilidade e Estatística 2011/2 Prof. Fernando Deeke Sasse Exercícios resolvidos sobre distribuições discretas Distribuição Binomial 1. Lotes de 50 peças são examinados. O número médio de peças não-conformes

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Estabelecimento de Metas e seu Desdobramento

Estabelecimento de Metas e seu Desdobramento Estabelecimento de Metas e seu Desdobramento O que é Meta? É Alvo bem determinados que representam os objetivos de uma estratégia ou de uma das etapas deste estratégia (regalmente, dentro de um período

Leia mais

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013 Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013 1. Unidade Orgânica Ciências da Economia e da Empresa (1º Ciclo) 2. Curso Engenharia Informática 3. Ciclo de Estudos 1º

Leia mais

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [.

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [. 6 Embora o conceito de diferencial tenha sua importância intrínseca devido ao fato de poder ser estendido a situações mais gerais, introduziremos agora esse conceito com o objetivo maior de dar um caráter

Leia mais

Principais conceitos de Matemática Financeira

Principais conceitos de Matemática Financeira Principais conceitos de Matemática Financeira A aula 1 destina-se a discutir de forma sucinta os conceitos básicos da matemática financeira. O estudo desta seção é de fundamental importância como preparação

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Professor Msc. Leonardo Henrique Gonsioroski

Professor Msc. Leonardo Henrique Gonsioroski Professor Msc. Leonardo Henrique Gonsioroski Professor Leonardo Henrique Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definições Um sistema que estabeleça

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

Exame de Acesso ACFES Maiores de 23; Acesso Específico. Matemática. PROVA MODELO - proposta de resolução

Exame de Acesso ACFES Maiores de 23; Acesso Específico. Matemática. PROVA MODELO - proposta de resolução Ministério da Ciência, Tecnologia e Ensino Superior Exame de Acesso ACFES Maiores de 23; Acesso Específico Matemática PROVA MODELO - proposta de resolução - INSTRUÇÕES - Deverá responder à prova na folha

Leia mais

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B)

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B) ISEG - ESTATÍSTICA I - EN, Economia/Finanças - de Junho de 00 Tópicos de correcção ª Parte. Sejam os acontecimentos A, B, C tais que P ( A B) > 0. Justifique a igualdade: ( A B) C) = B A). A). C ( A B)).

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

4 Uma Linguagem Baseada em Máquinas de Estado 4.1. A Linguagem

4 Uma Linguagem Baseada em Máquinas de Estado 4.1. A Linguagem 4 Uma Linguagem Baseada em Máquinas de Estado 4.1. A Linguagem Acredita-se nesse trabalho que características reativas e fortemente baseadas em modelos tornam necessária a criação de uma linguagem específica

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Lógica e Raciocínio. Decisão sob Risco Utilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/

Lógica e Raciocínio. Decisão sob Risco Utilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/ Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Utilidade 1 Valor Monetário Esperado Assumamos que sempre podemos medir o valor das consequencias em termos monetarios

Leia mais

Pesquisa Quantitativa. Modelos Probabilísticos Roteiro. Análise Multivariada Prof. Lupércio França Bessegato - UFJF 1

Pesquisa Quantitativa. Modelos Probabilísticos Roteiro. Análise Multivariada Prof. Lupércio França Bessegato - UFJF 1 Pesquisa Quantitativa Modelos Probabilísticos Lupércio França Bessegato Mestrado em Administração/UFJF Roteiro 1. Introdução 2. Amostragem 3. Modelos probabilísticos 4. Distribuições amostrais e estimação

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

Prova de Seleção ao Doutorado Macroeconomia

Prova de Seleção ao Doutorado Macroeconomia Prova de Seleção ao Doutorado Macroeconomia Programa de Pós-Graduação em Economia, FEA/USP Área Teoria Econômica 1. (40 pontos) Considere o modelo de Ramsey-Cass-Koopmans em tempo contínuo, o qual inclui

Leia mais

Exercícios de Probabilidade - Lista 1 Calcular e, após, Modelar no NETICA

Exercícios de Probabilidade - Lista 1 Calcular e, após, Modelar no NETICA 1 Exercícios de Probabilidade - Lista 1 Calcular e, após, Modelar no NETICA 1) Os dados da tabela abaixo descrevem o desempenho de alunos de graduação na disciplina de Probabilidade oferecida para alunos

Leia mais

Medidas de associação para variáveis categóricas em tabelas de dupla entrada

Medidas de associação para variáveis categóricas em tabelas de dupla entrada Medidas de associação para variáveis categóricas em tabelas de dupla entrada a) Quiquadrado de Pearson: mede a associação de tabelas de dupla entrada, sendo definida por: c ( e e ij ij n ) ij, em que é

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

Palavras-chave: TIC; experimento; espaço amostral; evento.

Palavras-chave: TIC; experimento; espaço amostral; evento. UMA INTRODUÇÃO À TEORIA DA PROBABILIDADE: O USO DE AULAS MULTIMÍDIAS COMO FACILITADOR DO PROCESSO ENSINO- APRENDIZAGEM Diánis Ferreira Irias dianis.irias@hotmail.com Laura Lima Dias laura_limadias@hotmail.com

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

ATIVO PASSIVO AULA 1 - DEFINIÇÃO DE CONTABILIDADE COMPARAÇÃO ENTRE O ATIVO (A) E O PASSIVO (P)

ATIVO PASSIVO AULA 1 - DEFINIÇÃO DE CONTABILIDADE COMPARAÇÃO ENTRE O ATIVO (A) E O PASSIVO (P) AULA 1 - DEFINIÇÃO DE CONTABILIDADE É A CIÊNCIA SOCIAL QUE ESTUDA O PATRIMÔNIO DAS ENTIDADES E SUAS VARIAÇÕES AO LONGO DO TEMPO ENTIDADE: TODA A PESSOA JURÍDICA QUE POSSUI UM PATRIMÔNIO. PODE SER UMA EMPRESA,

Leia mais

Planificação a médio e longo prazo. Matemática B. 11º Ano de escolaridade. Total de aulas previstas: 193. Ano letivo 2015/2016

Planificação a médio e longo prazo. Matemática B. 11º Ano de escolaridade. Total de aulas previstas: 193. Ano letivo 2015/2016 Planificação a médio e longo prazo Matemática B 11º Ano de escolaridade. Total de aulas previstas: 193 Ano letivo 2015/2016 Professor responsável: Paulo Sousa I O programa Matemática B do 11º Ano - Página

Leia mais

Nome: N. o : 7. Total

Nome: N. o : 7. Total ESTATÍSTICA I. o Ano/Gestão. o Semestre Época Normal Duração: horas 1. a Parte Teórica N. o de Exame: 1431 5.6.14 Nome: N. o : TEÓRICA Espaço reservado a classicações PRÁTICA EM 1.a.a 3.a 4.a 6. 1.b.b

Leia mais

O Grafcet e a programação de lógica seqüencial em CLPs

O Grafcet e a programação de lógica seqüencial em CLPs O Grafcet e a programação de lógica seqüencial em CLPs 1) Introdução Em problemas nos quais as ações de comando são seqüenciais ou então tempo dependentes, a modelagem lógica, representada unicamente com

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

Por exemplo, vamos obter os termos de uma progressão geométrica de razão 2, partindo do número 3.

Por exemplo, vamos obter os termos de uma progressão geométrica de razão 2, partindo do número 3. Definição: Progressão geométrica (ou simplesmente PG) é uma seqüência de números não nulos em que cada um deles, multiplicado por um número fixo, fornece o próximo elemento da seqüência. Esse número fixo

Leia mais

BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade

BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco 1Q-2016 1 1995 2015 2 Custo de um algoritmo e funções de complexidade Introdução

Leia mais

Matemática Discreta - 08

Matemática Discreta - 08 Universidade Federal do Vale do São Francisco urso de Engenharia da omputação Matemática Discreta - 08 Prof. Jorge avalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO SISTEMAS DE NUMERAÇÃO 1. INTRODUÇÃO Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo

Leia mais

Programação Dinâmica: Modelos Determinísticos

Programação Dinâmica: Modelos Determinísticos Programação Dinâmica: Modelos Determinísticos Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP www.feg.unesp.br/~fmarins fmarins@feg.unesp.br

Leia mais

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem) Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Progressão Aritmética e Geométrica Progressão Aritmética Uma sucessão de números na qual a diferença entre dois termos consecutivos é constante, é denominada progressão aritmética,

Leia mais

Introdução ao Desenvolvimento de Jogos BCT - UERN

Introdução ao Desenvolvimento de Jogos BCT - UERN Introdução ao Desenvolvimento de Jogos BCT - UERN Créditos Professores UERN Alberto Signoretti Raul Paradeda Alunos CC UERN Pedro Henrique Bruno Magnos Gustavo Matheus Rodrigo Fernandes Visão Inicial Elementos

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

Progressões aritméticas

Progressões aritméticas A UUL AL A Progressões aritméticas Quando escrevemos qualquer quantidade de números, um após o outro, temos o que chamamos de seqüência. As seqüências são, freqüentemente, resultado da observação de um

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

TÓPICOS DE MATEMÁTICA FINANCEIRA PARA O ENSINO MÉDIO - PROF. MARCELO CÓSER

TÓPICOS DE MATEMÁTICA FINANCEIRA PARA O ENSINO MÉDIO - PROF. MARCELO CÓSER TÓPICOS DE MATEMÁTICA FINANCEIRA PARA O ENSINO MÉDIO - PROF. MARCELO CÓSER 1 PAGAMENTO DE DÍVIDAS Existem mais de uma maneira de se efetuar o pagamento de uma dívida. Ela pode ser toda liquidada em um

Leia mais

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R Introdução à Simulação Estocás5ca usando R INF2035 PUC- Rio, 2013.1 Departamento de InformáAca - PUC- Rio Hélio Lopes Departamento de InformáAca PUC- Rio A plataforma R R é uma linguagem de programação

Leia mais

Sistemas de numeração e conversão de bases Decimal e binário

Sistemas de numeração e conversão de bases Decimal e binário Sistemas de numeração e conversão de bases Decimal e binário Cálculo de conversão de bases para responder às questões pertinentes à execução das especificações nas configurações de sistemas, comunicação

Leia mais

Econometria em Finanças e Atuária

Econometria em Finanças e Atuária Ralph S. Silva http://www.im.ufrj.br/ralph/especializacao.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Maio-Junho/2013 Tópicos Tópicos Séries

Leia mais

Avaliação e Desempenho Aula 1 - Simulação

Avaliação e Desempenho Aula 1 - Simulação Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais