Lógica para Computação
|
|
|
- Silvana Laranjeira Fraga
- 9 Há anos
- Visualizações:
Transcrição
1 Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br
2 Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos, formando fórmulas complexas; Proposição: enunciado ao qual se pode atribuir um valor verdade (verdadeiro ou falso); 2
3 Conectivos: conjunção (... E...), disjunção (... OU...), negação (NÃO...), implicação (SE ENTÃO ), bicondicional (...SE E SOMENTE SE...); A NÃO trata de relações sobre elementos de um conjunto, como todos, algum, nem utiliza variáveis; isto que será visto mais adiante, no estudo da Lógica Predicativa. 3
4 A linguagem proposicional utiliza: 1. Variáveis proposicionais (ou símbolos proposicionais, ou átomos): 2. Conectivos: P = {p 0, p 1, p 2, }; a) unário: negação: (NÃO); b) binários: conjunção: (E), disjunção: (OU), implicação: (SE ENTÃO); 3. Símbolos de pontuação: parênteses ( e ). 4
5 Fórmulas bem formadas (fbf) são definidas indutivamente como o menor conjunto L LP com as seguintes regras de formação: 1. Caso básico: todos a variáveis proposicionais são fbf, isto é: P L LP ; 2. Caso indutivo 1: Se A L LP então ( A) L LP ; 3. Caso indutivo 2: Se A, B L LP então (A B) L LP, (A B) L LP, e (A B) L LP. 5
6 Exemplos de fórmulas: ((p 0 ( p 1 )) ( (( p 0 ) p 1 ))) (p (q p)) (p ( ( p))) (( p) ( (( q) r))) ((p 0 ( p 1 )) ( (( p 0 ) p 1 ))) (p ((q ( p)) ( q))) 6
7 Regras para a omissão de parênteses: O parênteses mais externo pode ser eliminado; O uso repetido de ou de dispensa os parênteses; neste caso considera-se que os parênteses são aninhados à esquerda: p q r s representa (((p q) r) ( s)) O uso repetido de também dispensa os parênteses, mas neste caso eles aninham-se à direita: p q r s representa (p (q (r ( s)))) 7
8 Utiliza-se ainda a seguinte precedência entre os conectivos:,, e. Logo: p q representa (( p) q); p q r representa ((p q) r); p r q representa ((p r) q). 8
9 Diz-se que g é uma subfórmula de uma fórmula f se g atende as condições para ser uma fbf e além disto é compatível com a estrutura de f. O conjunto subf (f) das subfórmulas de f pode ser obtido indutivamente por: Se f = p (uma variável proposicional) então Subf (f) = { p }; Se f = g então Subf (f) = { g} U Subf (g); Se f = g h, f = g h ou f = g h então Subf (f) = { f } U Subf (g) U Subf (h). 9
10 Exemplo: f = p r (p s) = (( p) (r (p s))) Subf(f)= { p r (ps)} U Subf( p) U Subf(r (p s)) = { p r (p s)} U { p} U Subf(p) U {r (p s)} U Subf(r) U Subf(p s) = { p r (p s), p} U {p} U {r (p s)} U {r} U {ps} U Subf(p) U Subf(s) = { p r (p s), p, r (p s)}, p, r, p s} U {p} U {s} 10
11 Outra definição indutiva muito utilizada é a do tamanho de uma fórmula: p = 1 se p é uma variável proposicional; f = 1 + f ; f g = f g = f g = 1 + f + g. 11
12 Itens adicionais: Expressando ideias em (ver item da referência 1); Exercícios (ver pg. 12 da referência 1). 12
13 Semântica: Consiste na atribuição de valores-verdade às fórmulas da linguagem; Os valores-verdade no caso clássico são verdadeiro (1) e falso (0); Os valores-verdade são associados aos símbolos proposicionais por meio de uma função de valoração (ou interpretação): V: P { 0,1 } 13
14 Para as demais fórmulas: 1. V ( A) = 1 se e somente se V (A) = 0 ; 2. V (A B) = 1 se e somente se V (A) = 1 e V (B) = 1; 3. V (A B) = 1 se e somente se V (A) = 1 ou V (B) = 1; 4. V (A B) = 1 se e somente se V (A) = 0 ou V (B) = 1. 14
15 Dada uma fórmula proposicional f e uma interpretação V, a atribuição de valores-verdade definida anteriormente permite a obtenção do valor-verdade V(f) da fórmula f; Por exemplo, se f = (p (q p)) e se V(p) = 1 e V(q) = 0, então o valor-verdade de f pode ser computado por: V(1 (0 1)) = V(1 1)) = V(1) = 1 15
16 Os valores-verdade produzidos pelos conectivos podem ser mais claramente vistos nas tabelas a seguir: Não: f f E: f g f g
17 Ou: f g f g Implica: f g f g
18 Satisfação e validade: 1. Uma fórmula A é satisfazível se e somente se existe uma interpretação V tal que V (A) = 1; 2. Uma fórmula A é insatisfazível (ou uma contradição) se e somente se para todas as interpretações possíveis V tem-se V(A) = 0; 3. Uma fórmula A é válida (ou uma tautologia) se e somente se para toda interpretação V tem-se V(A) = 1; 4. Uma fórmula A é falsificável se e somente se existe uma valoração V tal que V (A) = 0. 18
19 Algumas consequências: 1. Toda fórmula válida é também satisfazível; 2. Toda fórmula insatisfazível é falsificável; 3. Uma fórmula pode ser satisfazível e falsificável: neste caso é dita contingente; 4. Uma fórmula não pode ser válida e insatisfazível; 5. Se A é válida, A é insatisfazível e reciprocamente; 6. Se A é satisfazível, A é falsificável e reciprocamente. 19
20 Tabelas-verdade: 1. Dada uma fórmula proposicional f, a tabela apresenta os valores-verdade de f para todas as interpretações possíveis; 2. Para uma fórmula com n variáveis existem 2 n interpretações possíveis; 3. A ordem de avaliação dos conectivos deve ser estritamente seguida; 4. As propriedades lógicas da fórmula (validade, satisfação, etc) são facilmente verificáveis. 20
21 Exemplo de tabela-verdade: (p (q p)) (1) (4) (1) (3) (2) (1)
22 Prática de tabelas-verdade: /tablequiz/tablepractice.html ; ; Exercícios (ver referência 1 à página 20). 22
23 23
24 24
25 f g
26 26
27 Algumas equivalências notáveis: 1. p p (dupla negação); 2. p q p q (definição de em função de e ); 3. (p q ) ( p q ) e (p q ) ( p q ) (leis de De Morgan); 4. p ( q r ) ( p q ) (p r ) (distributividade de sobre ); 5. p ( q r ) ( p q ) (p r ) (distributividade de sobre ). 27
28 Equivalência lógica usando tabelas-verdade: para que se tenha A B os valores-verdade de V(A) e de V(B) devem ser os mesmos em todas as linhas. f g 28
29 Definições dos conectivos em função de e : 1. p q p q ( p q); 2. p q ( p q ). É possível se definir todos os conectivos em função de um só? 29
30 A B
31 31
32 Exercícios (página 27 da referência 1); Desafios da (ver item 1.6 da referência 1 à página 28). 32
Lógica Proposicional
Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. ([email protected]) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL Prof. Cesar Tacla/UTFPR/Curitiba Slides baseados no capítulo 1 de DA SILVA, F. S. C.; FINGER M. e de MELO A. C. V.. Lógica para Computação. Thomson Pioneira Editora, 2006. Conceitos
Aula 2: Linguagem Proposicional
Lógica para Computação Primeiro Semestre, 2015 Aula 2: Linguagem Proposicional DAINF-UTFPR Prof. Ricardo Dutra da Silva Linguagens naturais, como o nosso Português, podem expressar ideias ambíguas ou imprecisas.
Alfabeto da Lógica Proposicional
Ciência da Computação Alfabeto da Lógica Sintaxe e Semântica da Lógica Parte I Prof. Sergio Ribeiro Definição 1.1 (alfabeto) - O alfabeto da é constituído por: símbolos de pontuação: (, ;, ) símbolos de
Lógica para Computação
Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Sistemas Dedutivos Um Sistema Dedutivo (SD) tem por objetivo obter, a partir de um conjunto
01/09/2014. Capítulo 1. A linguagem da Lógica Proposicional
Capítulo 1 A linguagem da Lógica Proposicional 1 Introdução O estudo da Lógica é fundamentado em: Especificação de uma linguagem Estudo de métodos que produzam ou verifiquem as fórmulas ou argumentos válidos.
Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO
Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema
Lógica. Cálculo Proposicional. Introdução
Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras
Lógica para computação
Lógica para computação PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Introdução Esta seção considera a análise de algumas propriedades semânticas da LP que relacionam os resultados
impossível conclusão falso premissas verdadeiro
Argumento Definição: Um argumento é uma sequência de enunciados(proposições) na qual um dos enunciados é a conclusão e os demais são premissas, as quais servem para provar ou, pelo menos, fornecer alguma
Lógica Proposicional Semântica e Tabelas Verdade
Lógica Proposicional Semântica e Tabelas Verdade Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 30 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 30 de março de 2015 1 / 20 1 Introdução
Lógica Proposicional Métodos de Validação de Fórmulas. José Gustavo de Souza Paiva. Introdução
Lógica Proposicional Métodos de Validação de Fórmulas José Gustavo de Souza Paiva Introdução Análise dos mecanismos que produzem e verificam os argumentos válidos apresentados na linguagem da lógica Três
NHI Lógica Básica (Lógica Clássica de Primeira Ordem)
NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático
Lógica. Professor Mauro Cesar Scheer
Lógica Professor Mauro Cesar Scheer Objetivos Reconhecer e manipular com os símbolos formais que são usados no Cálculo Proposicional (CPC) e Cálculo de Predicados (CP). Determinar o valor de verdade de
Lógica Proposicional Fórmulas e Precedência de Operadores
Lógica Proposicional Fórmulas e Precedência de Operadores Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 23 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 23 de março de 2015 1 / 18 1 Introdução
SCC Capítulo 2 Lógica de Predicados
SCC-630 - Capítulo 2 Lógica de Predicados João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis
Lógica proposicional
Lógica proposicional Sintaxe Proposição: afirmação que pode ser verdadeira ou falsa Proposições podem ser expressas como fórmulas Fórmulas são construídas a partir de símbolos: De verdade: true (verdadeiro),
Lógica Computacional
Aula Teórica 2: da Lógica Proposicional Departamento de Informática 17 de Fevereiro de 2011 Descrição informal Lógica proposicional Objecto Ocupa-se do estudo do comportamento dos conectivos lógicos (negação,
3 Cálculo Proposicional
3 Cálculo Proposicional O Cálculo Proposicional é um dos tópicos fundamentais da Lógica e consiste essencialmente da formalização das relações entre sentenças (ou proposições), de nidas como sendo frases
Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo 11 de outubro de 2016
Lógica Proposicional Parte I e-mail: [email protected] 11 de outubro de 2016 Lógica Matemática Cáculo Proposicional Uma aventura de Alice Alice, ao entrar na floresta, perdeu a noção dos dias da semana.
Lógica Computacional
Aula Teórica 4: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5)
Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Conjunto de conectivos completo 2. na
Lógica Computacional
Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos
Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza
Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja
Introdução. História. História 18/03/2012. Lógica para Ciência da Computação. O que é Lógica?
IFMG-Formiga Introdução Lógica para Ciência da Computação O que é Lógica? É a formalização de linguagem e raciocínio, além de meios para expressar (dar significado) a essas formalizações. Profª. Danielle
Lógica Computacional
Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira
Aula 6 Lógica Matemática Álgebra das proposições e método dedutivo As operações lógicas sobre as proposições possuem uma série de propriedades que podem ser aplicadas, considerando os conectivos inseridos
Introdução a computação
Introdução a computação 0 Curso Superior de Tecnologia em Gestão da Tecnologia da Informação Coordenador: Emerson dos Santos Paduan Autor(a): Daniel Gomes Ferrari São Paulo - 2016 1 Sumário 1. Lógica Matemática...
Lógica e Raciocínio. Lógica Proposicional. Universidade da Madeira.
Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Lógica Proposicional 1 Proposição Uma rase é uma proposição apenas quando admite um dos dois valores lógicos: Falso (F) ou Verdadeiro
Lógica Matemática. Prof. Gerson Pastre de Oliveira
Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;
Aula 4: Consequência Lógica e Equivalência Lógica
Lógica para Computação Segundo Semestre, 2014 Aula 4: Consequência Lógica e Equivalência Lógica DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 4.1. Em lógica proposicional dizemos que uma fórmula B
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Disciplina: Lógica Computacional I Professora: Juliana Pinheiro Campos Data: 25/08/2011 Lista
Lógica Computacional
Aula Teórica 5: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
Parte 1. LÓGICA de PROPOSIÇÕES 3. A SINTAXE DA LINGUAGEM DA LÓGICA PROPOSICIONAL
12 Exercício 1. A expressão quadrado é o nome da palavra quadrado a qual dá nome a forma geométrica. Assim, em quadrado tem quatro lados a palavra quadrado está sendo usada para falar da forma geométrica.
Matemática Discreta - 01
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Raciocínio lógico matemático
Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.3 Equivalências, contradições e tautologias 1 Proposições compostas Composta de duas ou mais proposições simples Tanto a primeira como
Prof. Jorge Cavalcanti
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Matemática discreta e Lógica Matemática
AULA 2 - Proposicionais Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Lógicas Proposições compostas - Definição 1
LÓGICA I ANDRÉ PONTES
LÓGICA I ANDRÉ PONTES 4. Lógica Proposicional A Linguagem da Lógica Proposicional Letras Proposicionais: P, Q, R, S, T,... Conectivos Lógicos: Símbolos auxiliares: (, ), = Conectivo Leitura Símbolo Símbolos
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/53 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Propriedades Semânticas da Lógica Proposicional(Capítulo 3)
Propriedades Semânticas da Lógica Proposicional(Capítulo 3) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Tautologia 2. Satisfatível 3. Contingência 4. Contraditória
Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por:
LÓGICA Objetivos Apresentar regras e estruturas adicionais sobre o uso de proposições. Conceituar implicação lógica, tautologias, e as propriedade sobre proposições. Apresentar os fundamentos da dedução,
01/09/2014. Capítulo 3. Propriedades semânticas da Lógica Proposicional
Capítulo 3 Propriedades semânticas da Lógica Proposicional 1 Introdução Propriedades Definição 3.1 (propriedades semânticas básicas da Lógica Proposicional) Sejam H, G, H 1, H 2,...,H n, fórmulas da Lógica
1 Lógica de primeira ordem
1 Lógica de primeira ordem 1.1 Sintaxe Para definir uma linguagem de primeira ordem é necessário dispor de um alfabeto. Este alfabeto introduz os símbolos à custa dos quais são construídos os termos e
n. 3 Construção de Tabelas-Verdade
n. 3 Construção de Tabelas-Verdade Dadas várias proposições simples: p, q, r, s,..., podemos combiná-las pelos conectivos lógicos: Negação (~) ou ( ) Conjunção ( ) Disjunção ( ) Condicional ( ) Bicondicional
Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3
Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando
A semântica da Lógica Proposicional(Capítulo 2)
A semântica da Lógica Proposicional(Capítulo 2) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Interpretação 2. Semântica dos conectivos 3. Exemplos 4. Questão desafio
Lógica de Predicados
Lógica de Predicados Slides da disciplina Lógica para Computação ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. ([email protected]) entre 2007 e 2008. Alterações feitas em 2009
A Linguagem dos Teoremas - Parte II. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto
Material Teórico - Módulo de INTRODUÇÃO À LÓGICA MATEMÁTICA A Linguagem dos Teoremas - Parte II Tópicos Adicionais Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto 12 de maio
Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2.
Lógica formal A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação I) Simbolização 1. Simples 2. Composta B)Leis do pensamento I) Princípio da Identidade II) Principio do não-contraditório
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Lógica Computacional
Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios
LÓGICA PROPOSICIONAL
FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG
LÓGICA MATEMÁTICA. Quando a precedência não estiver explicitada através de parênteses, a ordem é a seguinte: RELEMBRANDO 23/02/2016
LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi [email protected] http://fabianotaguchi.wordpress.com RELEMBRANDO Quando a precedência não estiver explicitada através de parênteses, a ordem é a seguinte:
Exemplo 7 1 I. p q: Se o time joga bem, então o time ganha o campeonato. q s: Se o time ganha o campeonato então. s: Os torcedores não estão felizes.
Exemplo 7 1 I p q: Se o time joga bem, então o time ganha o campeonato }{{}}{{} p q p r: Se o time não joga bem, então o técnico é o culpado }{{}}{{} p r q s: Se o time ganha o campeonato então }{{} q
INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE
1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.
Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.
Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes [email protected] DCC-FCUP Complexidade 2002/03 1 Fundamentos de Lógica No nosso dia a dia, usamos todo o tipo de frases: Cinco é menor
1 TEORIA DOS CONJUNTOS
1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,
Prof. João Giardulli. Unidade I LÓGICA
Prof. João Giardulli Unidade I LÓGICA Introdução A primeira qualidade do estilo é a clareza. Aristóteles Introdução Aristóteles é considerado o precursor da lógica. Aristóteles (384-322 a.c.) Introdução
Matemática discreta e Lógica Matemática
AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação
Conhecimento e Raciocínio Lógica Proposicional
Conhecimento e Raciocínio Lógica Proposicional Agente Baseado em Conhecimento ou Sistema Baseado em Conhecimento Representa conhecimento sobre o mundo em uma linguagem formal (KB) Raciocina sobre o mundo
3.3 Cálculo proposicional clássico
81 3.3 Cálculo proposicional clássico 3.3.1 Estrutura dedutiva Neste parágrafo serão apresentados, sem preocupação com excesso de rigor e com riqueza de detalhes, alguns conceitos importantes relativos
Lógica Proposicional Sintaxe
Lógica Proposicional Sintaxe José Gustavo de Souza Paiva Lógica Proposicional Forma mais simples da lógica Fatos do mundo real representados por sentenças sem argumento proposições Proposição Sentença
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Lista Um dos objetivos principais da lógica é o estudo de estruturas
Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior
Lógica Formal Matemática Discreta Prof. Vilson Heck Junior [email protected] Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;
Matemática Régis Cortes. Lógica matemática
Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos
Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 04 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Tabela da Verdade; Operações Lógicas sobre Proposições; Revisando As proposições
3 AULA. Valorações e Tabelas de Verdade LIVRO. META: Apresentar tabelas de verdade para classificar proposições lógicas.
1 LIVRO Valorações e Tabelas de Verdade META: Apresentar tabelas de verdade para classificar proposições lógicas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar valorações de um conjunto
Lógica para Computação Segundo Semestre, Aula 10: SAT. Prof. Ricardo Dutra da Silva. ( p (q ( q r))) ( p r) ( p q) ( p q r) p r.
Lógica para Computação Segundo Semestre, 2014 Aula 10: SAT DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. SAT é o problema de decidir se existe uma valoração que satisfaça uma fórmula proposicional.
Dedução Natural e Sistema Axiomático Pa(Capítulo 6)
Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Argumento Sequência de sentenças......uma das quais se afirma verdadeira
Lógica para Computação
Aula 07 - Lógica Proposicional 1 Faculdade de Informática - PUCRS August 27, 2015 1 Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores. Sinopse Nesta aula,
Aula 3 Lógica Matemática
UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira 1 Aula 3 Lógica Matemática Construção de tabelas-verdade 1) Proposições compostas e tabelas-verdade Várias proposições simples podem ser combinadas
Lógica e Matemática Discreta
Lógica e Matemática Discreta Proposições Prof clezio 20 de Março de 2018 Curso de Ciência da Computação Proposições e Conectivos Conceito de proposição Definição: Chama-se proposição a todo conjunto de
Aula 7: Dedução Natural 2
Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 7: Dedução Natural 2 Prof. Ricardo Dutra da Silva -introdução Dada uma premissa A, nós podemos concluir A B para qualquer fórmula B. A justificativa
Lógica Computacional
Aula Teórica 8: Forma Normal Conjuntiva António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade
Lógica Proposicional Propriedades Semânticas
Lógica Proposicional José Gustavo de Souza Paiva Introdução Relacionamento dos resultados das interpretações semânticas de fórmulas Teoria dos modelos estudo das relações entre propriedades sintáticas
Fundamentos da Computação 1. Aula 03
Fundamentos da Computação 1 Aula 03 Conteúdo Introdução à Lógica. Definição da Sintaxe. Traduzindo Sentenças. Introdução à Lógica O que é lógica? Introdução à Lógica O que é lógica? Lógica é a análise
Lógica Proposicional e Álgebra de Boole
Lógica Proposicional e Álgebra de Boole A lógica proposicional remonta a Aristóteles, e teve como objectivo modelizar o raciocínio humano. Partindo de frases declarativas ( proposições), que podem ser
Lógica Proposicional
Lógica Proposicional Equivalências Lógicas Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 36 Este material é preparado
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar
Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues
Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma
Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur
Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo
Lógica Proposicional (cont.)
Lógica Proposicional (cont.) Conectivos lógicos Conjunção (e: ^) Disjunção (ou: v) Negação (não : ~) Condicional (se...então: ) Bicondicional (se somente se: ) 1 Negação de um proposição composta Negar
