Avaliação e Desempenho Aula 18
|
|
|
- Ivan Jónatas Ferrão Andrade
- 9 Há anos
- Visualizações:
Transcrição
1 Avaliação e Desempenho Aula 18 Aula passada Fila com buffer finito Fila com buffer infinito Medidas de interesse: vazão, número médio de clientes na fila, taxa de perda. Aula de hoje Parâmetros de uma fila Medidas de desempenho Cálculo do tempo de espera Resultado de Little
2 Parâmetros da Fila chegada na fila fila recurso saída da fila Processo de chegada (como os pedidos chegam ao recurso) Processo de serviço (como os pedidos são servidos) Capacidade de armazenamento da fila Número de recursos (estações de serviço) Política de atendimento (como escolher o próximo da fila)
3 Fila Processo de Chegada chegada na fila fila recurso saída da fila Como definir processo de chegada (demanda)? No banco, como pessoas chegam ao banco Na rede, como pacotes chegam ao roteador No disco, como pedidos de leitura chegam Abstração matemática
4 Fila Processo de Chegada chegada na fila fila recurso saída da fila Modelo matemático para abstrair processo de chegada Chegada não é determinística Necessidade de representação aleatória Ex. processo de Poisson
5 Fila Processo de Serviço chegada na fila fila recurso saída da fila Como definir processo de serviço? Quanto tempo leva para atender um pedido? Depende do sistema, geralmente aleatório Modelo matemático para abstrair o processo de serviço (distribuição exponencial, lognormal, etc.)
6 Parâmetros de uma Fila A K... C X A : intervalo de tempo entre chegadas X : tempo de serviço (de 1 pedido) K : capacidade de armazenamento da fila (infinita?) C : número de estações de serviço P : política de atendimento dos elementos em fila A, X geralmente são variáveis aleatórias
7 A Notação de Filas K X A / X / C / K P... C distribuição do tempo entre chegadas distribuição do tempo de serviço número de estações de serviço capacidade de armazenamento política de atendimento M = exponencial (memoryless) D = determinístico Er = Erlang Exemplo: M/M/1 default: infinito default: FIFO Qual é a fila?
8 Medidas de Desempenho em Filas K Utilização: fração de tempo que o servidor está ocupado Tempo de espera: quantidade de tempo que cada elemento espera na fila Vazão (Throughput): quantidade de elementos servidos pela fila por unidade de tempo Fração de descarte: fração de elementos descartados por falta de espaço na fila
9 Medidas de Desempenho Comportamento típico em Filas K Tempo de espera Vazão Tradeoff entre tempo de resposta e vazão
10 Modelagem do Servidor Web Pedidos de objeto chegam ao servidor Processar pedidos CPU, discos pedidos CPU Disco 1 Disco 2 Servidor Web pedido finalizado Taxa de chegada de pedidos Modelagem através de filas Qual é o tempo médio de espera de um pedido?
11 Avaliando o Desempenho de uma Fila Problema Dado uma fila, qual seu desempenho? Como assim? Parâmetros da fila (demanda, capacidade, etc.) Como assim? Medida: Tempo médio de espera no sistema Vamos calcular isto!
12 Tempo de Espera Como calcular o tempo de espera em uma fila? tempo decorrido desde o instante de chegada até o instante de saída IDÉIA: Decompor o tempo de espera em tempos menores Tempo para finalizar o pedido sendo atendido no instante de chegada Tempo para atender cada um dos pedidos da fila Tempo para atender o pedido que acabou de chegar
13 Variáveis Aleatórias de uma Fila A W N c : número de pedidos na fila quando nosso pedido chega (incluindo o que está sendo atendido) R : tempo residual (tempo para finalizar atendimento do pedido sendo atendido) X i : tempo necessário para atender o i ésimo pedido da fila (i=1, 2,..., N c 1) W : tempo de espera de um pedido (do instante de chegada até o instante de saída) N c X
14 Tempo de A W Espera W: tempo de espera do pedido que chegou N c pedidos no sistema N c X 1 em atendimento + N c 1 na fila Quanto vale W? W = R + X 1 + X X N c 1 + X tempo residual do elemento em atendimento tempo de serviço do i-ésimo elemento da fila tempo de serviço do elemento que acabou de chegar
15 Tempo Médio de Espera A W N c X Aplicar valor esperado E[.] Tempo médio de espera: E[W] E[W] = E[R + X + X X 1 2 N c 1 + X] E[W] = E[R] + E[X ] E[X ]+ E[X] 1 N c 1 E[W] = E[R] + E[N c ]E[X] X i são idênticamente distribuídas
16 Resultado de Little E[W] Caixa Preta E[N] : taxa média de chegada E[W] : tempo médio que cada pedido permanece dentro da caixa preta E[N] : número médio de pedidos dentro da caixa (depois de um tempo muito grande) Qual é a relação entre eles? E[N] = E[W] Vamos provar isto hoje!
17 Resultado de Little E[W] Caixa Preta E[N] Número médio dentro do sistema é igual ao produto da taxa média de chegada pelo tempo médio de permanência no sistema Intuitivo, mas poderoso (não depende de nenhuma distribuição) Exemplo: E[W] = 3.5 minutos =2 E[N] =? clientes por minuto
18 Resolvendo o Tempo Média de Espera Duas equações: E[W] = E[R] + E[N c ]E[X] E[N] = E[W] Suposição (I) : E[N] = E[N c ] Suposição (II) : E[R] = E[X] Substituindo nas equações acima, temos E[W] = E[X] + E[W] = E[X] 1 E[X] E[W]E[X] equação em função dos parâmetros da fila
19 E[W] = Gráfico do Tempo Médio de Espera E[X] 1 E[X] E[W] 1/E[X] Tempo de espera explode!
20 Suposição I: E[N] = E[N c ] Duas variáveis (medidas) Número de elementos no sistema N em um instante de tempo qualquer N c no instante de uma chegada Em geral, E[N] é diferente de E[N c ] Exemplo?
21 Exemplo Suponha sistema de fila determinístico tempo entre chegadas 1s, tempo de serviço 0.5s Evolução do sistema no tempo? t Quanto vale E[N] e E[N c ]? E[N] = 0.5 E[N c ] = 0 Diferentes!
22 Suposição I E[N] = E[N c ] Quando isto é verdade? PASTA pas Poisson Arrivals See Time Averages Quando o processo de chegada é Poisson E[N] = E[N c ] Cliente que chega encontra, em média, a mesma situação que um observador em um tempo aleatório. Intuição: chegadas de Poisson ocorrem aleatoriamente no tempo.
23 E[R] = E[X] Suposição II Quando isto é verdade? Memoryless Distribuição não tem memória Quando o tempo de serviço é exponencial
24 Propriedade Memoryless R s T s+t P[ R t T s]=??? s, t 0 P[T s t T s] P[T t s T s]
25 Propriedade Memoryless Propriedade de memoryless Distribuição da probabilidade condicional é igual a distribuição da probabilidade original (para o restante do tempo) P [T s t T s ]=P [T t ] s, t 0 Exemplo P [T 4 0 T 3 0]=P [T 1 0] P [T 4 0 T 3 0]=P [T 4 0] Correto Errado! A chance de um evento não ocorrer nos próximos 10 segundos é igual a dos primeiros 10 segundos!
26 Provando a Propriedade Memoryless para Exponencial Distribuição exponencial (parâmetro ) P [T t ]=e t Propriedade P [T s t T s ]=P [T t ] Prova (aplicar definições) s t P [ T s t T s ] P [T s t ] e = = = = P [T s ] P [T s ] P [T s t T s ] e t P [T t ] = = e s
27 Voltando a Suposição II E[R] = E[X]? Quando o tempo de serviço é memoryless exponencial (e somente exponencial) pedido em atendimento começa a ser atendido no momento da chegada
28 Calculando as Medidas de Interesse de uma Fila N(t) evolução do tamanho da fila no tempo Quanto vale E[N]? tamanho médio da fila (no tempo) Quanto vale E[W]? tempo médio de espera (de um pedido) t
29 Calculando E[N] N(t) E [N T ]= i=0 i T i T T onde T é um tempo qualquer e T i (T) é o tempo que a fila permanece com i elementos t Observação: i =0 T i T =T Logo: i =0 i T i T = t =0 t =T N t dt t =T N t dt E [N T ]= t =0 T
30 Calculando E[W] N(t) n E [W ]= i =1 n W i onde n é um número de saídas do sistema qualquer e W i é o tempo de espera da i-ésima saída t Observação: W i =S i C i onde C i e S i são os instantes de chegada e saída do i-ésimo elemento Logo: E[W ]= S i=1 i C i n n
31 Outra Evolução da Fila N t t t fila Ti espera 1 N(T) = 0 t : número total de chegadas até t : número total de saídas até t Quanto vale N(t)? Área do gráfico: A mesma área pode ser expressa por: T t t t T t t dt= T N t dt T i =1 T i
32 Provando Resultado de Little N t t t fila Ti espera 1 N(T) = 0 t : número total de chegadas até t : número total de saídas até t Igualando as duas áreas: T t T N t dt T = T T T i =1 T i t E[N] = E[W] Resultado de Little!
Modelagem e Análise Aula 9
Modelagem e Análise Aula 9 Aula passada Equações de fluxo Tempo contínuo Aula de hoje Parâmetros de uma fila Medidas de desempenho Cálculo do tempo de espera Resultado de Little Parâmetros da Fila chegada
Processos Estocásticos aplicados à Sistemas Computacionais
Processos Estocásticos aplicados à Sistemas Computacionais Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 20
Teoria das Filas aplicadas a Sistemas Computacionais Aula 20 Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia
Teoria de Filas Aula 15
Teoria de Filas Aula 15 Aula de hoje Correção Prova Aula Passada Prova Little, medidas de interesse em filas Medidas de Desempenho em Filas K Utilização: fração de tempo que o servidor está ocupado Tempo
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Análise da dados através de gráficos Introdução a Simulação Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes
INTRODUÇÃO À TEORIA DAS FILAS
INTRODUÇÃO À TEORIA DAS FILAS Uma fila é caracterizada por: Processo de chegada dos fregueses à fila Tempo de serviço dedicado pelo servidor a cada freguês Número de servidores Espaço disponível para espera
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Somas aleatórias Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes Números Simulação de Sistemas Discretos É
Pesquisa Operacional II
Pesquisa Operacional II Modelo de Filas Professor: Roberto César A Notação de Kendall Um modelo de fila pode ser descrito pela notação: A/B/c/K/m/Z em que: A = distribuição dos intervalos entre chegadas;
FILAS Conceitos Fundamentais. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016
FILAS Conceitos Fundamentais Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016 Teoria de Filas É uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento
Mário Meireles Teixeira. Departamento de Informática, UFMA.
Teoria das Filas Mário Meireles Teixeira Departamento de Informática, UFMA [email protected] Filas, filas... As filas são a praga do mundo atual! Espera-se em fila no banco, na padaria, no ponto de ônibus,
Modelos Probabilísticos Filas M/M/1, M/G/1. Profa. Jussara M. Almeida 1 o Semestre de 2014
Modelos Probabilísticos Filas M/M/1, M/G/1 Profa. Jussara M. Almeida 1 o Semestre de 2014 Modelos Probabilísticos de Filas R W S λ Notação de Kendall Fila G / G / 1 1 = um único servidor Distribuição dos
ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho
Teoria de Filas - Resumo e Exercícios Pedroso 24 de setembro de 2014 1 Introdução 2 Definições básicas ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento de
Rede de Computadores II
Slide 1 Teoria das Filas Ferramenta matemática para tratar de eventos aleatórios. É o estudo da espera em filas. Proporciona uma maneira de definir o ambiente de um sistema de filas matematicamente. Permite
ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho
Teoria de Filas - Resumo Pedroso 4 de setembro de 2011 1 Introdução 2 Definições básicas ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento de sistemas de comunicação
Avaliação de Desempenho de Sistemas Discretos
Avaliação de Desempenho de Sistemas Discretos Parte V: Análise Operacional Professor: Reinaldo Gomes [email protected] Leis Operacionais Relações existentes no sistema que não dependem de nenhuma
Processos Estocásticos e Cadeias de Markov Discretas
Processos Estocásticos e Cadeias de Markov Discretas Processo Estocástico(I) Definição: Um processo estocástico é uma família de variáveis aleatórias {X(t) t T}, definidas em um espaço de probabilidades,
PLANEJAMENTO DE TRANSPORTES TT049
UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE TRANSPORTES PLANEJAMENTO DE TRANSPORTES TT049 Prof. Diego Fernandes Neris [email protected] Filas: Problema mais comum na engenharia de transportes e de
Processos Estocásticos
Processos Estocásticos Quarta Lista de Exercícios 12 de fevereiro de 2014 1 Sejam X e Y duas VAs que só podem assumir os valores 1 ou -1 e seja p(x, y) = P (X = x, Y = y), x, y { 1, 1} a função de probabilidade
Modelagem Analítica. Profa. Jussara M. Almeida 1 o Semestre de 2011
Modelagem Analítica Profa. Jussara M. Almeida 1 o Semestre de 2011 Modelagem Analítica Um modelo é uma abstração de um sistema que captura, dentre os inúmeros detalhes do sistema, aqueles que são essenciais
Escola de Engenharia de Lorena EEL/USP Curso de Engenharia de Produção. Teoria da Filas. Prof. Fabrício Maciel Gomes
Escola de Engenharia de Lorena EEL/USP Curso de Engenharia de Produção Teoria da Filas Prof. Fabrício Maciel Gomes Teoria das Filas Por quê das Filas? Procura por um serviço maior do que a capacidade do
Gabarito - Lista de Exercícios 1
Gabarito - Lista de Exercícios Teoria das Filas Modelo M/M/. Clientes chegam a uma barbearia, de um único barbeiro, com tempo médio entre chegadas de 0 minutos. O barbeiro gasta em média 5 minutos com
Processos Estocásticos
Processos Estocásticos Quinta Lista de Exercícios 2 de fevereiro de 20 Suponha que um organismo unicelular pode estar somente em dois estágios distintos A ou B Um indivíduo no estágio A passa para o estágio
Aula 5. Processo de Poisson. Exemplos.
Aula 5. Processo de Poisson. Exemplos. Exemplo 1. Processo de Poisson com diferentes tipos de eventos. Consideramos um processo de Poisson com intensidade λ. Suponha que em cada instante de ocorrência
D i s c i p l i n a : P e s q u i s a O p e r a c i o n a l I I T e o r i a d a s F i l a s - L i s t a d e E x e r c í c i o s : 0 2
01. Um lava rápido Automático funciona com somente uma baia. Os carros chegam, conforme uma distribuição de Poisson, em média a cada 12 minutos e podem esperar no estacionamento oferecido se a baia estiver
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Introdução à simulação Geração de números aleatórios Lei dos Grandes Números Aula de hoje Geração de variáveis aleatórias: Transformada Inversa
SIMULAÇÃO EM GESTÃO DE OPERAÇÕES E LOGÍSTICA: TOMADA DE DECISÕES EM MELHORIA DE PROCESSOS CAPÍTULO 3: TEORIA DAS FILAS Roberto Ramos de Morais
3 TEORIA DAS FILAS No cotidiano encontram-se filas em diversas situações: ao ir à padaria para comprar pão, na sala de espera do dentista, na compra de ingressos para o cinema, veículos em uma barreira
Noções de Processos Estocásticos e Cadeias de Markov
Noções de Processos Estocásticos e Cadeias de Markov Processo Estocástico Definição: Processo Estocástico é uma coleção de variáveis aleatórias indexadas por um parâmetro t R (entendido como tempo). X={
Lista de Exercícios - SCE131
Lista de Exercícios - SCE131 Prof. Eduardo F. Costa - ICMC - USP http://www.icmc.usp.br/ efcosta Parte 1 - Cadeia de Markov (a tempo discreto) Exercício 1. Seja uma cadeia de Markov com probabilidades
Análise de Dados e Simulação
Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer
TE802 Processos Estocásticos em Engenharia
TE802 Processos Estocásticos em Engenharia Cadeias de Markov 20/11/2017 Andrei Markov Em 1907, Andrei Markov iniciou um estudo sobre processos onde o resultado de um experimento depende do resultado de
Teoria das Filas Aula 1. Gestão de Operações II Prof. Marcio Cardoso Machado
Teoria das Filas Aula 1 Gestão de Operações II Prof. Marcio Cardoso Machado 1 Modelagem de Sistemas Sistema de Operações Genérico Ambiente Otimizado Mais adequado Recursos Entrada de recursos PROCESSO
Avaliação Quantitativa de Sistemas
Avaliação Quantitativa de Sistemas Contexto A Avaliação Quantitativa de Sistemas permite a avaliação de sistemas antes mesmo da sua implementação física. Dessa forma, é possível avaliar um sistema projetado
Modelos de Filas de Espera
QuickTime and atiff (Uncompressed) decompressorare needed to see this picture. Modelos de Filas de Espera Métodos Quantitativos 2004/2005 João Moura Pires Sumário Estrutura básica de Modelos de Filas de
Conceitos Básicos, Básicos,Básicos de Probabilidade
Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar
PROCESSOS ESTOCÁSTICOS
PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos
Processos de Poisson
Processos de Poisson Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulo 5 Taylor & Karlin 1 / 37 Distribuição de Poisson Seja a variável
observado, ainda que o tempo médio de serviço é igual a meio minuto. Determine:
0. Um único servidor em um centro de serviço está ocupado quatro de cada cinco minutos, em média. Foi observado, ainda que o tempo médio de serviço é igual a meio minuto. Determine: (i) O tempo médio de
FILA EM UM PRONTO SOCORRO Paciente espera por ser atendida por um médico em um pronto socorro
TEORIA DAS FILAS FILA EM UM PRONTO SOCORRO Paciente espera por ser atendida por um médico em um pronto socorro Ingressa na sala de atendimento Sai da sala de atendimento Pessoa precisa de cuidados médicos
ACH Introdução à Estatística Conteúdo Teórico: 12 - Simulação
ACH2053 - Introdução à Estatística Conteúdo Teórico: Marcelo S. Lauretto Referências: Morris DeGroot, Mark Schervish. Probability and Statistics. 4th Ed. - 4o capítulo Ilya M. Sobol. A Primer for the Monte
Eng. de Produção. Introdução à Teoria das Filas. Prof. Ricardo Villarroel Dávalos Fpolis, Abril de 2010
Eng. de Produção Introdução à Teoria das Filas Prof. Ricardo Villarroel Dávalos [email protected] Fpolis, Abril de 2010 Introdução Disciplinas das filas λ e IC c µ e TA População de clientes TF
Módulo III: Processos de Poisson, Gaussiano e Wiener
Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo
Simulação a Eventos Discretos. Fernando Nogueira Simulação 1
Simulação a s Discretos Fernando Nogueira Simulação Introdução Simulação não é uma técnica de otimização: estima-se medidas de performance de um sistema modelado. Modelos Contínuos X Modelos Discretos
Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:
Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir
Marcus Vinicius de Oliveira DMAT - Universidade Federal de Minas Gerais. 13 de dezembro de 2011
Simulação de Filas Marcus Vinicius de Oliveira [email protected] DMAT - Universidade Federal de Minas Gerais 13 de dezembro de 2011 Resumo O objetivo deste trabalho é apresentar um algorítmo
Gestão de Operações II Teoria das Filas. Prof Marcio Cardoso Machado
Gestão de Operações II Teoria das Filas Prof Marcio Cardoso Machado Filas O que é uma fila de espera? É um ou mais clientes esperando pelo atendimento O que são clientes? Pessoas (ex.: caixas de supermercado,
Teoria da Probabilidade
Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos
Canais discretos sem memória e capacidade do canal
Canais discretos sem memória e capacidade do canal Luis Henrique Assumpção Lolis 17 de outubro de 2013 Luis Henrique Assumpção Lolis Canais discretos sem memória e capacidade do canal 1 Conteúdo 1 Canais
Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014
Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 1. O diâmetro X de{ um cabo elétrico é uma variável aleatória com densidade de probabilidade K(2x x dada por 2 ), 0 x 1 0, x < 0 ou x > 1. (a)
AULA 16 - Distribuição de Poisson e Geométrica
AULA 16 - Distribuição de Poisson e Geométrica Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuição de Poisson Em muitas situações nos deparamos com a situação em que o número de ensaios
6 ESCALONAMENTO DE CPU
6 ESCALONAMENTO DE CPU O escalonamento de CPU é ponto chave da multiprogramação. Ela permite que haja mais de um processo em execução ao mesmo tempo. Em ambientes com um único processador, o escalonador
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
Distribuições Discretas
META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:
SCX5005 Simulação de Sistemas Complexos II. Problemas em Simulação
SCX5005 Simulação de Sistemas Complexos II Alguns Marcelo S. Lauretto Referências: Morris DeGroot, Mark Schervish. Probability and Statistics. 4th Ed. - 4o capítulo Ilya M. Sobol. A Primer for the Monte
Avaliação e Desempenho Aula 5
Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade
Introdução à Teoria das Filas
Introdução à Teoria das Filas If the facts don't fit the theory, change the facts. --Albert Einstein Notação Processo de Chegada: Se os usuários chegam nos instantes t 1, t 2,..., t j, então as variáveis
IND 1115 Inferência Estatística Aula 6
Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal
Curso Profissional de Nível Secundário
Curso Profissional de Nível Secundário Técnico Auxiliar de Saúde 2 TAS Ano Letivo: 2014/2015 Matemática (200 horas) 11º Ano PLANIFICAÇÃO A LONGO PRAZO A7 Probabilidades Fenómenos aleatórios. 2 aulas Argumento
Fernando Nogueira Simulação 1
Simulação a Eventos Discretos Fernando Nogueira Simulação Introdução Simulação não é uma técnica de otimização: estima-se medidas de performance de um sistema modelado. Modelos Contínuos X Modelos Discretos
Cadeias de Markov em Tempo Continuo
Cadeias de Markov em Tempo Continuo Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulos 6 Taylor & Karlin 1 / 44 Análogo ao processo
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
Conceitos Básicos de Planejamento
Conceitos Básicos de Planejamento Avaliação de Desempenho Prof. Kleber Rezende [email protected] Revisão Fundamentos de Redes Hierarquia de Protocolos; Protocolo TCP (Transmission Control
Modelos Probabilísticos
Modelos Probabilísticos Somente para lembrar... Modelos são extremamente importantes para o estudo do desempenho de um sistema antes de implementá-lo na prática! Foguete proposto tem confiabilidade? Devemos
ESCOLA SECUNDÁRIA DE LOUSADA
ESCOLA SECUNDÁRIA DE LOUSADA 2012 2013 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA Curso Profissional de Técnico de Multimédia ELENCO MODULAR A7 Probabilidades 28 A6 Taxa de variação 36 A9 Funções de crescimento
