Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas
|
|
|
- Valentina Braga Câmara
- 9 Há anos
- Visualizações:
Transcrição
1 Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais
2 Alguns conceitos População: é o conjunto de todos os elementos ou resultados sob investigação. Amostra: qualquer subconjunto da população. Subpopulação: estrato da população que partilha alguma característica comum. Parâmetro: é uma medida numérica que descreve uma população. Estatística: é uma medida numérica que descreve uma amostra. Estimador: é uma estatística da amostra usada para se aproximar de um parâmetro da população. Variáveis: característica de interesse para os elementos analisados, informações numéricas estatisticamente tratáveis. Nominais ou categóricas: profissão, gênero, preferência política... Ordinais: primeiro-segundo..., grau de escolaridade... Intervalares: salário entre 1 e 3 SM, distância entre 0 e 5km... Contínuas: altura, rendimento, peso...
3 Amostra População Amostra (n=5) Parâmetros Estatísticas Inferência estatística: conhecer os parâmetros, fazer afirmações sobre a população com base em suas amostras.
4 O que é probabilidade? Número de 0 até 1 que expressa a tendência de um determinado evento acontecer. Número positivo entre 0 e 1, associado a um evento aleatório, que se mede pela frequência relativa da sua ocorrência numa longa sucessão de eventos. Grau de segurança com que se pode esperar a realização de um evento, determinado pela frequência relativa dos eventos do mesmo tipo numa série de tentativas. Perspectiva de que algo venha a ocorrer. 4
5 Determinação de probabilidade Conceito genérico: Probabilidade de um resultado ou evento número de vezes que o resultado ou evento pode ocorrer número total de vezes que qualquer resultado ou evento pode ocorrer Tipos de determinação: Exata: análise da estrutura do problema, conhecimento da população... Aproximativa: estimativas a partir de amostras. Subjetiva: expressão de crenças. 5
6 Fonte: Wikipédia Probabilidade em variáveis discretas Qual a probabilidade de se tirar uma carta de copas de um baralho? E de se tirar um ás? Qual a probabilidade de se tirar cara jogando uma moeda para o alto? Qual a probabilidade de obter 5 lançando dois dados? 6
7 Probabilidade em variáveis contínuas? Qual é a probabilidade de que, ao acordar de repente, sejam exatamente 4h59min16seg147milésimos? 7
8 Função Densidade de Probabilidade Probabilidade de um valor específico para variáveis contínuas não faz sentido, pois a probabilidade de um ponto é zero. Devemos, portanto, definir intervalos: Ex.: Probabilidade de que sejam entre 15h e 16h P(15h<x<16h) Os intervalos são calculados com base na função que determina a distribuição das variáveis aleatórias contínuas, chamada de Função Densidade de Probabilidade (f.d.p.) horas 8
9 Formalização matemática Função Densidade de Probabilidade (f.d.p.): prob ( a x b) ( x) dx Em palavras: a área debaixo da função de densidade entre dois limites fornece a probabilidade de ocorrer um evento dentro de um determinado intervalo de valores. b a f.d.p. 34 P( 29 x 34) ( x) dx
10 Distribuição normal Também chamada de distribuição gaussiana, é utilizada para descrever muitos fenômenos e possui grande utilidade na inferência estatística. Indicamos que uma população é normal usando a seguinte notação: X~N(μ;σ 2 ). Ex.: Uma população normal com peso médio de 70kg e desviopadrão de 16kg será notada como: X~N(70;16 2 ) 10
11 Formato de uma distribuição normal Fonte: Wikipédia 11
12 Parâmetros de uma distribuição normal A curva normal é definida por uma equação que possui os seguintes parâmetros: Média (μ) e desvio-padrão (σ). ( x x ) (,, ) e 2 2 f Fonte: Wikipédia 12
13 Outras distribuições Outras distribuições serão utilizadas ao longo do curso: t de Student (parâmetros: graus de liberdade ν) Qui-quadrado (parâmetros: graus de liberdade ν) F de Fisher-Snedecor (parâmetros: graus de liberdade do numerador e denominador ν 1 e ν 2 ) Elas serão detalhas e explicadas no momento adequado. 13
14 Cuidado! A distribuição paranormal assombra os conceitos de muitos alunos, aparecendo com freqüência em provas e exercícios. Exorcize-a! 14
15 Valor padronizado (z) O valor z mede o quanto x se afasta da média ( ), em unidade de desvio padrão ( ). O desvio-padrão é a nossa régua. É usado nas tabelas de referência, onde μ=0 e σ=1. z = x - μ σ x x 15
16 Preste atenção nessa imagem!
17
18 Exercícios básicos: uso da curva normal 1. Uma v.a. X tem distribuição normal, com média 100 e desvio-padrão 10. a. Qual a probabilidade de que um indivíduo dessa população tenha um valor entre P(90<X<110)? b. P(x>120)? c. P(x<120)? d. Probabilidade de um indivíduo ter um valor menor que 85 e maior que 124 P(x<85 x>124)? e. Se sortearmos aleatoriamente 1000 indivíduos dessa população, quantos devem valores entre 90 e 110? Dica: desenhe a curva normal e marque a área a ser determinada 18
19 Exercícios básicos: uso da curva normal 2. Um levantamento realizado pela ANAC* verificou que a altura dos usuários de aviação segue uma distribuição normal com média de 171,3cm e desvio-padrão de 7,3cm. Com base nesses dados determine: a. Probabilidade de um usuário ter mais de 1,90m de altura P(X>190) b. P(X<140) c. Um intervalo simétrico em relação à média que exclua apenas 5% dos indivíduos. * SILVA, S. C; MONTEIRO, D.. Levantamento do perfil antropométrico da população brasileira usuária do transporte aéreo nacional: Projeto Conhecer. Relatório Técnico Final. Agência Nacional de Aviação Civil Disponível em 19
Probabilidade, distribuição normal e uso de tabelas padronizadas
Probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é probabilidade? Número de 0 até 1 que expressa a tendência de
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Distribuição Normal Motivação: Distribuição
Conceitos básicos Revisão de estatística descritiva
Conceitos básicos Revisão de estatística descritiva Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos básicos População: é o conjunto de todos os elementos ou resultados
MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ 3 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 2 3 4 5 6 7 8 9 0 2 3 4 5 e 6 Introdução à probabilidade (eventos, espaço
Métodos Experimentais em Ciências Mecânicas
Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade
b) Variáveis Aleatórias Contínuas
Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
Estatística Indutiva
Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
Estatística 1. Resumo Teórico
Estatística 1 Resumo Teórico Conceitos do Curso 1. Tipos de Variáveis e Representações Gráficas a. Tipos de Variáveis b. Distribuição de Frequências c. Histograma 2. Estatística Descritiva Medidas Estatísticas
Probabilidade e Estatística
Probabilidade e Estatística Aula 7 Distribuição da Média Amostral Leitura obrigatória: Devore: Seções 5.3, 5.4 e 5.5 Chap 8-1 Inferência Estatística Na próxima aula vamos começar a parte de inferência
Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.
Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
b) Variáveis Aleatórias Contínuas
Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017
padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições
Conceitos básicos: Variável Aleatória
: Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas
Bioestatística e Computação I
Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas
Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas
Teoria da Estimação Fabricio Goecking Avelar Universidade Federal de Alfenas - Instituto de Ciências Exatas junho - 2018 Algumas distribuições importantes Sumário 1 Algumas distribuições importantes 2
c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Seja X uma variável aleatória com conjunto de valores X(S). Se o conjunto de valores for infinito não enumerável então a variável
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições
Introdução à probabilidade e à estatística II. Prof. Alexandre G Patriota Sala: 298A Site:
Introdução à probabilidade e à estatística II Revisão Prof. Alexandre G Patriota Sala: 298A Email: [email protected] Site: www.ime.usp.br/ patriota Estatística Estatística: É uma ciência que se dedica
Distribuição Gaussiana
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Lucas Santana da Cunha 12 de julho de 2017
DISTRIBUIÇÃO NORMAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 12 de julho de 2017 Distribuição Normal Dentre todas as distribuições de probabilidades,
Métodos Estatísticos
Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição
14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas
4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,
Departamento de Matemática Escola Superior de Tecnologia de Viseu
Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade
Distribuições de probabilidade de variáveis aleatórias contínuas
Distribuições de probabilidade de variáveis aleatórias contínuas Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Distribuição Exponencial Introdução É utilizada frequentemente como modelo para
Variáveis Aleatórias Contínuas
Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos
Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades
Ano lectivo: 2006/2007 Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ficha de exercícios nº3: Introdução às Probabilidades Curso: Ciências do Desporto 1. Considere a experiência
5- Variáveis aleatórias contínuas
5- Variáveis aleatórias contínuas Para variáveis aleatórias contínuas, atribuímos probabilidades a intervalos de valores. Exemplo 5.1 Seja a variável correspondente ao tempo de vida útil de determinado
PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL
PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final
Distribuições de Probabilidade Contínuas 1/19
all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte
Variável Aleatória Contínua:
Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB
Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar
Estatística Descritiva
C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.
Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Distribuições Amostrais O intuito de fazer uma amostragem
Probabilidade e Estatística
Probabilidade e Estatística Aula 6 Distribuições Contínuas (Parte 02) Leitura obrigatória: Devore, Capítulo 4 Chap 6-1 Distribuições de Probabilidade Distribuições de Probabilidade Distribuições de Probabilidade
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Teste de hipótese de variância e Análise de Variância (ANOVA)
Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Contínuas
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Variáveis Aleatórias Contínuas Professora Renata Alcarde Piracicaba abril 2014 Renata Alcarde Estatística Geral 24 de Abril de 2014
Distribuição Normal. Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade for dada por:
Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade
Distribuição de Probabilidade. Prof.: Joni Fusinato
Distribuição de Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Variáveis Aleatórias Contínuas Distribuição de Probabilidade Contínua Modelo Normal Modelo t de Student
Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.
Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,
A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).
Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,
Introdução à Probabilidade e à Estatística II
Introdução à Probabilidade e à Estatística II Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) Lígia Henriques-Rodrigues MAE0229 1º semestre 2018 1 / 36
Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade
Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em
( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas
Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:
46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y
Professora Ana Hermínia Andrade. Período
Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para
Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011
Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:[email protected] Abril, 2011 1 / 18 Sumário Introdução
AULA 8. DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017
AULA 8 DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017 As funções de distribuição (acumulada) e de densidade para v.a. contínuas = =. Se a densidade f(x)for continua no seu
Erros em medidas e análises físicas e químicas
Erros em medidas e análises físicas e químicas Erros sistemáticos: têm um valor definido e uma causa identificável e são da mesma ordem de grandeza para réplicas de medidas realizadas de maneira semelhante.
GET00116 Fundamentos de Estatística Aplicada Lista de Exercícios de Revisão para a P2 Profa. Ana Maria Farias
GET00116 Fundamentos de Estatística Aplicada Lista de Exercícios de Revisão para a P Profa. Ana Maria Farias 1. Em 00, Kaspersky Lab relatou que aproximadamente 0% de todos os e-mails são lixo ou spam.
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas
Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de Probabilidade Binomial 5-4 Média, Variância e Desvio Padrão da Distribuição Binomial 5-5 A Distribuição
Probabilidade e Estatística
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo
Catarina Marques. Estatística II Licenciatura em Gestão. Conceitos: População, Unidade Estatística e Amostra
Amostragem Estatística II Licenciatura em Gestão 1 Conceitos: População, Unidade Estatística e Amostra População (ou Universo) dimensão N Conjunto de unidades com uma ou mais características comuns População
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.
Capítulo 3. Introdução à Probabilidade E à Inferência Estatística
Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
Probabilidade Aula 08
332 Probabilidade Aula 8 Magno T. M. Silva Escola Politécnica da USP Maio de 217 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências,
1 Distribuição Uniforme
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme
Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:
Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a
Métodos Estatísticos em Física Experimental. Prof. Zwinglio Guimarães 1 o semestre de 2015 Aulas 11 e 12
Métodos Estatísticos em Física Experimental Prof. Zwinglio Guimarães 1 o semestre de 015 Aulas 11 e 1 O método dos mínimos quadrados (revisão) O método dos mínimos quadrados consiste em determinar os parâmetros
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete
6EMA Lucas Santana da Cunha 17 e 19 de abril de Universidade Estadual de Londrina
ESTATÍSTICA ECONÔMICA 6EMA020-1000 [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 17 e 19 de abril de 2017 1 o Bimestre Cronograma Critério de Avaliação Bibliografia
Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística
Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,
Teste de hipótese de variância e Análise de Variância (ANOVA)
Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente
