COM29008 LISTA DE EXERCÍCIOS #
|
|
|
- Cíntia Lombardi
- 6 Há anos
- Visualizações:
Transcrição
1 INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES COM98 LISTA DE EXERCÍCIOS # 8. Exercícios. [, 9.5] Um processo estocástico gaussiano, branco, de tempo discreto, média zero e variância unitária é quantizado de acordo com um quantizador uniforme cuja curva entrada saída é mostrada abaixo. Saída,5,5,5 Entrada,5 Determine a entropia da saída do quantizador.. [, 9.7, 9.] Considere uma fonte discreta sem memória (DMS) com alfabeto X = {a, b, c} e probabilidades p X = [,7,5,5]. (a) Calcule a entropia da fonte. (b) Determine um código de Huffman para a fonte. Qual o comprimento médio do código obtido? (c) Calcule a entropia da extensão de segunda ordem da fonte. (d) Determine um código de Huffman para a extensão de segunda ordem da fonte. Qual o comprimento médio do código obtido? Comente o resultado. /5
2 . Considere os códigos símbolo-a-símbolo abaixo. Símbolo Enc Enc Enc Enc Enc 5 a b c d e (a) Quais dos códigos são unicamente decodificáveis? Justifique. (b) Quais dos códigos são instantâneos (isto é, livres de prefixo)? Construa a árvore de decisão para esses códigos. (c) A desigualdade de Kraft McMillan afirma que, se um código é unicamente decodificável, então l(x), x X em que l(x) denota o número de bits em Enc(x). Quais dos códigos satisfazem a desigualdade de Kraft McMillan? Comente os resultados.. [, 9.] Considere uma DMS como definida abaixo. Letra a i l m n o p y Prob.,,,,,,,, Determine dois códigos de Huffman diferentes para esta fonte: (a) movendo um símbolo combinado o mais para cima possível e (b) movendo um símbolo combinado o mais para baixo possível. Em seguida, determine a média e a variância do comprimento de cada código. 5. Considere um canal binário não-simétrico com probabilidades de transição dadas por p Y X ( ) = /, p Y X ( ) = /, p Y X ( ) = /, p Y X ( ) = 9/. Faça a representação gráfica do canal. Supondo que p X () = / e p X () = /, encontre: (a) p Y (y). (b) p X Y (x y). (c) H(X). (d) H(X Y = ) e H(X Y = ). (e) H(X Y ). (f) I(X; Y ). Comente os resultados. /5
3 6. [, 9.] Dois canais binários simétricos independentes são conectados em cascata, como mostra a figura abaixo. Entrada BSC(p) BSC(p) Saída Encontre a capacidade do canal resultante da cascata, assumindo que ambos os canais têm a mesma probabilidade de transição, dada por p. Obs.: Você pode utilizar o fato de que a capacidade do canal BSC(p) é dada por C = H(p). 7. Calcule a capacidade dos canais das figuras abaixo. / / /5 / / 5 5 / / Para cada caso, determine uma distribuição de entrada que alcança a capacidade. 8. Determine a entropia diferencial das seguintes funções densidade de probabilidade: (a) Uniforme: f X (x) = [a x b]. b a (b) Gaussiana: f X (x) = (x µ) e σ. πσ (c) Exponencial: f X (x) = λe λx [x ]. 9. [, 9.9] O canal de voz do sistema telefônico tem largura de banda de, khz. (a) Determine a capacidade do canal para uma razão sinal ruído de db. (b) Determine a mínima razão sinal ruído (em db) necessária para que se tenha transmissão confiável a uma taxa de 96 bit/s.. Considere o canal gaussiano com uma dada largura de banda. Determine se é possível ter comunicação confiável operando a uma eficiência espectral de bps/hz e uma relação sinal-ruído de bit de E b /N =,7 db. Repita a questão considerando agora E b /N =,5 db. Justifique sua resposta. /5
4 Extra. Considere o canal Z, cujo diagrama é mostrado abaixo. X α Y α (a) Seja H(p) = p log + p log, p p onde p = p. Mostre que H (p) = d dp H(p) = log p p. (b) Mostre que a capacidade do canal para α = / é dada por C = H(/5) /5, bits por uso do canal. Determine também a distribuição de entrada que alcança a capacidade. (c) O canal Z pode ser modelado algebricamente pela equação Y = AX, em que A Bern(α) é independente de X. Mostre que a capacidade do canal supondo que o ganho A seja conhecido pelo receptor é dada por C = α. Compare o resultado com o item anterior.. Considere o canal pentagonal, cuja entrada X {,,,, } e saída Y {,,,, } se relacionam através da equação Y = (X + Z) mod 5, onde Z Unif({, +}) é independente de X. X Y /5
5 (a) Calcule a capacidade do canal pentagonal. Dica: Utilize I(X; Y ) = H(Y ) H(Y X) e mostre que entrada uniforme induz saída uniforme. (b) Considere os seguintes códigos, de comprimentos n = e n =, respectivamente: C = {, }, C = {,,,, }. Mostre que ambos os códigos têm probabilidade de erro de exatamente. Qual a taxa de cada código? Compare com a capacidade calculada no item anterior. Referências [] S. Haykin, Communication Systems, th ed. John Wiley and Sons,. Respostas.,9 bits.. (a),8 bits/letra. (b) {a:, b:, c:}, com l =, bits/letra. (c),66 bits/superletra. (d) {aa:, ab:, ac:, ba:, ca:, bb:, bc:, cb:, cc: }, com l =,95 bits/superletra =,975 bits/letra.. (a) Enc, Enc, Enc. (b) Enc, Enc. (c) Enc, Enc, Enc, Enc 5.. (a) {l:, o:, a:, i:, m:, n:, p:, y: }. Média: l = bits/letra. Variância:. (b) {l:, o:, a:, i:, m:, n:, p:, y: }. Média: l = bits/letra. Variância:,. 5. (a) p Y () = /, p Y () = 9/. (b) p X Y ( ) = /, p X Y ( ) = /, p X Y ( ) = /9, p X Y ( ) = 9/9. (c),8 bits. (d),76 bits e,998 bits. (e),69 bits. (f),9 bits. 6. C = H(p p), onde p = p. 7. (a) C = log. (b) C = log. (c) C = log. 8. (a) log(b a). (b) log(πeσ ). (c) log(e/λ). 9. (a),89 kbit/s. (b) 7,8 db.. Sim. Não. 5/5
Compressão e Codificação de Dados. Primeiro Exame e Segundo Teste
Compressão e Codificação de Dados. Primeiro Exame e Segundo Teste Mestrado em Engenharia Electrotécnica e de Computadores, IST 7 de Janeiro de 2012 Nome: Número: NOTAS: Exame (3 horas): tudo. Segundo teste
Teoria da Informação
Charles Casimiro Cavalcante [email protected] Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Programa de Pós-Graduação em Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/
Teoria da Informação ( ) Exame de Recurso ( ) Resolução ( ) ( ) 2log2. log log
Teoria da Informação (-6) Exame de Recurso (4-7-6) Resolução. Função densidade de probabilidade das amostras de U é constante: b a b pu ( ) a b a pu ( ) = b a. a) h ( U ) = p ( u ) log du = log( b a )
Canais discretos sem memória e capacidade do canal
Canais discretos sem memória e capacidade do canal Luis Henrique Assumpção Lolis 17 de outubro de 2013 Luis Henrique Assumpção Lolis Canais discretos sem memória e capacidade do canal 1 Conteúdo 1 Canais
Segundo Exame e Repescagem de Testes. Mestrado em Engenharia Electrotécnica e de Computadores, IST 25 de Janeiro de 2014
Compressão e Codificação de Dados Segundo Exame e Repescagem de Testes Mestrado em Engenharia Electrotécnica e de Computadores, IST 25 de Janeiro de 201 Nome: Número: NOTAS: 1. Exame (3 horas): tudo. Primeiro
TE060 Princípios de Comunicação. Sistemas de Comunicação Digital Notes. Por quê Digital? Notes. Notes. Evelio M. G. Fernández. 5 de novembro de 2013
TE060 Princípios de Comunicação Modulação de Pulso 5 de novembro de 2013 Sistemas de Comunicação Digital Sistema digital no sentido de utilizar uma sequência de símbolos pertencentes a um conjunto finito
PRE29006 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável
TE111 Comunicação Digital
TE111 Comunicação Digital Introdução à Teoria de Informação e Codificação de Fonte 15 de outubro de 2018 Introdução à Teoria de Informação Em 1948, Claude Shannon publicou o trabalho A Mathematical Theory
Exercícios de Telecomunicações 2
Departamento de Engenharia Electrotécnica e de Computadores Exercícios de Telecomunicações 2 (2004-2005) Sílvio A. Abrantes e Artur Moura Transmissão em banda-base 2.1. Um terminal gera 1250 caracteres/s,
COMUNICAÇÃO DIGITAL INTRODUÇÃO À TEORIA DE INFORMAÇÃO
COMUNICAÇÃO DIGITAL INTRODUÇÃO À TEORIA DE INFORMAÇÃO Evelio M. G. Fernández - 2011 Introdução à Teoria de Informação Em 1948, Claude Shannon publicou o trabalho A A Mathematical Theory of Communications.
Teoria da Informação. Codificação de Fonte
Codificação de Fonte [email protected] /62 Conteúdo e Referência. Revisão: Probabilidade e Variáveis Aleatórias 2. Fontes de informação amostragem e quantização 3. Princípios da 4. Compactação de Fonte
Codificação de Huffman
Codificação de Huffman Bruna Gregory Palm 11 de setembro de 2017 A codificação de Huffman é um método de compressão que considera as probabilidades de ocorrência de cada símbolo no conjunto de dados a
canal para sinais contínuos
Processos estocásticos, Entropia e capacidade de canal para sinais contínuos 24 de setembro de 2013 Processos estocásticos, Entropia e capacidade de canal para1 sin Conteúdo 1 Probabilidade de sinais contínuos
Teoria da Informação
Charles Casimiro Cavalcante [email protected] Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Programa de Pós-Graduação em Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/
COM29008 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES COM29008 LISTA DE EXERCÍCIOS #1 2016.2 Exercícios 1. Verifique se os seguintes
X(t) = A cos(2πf c t + Θ)
Exercícios Extras de Comunicações Digitais. Seja um sinal aleatório X(t), estacionário no sentido restrito, dado por onde X(t) = A cos(πf c t + Θ) A é uma variável aleatória Gaussiana com média de 4Volts
Teoria da Informação ( ) Exame de Recurso ( ) Resolução. (1 p), (1 p), p = H(0,4;0,4;0,2) = 1,522
Teoria da Informação (4-) Exame de ecurso (-7-). Canais discretos sem memória e p =,: esolução X -p p p -p Y W ε ε ε -ε -ε -ε Z Canal A Canal B Vamos representar P(X = i) por P(X i ), etc. PY ( ) = P(
EEC4164 Telecomunicações 2
Licenciatura em Engenharia Electrotécnica e de Computadores EEC4164 Telecomunicações (00/003) 1ª Parte Duração: 1 hora (sem consulta) 1ª chamada 4 de Janeiro de 003 1. a) Uma alternativa a PCM é a modulação
TÉCNICAS DE CODIFICAÇÃO DE SINAIS
TÉCNICAS DE CODIFICAÇÃO DE SINAIS COMPRESSÃO SEM PERDAS Evelio M. G. Fernández - 2010 Exemplo Símbolo Prob I II III IV A 1/2 00 0 0 0 B 1/4 01 11 10 01 C 1/8 10 00 110 011 D 1/8 11 01 1110 0111 Entropia
PRINCÍPIOS DE COMUNICAÇÃO
PRINCÍPIOS DE COMUNICAÇÃO RUÍDO EM MODULAÇÕES ANALÓGICAS Evelio M. G. Fernández - 2011 Processo Aleatório (ou Estocástico): Função aleatória do tempo para modelar formas de onda desconhecidas. Processos
FACULDADE DE TALENTOS HUMANOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROCEDIMENTOS EXPERIMENTAIS DE COMUNICAÇÃO DIGITAL II PARA TELECOMUNICAÇÃO
FACULDADE DE TALENTOS HUMANOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROCEDIMENTOS EXPERIMENTAIS DE COMUNICAÇÃO DIGITAL II PARA TELECOMUNICAÇÃO PROF. ENG. ESP. ANTONIO CARLOS LEMOS JÚNIOR [email protected]
Trabalho n o 2 Códigos de Linha
Telecomunicações 2 LEEC / FEUP Trabalho n o 2 Códigos de Linha Conteúdo 1 Objectivos 1 2 Preliminares teóricos 1 3 Experiência 2 3.1 Formas de onda.................................. 2 3.2 Densidades espectrais
Problemas de Fundamentos de Telecomunicações 1ª Parte: Codificação de Fonte e Codificação de Canal
Problemas de Fundamentos de Telecomunicações 1ª Parte: Codificação de Fonte e Codificação de Canal 1. Considere uma fonte com um alfabeto de 4 mensagens, de probabilidades 1/2, 1/4, 1/8 e 1/8. a) Qual
Fundamentos de Telecomunicações 2002/03
INSTITUTO SUPERIOR TÉCNICO Número: Fundamentos de Telecomunicações 2002/03 EXAME Janeiro, 2003 Duração: 20 minutos Nome: Pretende contabilizar as notas dos testes? sim não Assinatura A resolução do exame
Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha
Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha Simão Melo de Sousa 12 de Outubro de 2011 Conteúdo 1 Gramáticas e Definições básicas 1 2 Gramáticas e Linguagens 4 2.1 Gramáticas
2.3 Operações sobre uma variável aleatória - Esperança matemática
matemática 58 atingir a mosca dado que ele atingiu o alvo. Exercício 2.33. [3] Duas caixas tem bolas vermelhas, verdes e azuis dentro; a quantidade de cada uma é dada a seguir. Caixa 01-5 vermelhas; 35
PRINCÍPIOS DE COMUNICAÇÃO
PRINCÍPIOS DE COMUNICAÇÃO MODULAÇÃO DE PULSO Evelio M. G. Fernández - 2011 Sistemas de Comunicações Digitais Sistema digital no sentido de utilizar uma seqüência de símbolos pertencentes a um conjunto
2 Teoria da Informação
2 Teoria da Informação Neste capítulo apresentamos alguns conceitos básicos sobre Teoria da Informação que utilizaremos durante este trabalho. 2.1 Alfabeto, texto, letras e caracteres Um alfabeto Σ = (σ
Instituto Superior Técnico. 19 de Janeiro de 2001. Parte I
Exame de Compressão e Codificação de Dados Secção de Telecomunicacções DEEC, Instituto Superior Técnico 19 de Janeiro de 1 Parte I Esta parte do exame é constituida por 20 perguntas de resposta múltipla.
TE-060 PRINCÍPIOS DE COMUNICAÇÃO Prof. Evelio M. G. Fernández LISTA DE EXERCÍCIOS N 3
f(x) 3 1 1.- O sinal xt πt πt 1 cos 1 sin 1 TE-6 PRINCÍPIOS DE COMUNICAÇÃO Prof. Evelio M. G. Fernández LISTA DE EXERCÍCIOS N 3 3 Volts, é amostrado e processado por um quantizador uniforme de 7 its, funcionando
Fundamentos da Compressão de Vídeo
Sistemas de Telecomunicações 2007-2008 Televisão Digital Fundamentos da Compressão de Vídeo Rui Marcelino Abril 2008 Engenharia Electrica e Electrónica - TIT Sumário 1. Motivação para Compressão de Vídeo
Teoria das Comunicações Prof. André Noll Barreto Prova 3
Prova 3 6/08/010 Aluno: Matrícula: Questão 1 ( pontos) Queremos transmitir a seguinte sequência de bits: 1001110010 Esboce o sinal transmitido para os seguintes esquemas (0, ponto cada): a) sinalização
Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2014
Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2014 Análise de desempenho São disponíveis duas abordagens para realizar a análise de desempenho:
Tipos de códigos de fonte
Tipos de códigos de fonte Luis Henrique Assumpção Lolis 13 de setembro de 2013 Luis Henrique Assumpção Lolis Tipos de códigos de fonte 1 Conteúdo 1 Código de prefixo 2 Código de Fano 3 Código de Huffman
universidade federal de pernambuco departamento de estatística
soluções do o exercício escolar Teoria da Informação set./207 a) Qual a variável aleatória de maior incerteza? Surpreendentemente, há uma maior incerteza sobre a variável aleatória X, é definida apenas
Teoria das Comunicações Prof. André Noll Barreto Prova /02
Prova 3 010/0 7/01/011 Aluno: Matrícula: Instruções A prova consiste em 4 questões discursivas. A prova terá a duração de h30. A prova pode ser feita a lápis ou caneta. Não é permitida consulta a notas
Introdução aos Sistemas de Comunicações
aos Sistemas de Comunicações Edmar José do Nascimento () http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Colegiado de Engenharia Elétrica Roteiro 1 Sistemas de
TEORIA DE INFORMAÇÃO UM NANOCURSO
TEORIA DE INFORMAÇÃO UM NANOCURSO Max H. M. Costa Unicamp Set. 2016 Centenário de Shannon - SBrT - Santarém Dedicação: a memória de Claude Shannon Claude Shannon 1916-2001 matemático, engenheiro eletrônico,
Transmissão Digital em Banda Base
Transmissão Digital em Banda Base Luis Henrique Assumpção Lolis 27 de maio de 2014 Luis Henrique Assumpção Lolis Transmissão Digital em Banda Base 1 Conteúdo 1 Introdução 2 Análise de erro de bits 3 Interferência
Distribuições de Probabilidade Contínuas 1/19
all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte
Apresentação... 1 Introdução... 1
Apresentação O objetivo principal deste texto é servir como material básico para uma disciplina introdutória sobre sistemas de comunicações em um curso de Engenharia Elétrica. Ele tem abrangência limitada,
Formatação de fonte. PCM ( Pulse Code Modulation )
Formatação de fonte PCM ( Pulse Code Modulation ) Elementos básicos de um sistema PCM A obtenção de um sinal PCM envolve três operações: 1. Amostragem. uantização (uniforme ou não-uniforme) 3. Codificação
Duração do Teste: 2h.
Telecomunicações e Redes de Computadores Licenciatura em Engenharia e Gestão Industrial Prof. João Pires 1º Teste, 2007/2008 30 de Abril de 2007 Nome: Número: Duração do Teste: 2h. A prova é composta por
Parte 1 Questões Teóricas
Universidade de Brasília (UnB) Faculdade de Tecnologia (FT) Departamento de Engenharia Elétrica (ENE) Disciplina: Processamento de Imagens Profa.: Mylène C.Q. de Farias Semestre: 2014.2 LISTA 04 Entrega:
PRE29006 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS # 06. Eercícios. Considere uma variável aleatória
TE060 Princípios de Comunicação
TE060 Princípios de Comunicação Sistemas de Modulação Digital 29 de junho de 2016 Sistemas de Comunicação Digital Sistema digital no sentido de utilizar uma sequência de símbolos pertencentes a um conjunto
SM - Sistemas Multimédia CODIFICAÇÃO DE FONTE (parte 2) 4.º / 6.º semestre LEIC (verão 2016/2017)
SM - Sistemas Multimédia CODIFICAÇÃO DE FONTE (parte 2) 4.º / 6.º semestre LEIC (verão 2016/2017) Tópicos Propriedades dos códigos de fonte Código ótimo e código ideal Singularidade, descodificação única,
Princípios Básicos de Teoria da Informação
Princípios Básicos de Teoria da Informação Teorema da Codificação de Fonte Teorema Fundamental de Shannon Até que limite é possível comprimir um conjunto de dados? Qual a maior taxa de transmissão de informação
Formatação de fonte. DM ( Delta Modulation ) ADM DPCM ADPCM
Formatação de fonte 3 DM ( Delta Modulation ) ADM DPCM ADPCM Modulação Delta (DM) Ilustração da modulação DM Um sistema DM 1/T s m[n] e[n] - Quantizador de 1 bit m q [n-1] z -1 m q [n] e q [n] = ±1 Codificador
Exercícios de Telecomunicações 2
Departaento de Engenharia Electrotécnica e de Coputadores Exercícios de Telecounicações (004-005) Sílvio A. Abrantes Foratação de fonte (aostrage e PCM) 1.1. A densidade espectral de potência de ua ensage
Estudo sobre decodificação iterativa usando códigos de treliça
Revista de Engenharia e Pesquisa Aplicada, Volume 2, Número 1, 2016 Estudo sobre decodificação iterativa usando códigos de treliça Souza, I. M. M. Escola Politécnica de Pernambuco Universidade de Pernambuco
1 Técnicas de Seleção de Antenas Transmissoras
1 Técnicas de Seleção de Antenas Transmissoras Como visto em aulas anteriores, para se atingir uma ordem de diversidade espacial maior é necessário o emprego de múltiplas antenas no transmissor e/ou no
Comunicações Móveis (2016/01) Prof. André Noll Barreto. Prova 1 (25/04/2016)
Prova 1 (25/04/2016) Aluno: Matrícula: Questão 1 (4 pontos) Um engenheiro deve projetar uma rede para uma estrada, utilizando torres com 25m de altura e antenas omnidirecionais com ganho de 3dB e modems
Universidade de Pernambuco Escola Politécnica de Pernambuco
Universidade de Pernambuco Escola Politécnica de Pernambuco TV Analógica e Digital Codificação de Fonte Prof. Márcio Lima E-mail:[email protected] 12.06.2014 Introdução A principal função de um sistema
DISTRIBUIÇÃO NORMAL DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS ROTEIRO DISTRIBUIÇÃO NORMAL
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO NORMAL Definição:
Apresentação do Programa da Disciplina. Introdução aos sistemas de comunicação: principais modelos.
Professor: Edmar José do Nascimento Disciplina: PRNCÍPOS DE COMUNCAÇÃO Carga Horária: 60 hs Semestre: 2010.1 Pág. 1 de 5 EMENTA: Correlação e densidade espectral de potência. Princípio da amostragem. Transmissão
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
EEC4164 Telecomunicações 2
Departamento de Engenharia Electrotécnica e de Computadores EEC4164 Telecomunicações 2 (2001/2002) 1ª Parte Duração: 1 hora (sem consulta) 1ª chamada 4 de Janeiro de 2002 1. a) Mostre que a potência média
Compressão de Imagens. Lilian Nogueira de Faria (Bolsista)...DPI/INPE Leila Maria Garcia Fonseca (Coordenadora)...DPI/INPE
Compressão de Imagens Lilian Nogueira de Faria (Bolsista)...DPI/INPE Leila Maria Garcia Fonseca (Coordenadora)...DPI/INPE Imagens digitais necessitam de grande quantidade de espaço para armazenamento e
Processamento Digital de Imagens. Quantização de Imagens
Processamento Digital de Imagens Quantização de Imagens Eduardo A. B. da Silva Programa de Engenharia Elétrica - COPPE/UFRJ Laboratório de Sinais, Multimídia e Telecomunicações [email protected] Sergio
Transmissão de impulsos em banda-base
Transmissão de impulsos em banda-base Transmissão de impulsos através de um canal com ruído aditivo. Probabilidades de erro com detecção no ponto central Detecção de sinais binários em ruído gaussiano
Princípios de Comunicação: Simulação /2
Princípios de Comunicação: Simulação 2 2015/2 18 de Novembro de 2015 Instruções 1. A simulação poderá ser feita em Matlab, Scilab ou C++; 2. A simulação deve ser entregue sob a forma de relatório em formato
Problemas de Redes de Telecomunicações
Problemas de Redes de Telecomunicações Capítulo 5 5.1) Qual é a camada na rede de transporte óptica que é responsável por realizar as seguintes funções: a) Estabelecer e terminar caminhos ópticos; b) Monitorizar
1ª Série de Problemas
INSTITUTO SUPERIOR TÉCNICO MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES 1ª Série de Problemas de Sistemas e Redes de Telecomunicações Ano Lectivo de 2007/2008 Abril 2008 1 Na resolução
Aula 22. Conversão Sigma-Delta (continuação)
Aula 22 Conversão Sigma-Delta (continuação) A estrutura mostrada na figura A.22.1 é chamado modulador Sigma-Delta (Σ- ). Esta estrutura, além de ser mais simples, pode ser considerada como uma versão suavizada
Modulação e Codificação
INSTITUTO SUPERIOR DE CIÊNCIAS DO TRABALHO E DA EMPRESA Departamento de Ciências e Tecnologias de Informação Engenharia de Telecomunicações e Informática Modulação e Codificação Ano Lectivo 2001/2002 2º
Modelagem de um sistema por cadeias de Markov
Modelagem de um sistema por cadeias de Markov Sistemas sem memória : somente o estado imediatamente anterior influencia o estado futuro. rocesso estacionário: probabilidades de transição de um estado para
Teoria de distorção da taxa
Teoria de distorção da taxa Luis Henrique Assumpção Lolis 11 de outubro de 2013 Luis Henrique Assumpção Lolis Teoria de distorção da taxa 1 Conteúdo 1 Função discreta de distorção da taxa 2 Propriedades
Lista de exercícios 1
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Lista de exercícios 1 Disciplina: Linguagens Formais e Autômatos Professora: Juliana Pinheiro
Aula 07 Propriedades da resposta ao impulso
Aula 07 Propriedades da resposta ao impulso Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, a edição, Pearson, 00. ISBN 9788576055044. Páginas 6-69. HAYKIN, S. S.; VAN VEEN, B. Sinais e
TP537 Transmissão Digital 1ª Avaliação 27/10/ :00h Prof. Dayan Adionel Guimarães. Aluno(a):
TP537 Transmissão Digital ª Avaliação 7//4 8:h Prof. Dayan Adionel Guimarães ota: Aluno(a): ª questão (4 pontos) Prova com consulta ao livro texto, com duração de 3 horas. A interpretação é parte integrante
Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23
Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração
Modulação e Codificação
INSTITUTO SUPERIOR DE CIÊNCIAS DO TRABALHO E DA EMPRESA Departamento de Ciências e Tecnologias de Informação Engenharia de Telecomunicações e Informática Modulação e Codificação Ano Lectivo 001/00 º Semestre
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Probabilidades e Estatística
Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística 1 o Teste B 2 o semestre 2007/08 Duração: 90 minutos 19/04/2008 11:30 horas O teste consiste em dois
II-6 Análise de ruído e capacidade de canal
II-6 Análise de ruído e capacidade de canal Comunicações ISEL - ADEETC - Comunicações 1 Sumário 1. Causa dos erros na transmissão Modelo AWGN e ISI Modelo BSC Efeito do ruído Relação sinal/ruído 2. Curvas
1 O canal de comunicação radiomóvel
1 O canal de comunicação radiomóvel O projeto de sistemas de comunicações sem fio confiáveis e de alta taxa de transmissão continua sendo um grande desafio em função das próprias características do canal
Probabilidade e Estatística
Probabilidade e Estatística Aula 6 Distribuições Contínuas (Parte 02) Leitura obrigatória: Devore, Capítulo 4 Chap 6-1 Distribuições de Probabilidade Distribuições de Probabilidade Distribuições de Probabilidade
MODULAÇÃO POR CÓDIGO DE PULSO PCM
Instituto Federal de Santa Catarina Curso Técnico Integrado em Telecomunicações PRT- Princípios de Telecomunicações MODULAÇÃO POR CÓDIGO DE PULSO PCM Prof. Deise Monquelate Arndt Fontes: Princípios de
Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD
Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável
Circuitos Trifásicos Aula 4 Circuito Desequilibrado
Circuitos Trifásicos Aula 4 Circuito Desequilibrado Engenharia Elétrica Universidade Federal de Juiz de Fora tinyurl.com/profvariz (UFJF) CEL062 tinyurl.com/profvariz 1 / 24 Conexão Y Y a Z aa A V cn V
Comunicações Digitais Prof. André Noll Barreto Prova /2 (22/10/2013)
Prova 013/ (/10/013) Aluno: Matrícula: Instruções A prova consiste de cinco questões discursivas A prova terá a duração de h30 A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas
Capítulo Propriedades das operações com vetores
Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:
