Lógica Proposicional

Tamanho: px
Começar a partir da página:

Download "Lógica Proposicional"

Transcrição

1 Lógica Proposicional Equivalências Lógicas Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

2 Este material é preparado usando como referências os textos dos seguintes livros. GERSTING, Judith L.,Mathematical Structures For Computer Science: A Modern Approach to Discrete Mathematics, 6th ed., ROSEN, Kenneth H., Discrete Mathematics and its applications, 6th ed., Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

3 Operador de Biimplicação Lembre-se: uma proposição bicondicional P Q é verdade quando P e Q têm o mesmo valor verdade, e só neste caso. Tabela verdade da biimplicação P Q P Q V V V V F F F V F F F V Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

4 Equivalências Lógicas Se duas proposições compostas, P e Q, possuem o mesmo valor-verdade em todos os casos, são chamadas de logicamente equivalentes. Exemplo: A B é logicamente equivalente a B A. A B A B B A B A V V V F F V V F F V F F F V V F V V F F V V V V Nestes casos, P Q é uma tautologia. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

5 Equivalências Lógicas Se duas proposições compostas, P e Q, possuem o mesmo valor-verdade em todos os casos, são chamadas de logicamente equivalentes. Exemplo: A B é logicamente equivalente a B A. A B A B B A B A V V V F F V V F F V F F F V V F V V F F V V V V Neste caso, (A B) ( B A) é uma tautologia. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

6 Equivalências Lógicas Quando duas proposições lógicas A e B são equivalentes, indicamos por uma das seguintes formas: A B A B Atenção!! Os símbolos e não são operadores lógicos! São apenas símbolos matemáticos usados para dizer que as proposições A e B têm os mesmos valores verdade em todos os casos. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

7 Equivalências Lógicas Exemplos: A B B A (Contrposição) (A B) ( A B) (Lei de De Morgan) (A B) ( A B) (A B) (B A) (Propriedade Comutativa) (A B) (B A) (A B) C A (B C) (Propriedade Associativa) (A B) C A (B C) A (B C) (A B) (A C) (Propriedade Distributiva) A (B C) (A B) (A C) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

8 Equivalências Lógicas Como saber se duas proposições lógicas compostas são logicamente equivalentes? Use tabelas verdade! Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

9 Equivalências Lógicas Como saber se duas proposições lógicas compostas são logicamente equivalentes? Use tabelas verdade! Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

10 Equivalência Lógica Exemplo: (A B) B é logicamente equivalente a ( B A) B. A B A B (A B) A B B A ( B A) B B V V V V F F V V V F F V F V F V F V V V V F V V F F V F V V V F Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

11 Equivalência Lógica Exemplo: (A B) B é logicamente equivalente a ( B A) B. A B A B (A B) A B B A ( B A) B B V V V V F F V V V F F V F V F V F V V V V F V V F F V F V V V F Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

12 Equivalência Lógica Exemplo: (A B) A B. A B A B A A B V V V F V V F F F F F V V V V F F V V V Vamos chamar essa equivalência lógica de regra da implicação. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

13 Equivalência Lógica Exemplo: (A B) A B. A B A B A A B V V V F V V F F F F F V V V V F F V V V Vamos chamar essa equivalência lógica de regra da implicação. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

14 Equivalência Lógica Exemplo: A ( A). A A ( A) V F V V F V F V F F V F Essa equivalência lógica é a dupla negação. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

15 Equivalência Lógica Exemplo: A ( A). A A ( A) V F V V F V F V F F V F Essa equivalência lógica é a dupla negação. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

16 Equivalências Lógicas Exemplo: Será que é mesmo verdade que (A B) A B? Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

17 Equivalências Lógicas Exemplo: Será que é mesmo verdade que (A B) A B? A B A B (A B) A B A B V V V F F F F V F F V F V V F V F V V F V F F F V V V V Esta é uma das Leis de De Morgan! Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

18 Equivalências Lógicas Exemplo: Será que é mesmo verdade que (A B) A B? A B A B (A B) A B A B V V V F F F F V F F V F V V F V F V V F V F F F V V V V Esta é uma das Leis de De Morgan! Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

19 Equivalências Lógicas Augustus De Morgan ( ) Foi um matemático indiano. Foi professor de Augusta Ada, Condessa de Lovelace. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

20 Equivalências Lógicas Augustus De Morgan ( ) Escreveu milhares de artigos para mais de 15 periódicos e muitos livros teóricos. Formalizou conceitos como indução matemática e limite. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

21 Equivalências Lógicas Augustus De Morgan ( ) Deu contribuições fundamentais para o desenvolvimento da lógica simbólica. Criou notações que ajudaram a provar equivalências lógicas e as Leis de De Morgan. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

22 Equivalências Lógicas Leis de De Morgan: (A B) A B. (A B) A B. Exercício: Use as Leis de De Morgan para negar: Miguel tem um celular e um laptop. Miguel não tem um celular ou não tem um laptop. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

23 Equivalências Lógicas Leis de De Morgan: (A B) A B. (A B) A B. Exercício: Use as Leis de De Morgan para negar Miguel tem um celular e um laptop. Miguel não tem um celular ou não tem um laptop. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

24 Equivalências Lógicas Leis de De Morgan: (A B) A B. (A B) A B. Exercício: Use as Leis de De Morgan para negar Rodrigo ou Carlos vai ao concerto. Rodrigo e Carlos não vão ao concerto. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

25 Equivalências Lógicas Leis de De Morgan: (A B) A B. (A B) A B. Exercício: Use as Leis de De Morgan para negar Rodrigo ou Carlos vai ao concerto. Rodrigo e Carlos não vão ao concerto. Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

26 Provando Equivalências Lógicas Mostre que (A B) A B. (A B) ( A B) (Regra da implicação.) ( A) B (Lei de De Morgan.) A B (Regra da dupla negação.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

27 Provando Equivalências Lógicas Mostre que (A B) A B. (A B) ( A B) (Regra da implicação.) ( A) B (Lei de De Morgan.) A B (Regra da dupla negação.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

28 Provando Equivalências Lógicas Mostre que (A B) A B. (A B) ( A B) (Regra da implicação.) ( A) B (Lei de De Morgan.) A B (Regra da dupla negação.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

29 Provando Equivalências Lógicas Mostre que (A B) A B. (A B) ( A B) (Regra da implicação.) ( A) B (Lei de De Morgan.) A B (Regra da dupla negação.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

30 Provando Equivalências Lógicas Mostre que (A ( A B)) A B. (A ( A B)) A ( A B) (Lei de De Morgan.) A ( ( A) B) (Lei de Demorgan.) A (A B) (Regra da Dupla Negação.) ( A A) ( A B) (Propriedade distributiva.) F ( A B) (Pois A A é falso.) A B (Regra do elemento neutro.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

31 Provando Equivalências Lógicas Mostre que (A ( A B)) A B. (A ( A B)) A ( A B) (Lei de De Morgan.) A ( ( A) B) (Lei de Demorgan.) A (A B) (Regra da Dupla Negação.) ( A A) ( A B) (Propriedade distributiva.) F ( A B) (Pois A A é falso.) A B (Regra do elemento neutro.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

32 Provando Equivalências Lógicas Mostre que (A ( A B)) A B. (A ( A B)) A ( A B) (Lei de De Morgan.) A ( ( A) B) (Lei de Demorgan.) A (A B) (Regra da Dupla Negação.) ( A A) ( A B) (Propriedade distributiva.) F ( A B) (Pois A A é falso.) A B (Regra do elemento neutro.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

33 Provando Equivalências Lógicas Mostre que (A ( A B)) A B. (A ( A B)) A ( A B) (Lei de De Morgan.) A ( ( A) B) (Lei de Demorgan.) A (A B) (Regra da Dupla Negação.) ( A A) ( A B) (Propriedade distributiva.) F ( A B) (Pois A A é falso.) A B (Regra do elemento neutro.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

34 Provando Equivalências Lógicas Mostre que (A ( A B)) A B. (A ( A B)) A ( A B) (Lei de De Morgan.) A ( ( A) B) (Lei de Demorgan.) A (A B) (Regra da Dupla Negação.) ( A A) ( A B) (Propriedade distributiva.) F ( A B) (Pois A A é falso.) A B (Regra do elemento neutro.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

35 Provando Equivalências Lógicas Mostre que (A ( A B)) A B. (A ( A B)) A ( A B) (Lei de De Morgan.) A ( ( A) B) (Lei de Demorgan.) A (A B) (Regra da Dupla Negação.) ( A A) ( A B) (Propriedade distributiva.) F ( A B) (Pois A A é falso.) A B (Regra do elemento neutro.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

36 Provando Equivalências Lógicas Mostre que (A ( A B)) A B. (A ( A B)) A ( A B) (Lei de De Morgan.) A ( ( A) B) (Lei de Demorgan.) A (A B) (Regra da Dupla Negação.) ( A A) ( A B) (Propriedade distributiva.) F ( A B) (Pois A A é falso.) A B (Regra do elemento neutro.) Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho / 36

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG Indução Matemática Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Indução Matemática junho - 2018 1 / 38 Este material é preparado usando como referências os

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 55 Este material é preparado

Leia mais

Predicados e Quantificadores

Predicados e Quantificadores Predicados e Quantificadores Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Predicados e Quantificadores junho - 2018 1 / 57 Este material é preparado usando

Leia mais

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Cálculo de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Quantificadores Como expressar a proposição Para todo número inteiro x, o valor de x é positivo. usando

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 2 - Proposicionais Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Lógicas Proposições compostas - Definição 1

Leia mais

Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.

Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo

Leia mais

Invariantes de Laço. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG

Invariantes de Laço. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG Invariantes de Laço Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Invariantes de Laço junho - 2018 1 / 28 Este material é preparado usando como referências

Leia mais

Matemática Discreta. Teoria de Conjuntos - Parte 2. Profa. Sheila Morais de Almeida. abril DAINF-UTFPR-PG

Matemática Discreta. Teoria de Conjuntos - Parte 2. Profa. Sheila Morais de Almeida. abril DAINF-UTFPR-PG Matemática Discreta Teoria de Conjuntos - Parte 2 Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Operações em conjuntos As operações entre conjuntos podem ser unárias, binárias, ternárias,

Leia mais

UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira

UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira Aula 6 Lógica Matemática Álgebra das proposições e método dedutivo As operações lógicas sobre as proposições possuem uma série de propriedades que podem ser aplicadas, considerando os conectivos inseridos

Leia mais

Matemática Discreta. Lógica de Predicados. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica de Predicados. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Quantificadores Como expressar a sentença Para todo número inteiro x, o valor de x é positivo. usando

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Cálculo de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Quantificadores Agrupados Dois quantificadores estão agrupados se um está no escopo do outro. Exemplo:

Leia mais

LÓGICA MATEMÁTICA. Quando a precedência não estiver explicitada através de parênteses, a ordem é a seguinte: RELEMBRANDO 23/02/2016

LÓGICA MATEMÁTICA. Quando a precedência não estiver explicitada através de parênteses, a ordem é a seguinte: RELEMBRANDO 23/02/2016 LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi [email protected] http://fabianotaguchi.wordpress.com RELEMBRANDO Quando a precedência não estiver explicitada através de parênteses, a ordem é a seguinte:

Leia mais

Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril

Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril Matemática Discreta Indução Matemática Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG Abril - 2017 Indução Matemática Se desejamos provar que A(n) B(n) é verdade para números inteiros k maiores

Leia mais

Cálculo proposicional

Cálculo proposicional Notas de aula de MAC0329 (2003) 9 2 Cálculo proposicional Referências para esta parte do curso: capítulo 1 de [Mendelson, 1977], capítulo 3 de [Whitesitt, 1961]. Proposição Proposições são sentenças afirmativas

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja

Leia mais

Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por:

Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por: LÓGICA Objetivos Apresentar regras e estruturas adicionais sobre o uso de proposições. Conceituar implicação lógica, tautologias, e as propriedade sobre proposições. Apresentar os fundamentos da dedução,

Leia mais

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo 11 de outubro de 2016

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo   11 de outubro de 2016 Lógica Proposicional Parte I e-mail: [email protected] 11 de outubro de 2016 Lógica Matemática Cáculo Proposicional Uma aventura de Alice Alice, ao entrar na floresta, perdeu a noção dos dias da semana.

Leia mais

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência.

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência. 1 LIVRO Regras de Inferência e Regras de Equivalência 4 AULA META: Introduzir algumas regras de inferência e algumas regras de equivalência. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de:

Leia mais

Relações de Recorrência

Relações de Recorrência Relações de Recorrência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Relações de Recorrência junho - 2018 1 / 102 Este material é preparado usando como referências

Leia mais

Aula 4: Consequência Lógica e Equivalência Lógica

Aula 4: Consequência Lógica e Equivalência Lógica Lógica para Computação Segundo Semestre, 2014 Aula 4: Consequência Lógica e Equivalência Lógica DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 4.1. Em lógica proposicional dizemos que uma fórmula B

Leia mais

Lógica Proposicional Parte II. Raquel de Souza Francisco Bravo 25 de outubro de 2016

Lógica Proposicional Parte II. Raquel de Souza Francisco Bravo   25 de outubro de 2016 Lógica Proposicional Parte II e-mail: [email protected] 25 de outubro de 2016 Argumento Válido Um argumento simbólica como: pode ser ser representado em forma P 1 P 2 P 3 P n Q Onde P 1, P 2,,P n são proposições

Leia mais

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa. Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira

Leia mais

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3 Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Indução Matemática - parte II Profa. Sheila Morais de Almeida DAINF-UTFPR-PG setembro - 2015 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n

Leia mais

n. 6 Equivalências Lógicas logicamente equivalente a uma proposição Q (p, q, r, ), se as tabelas-verdade destas duas proposições são idênticas.

n. 6 Equivalências Lógicas logicamente equivalente a uma proposição Q (p, q, r, ), se as tabelas-verdade destas duas proposições são idênticas. n. 6 Equivalências Lógicas A equivalência lógica trata de evidenciar que é possível expressar a mesma sentença de maneiras distintas, preservando, o significado lógico original. Def.: Diz-se que uma proposição

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

MATEMÁTICA Questões comentadas Daniela Arboite

MATEMÁTICA Questões comentadas Daniela Arboite MATEMÁTICA Questões comentadas Daniela Arboite TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A violação de direitos autorais é punível

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Proposições frases AFIRMATIVAS que aceitam julgamento: Verdadeiro - Acontece Falso - Não acontece Há frases que não aceitam valorações lógicas Verdadeiro/Falso Exemplos: 1) Interrogativas:

Leia mais

Lógica Matemática e Computacional. 2.3 Equivalência Lógica

Lógica Matemática e Computacional. 2.3 Equivalência Lógica Lógica Matemática e Computacional 2.3 Equivalência Lógica Equivalência Lógica Definição: Dadas as proposições compostas P e Q, diz-se que ocorre uma equivalência lógica entre P e Q quando suas tabelas-verdade

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos,

Leia mais

Faculdade de Informática e Tecnologia de Pernambuco

Faculdade de Informática e Tecnologia de Pernambuco Faculdade de Informática e Tecnologia de Pernambuco Plano de Ensino Disciplina: INF101 - Álgebra Aplicada à Computação; Professor: Diego Machado Dias; Curso: Ciência da Computação; Carga horária: 72h;

Leia mais

Equivalências Lógicas. Aula 13

Equivalências Lógicas. Aula 13 Equivalências Lógicas Aula 13 Equivalências Lógicas Leis de De Morgan ~(p ^ q) ~p v ~q ~(p v q) ~p ^ ~q Propriedade da Dupla Negação ~(~p) p Propriedade da Condicional p q ~p v q Equivalências Propriedade

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 4: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação

Leia mais

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/53 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Lógica Proposicional Semântica e Tabelas Verdade

Lógica Proposicional Semântica e Tabelas Verdade Lógica Proposicional Semântica e Tabelas Verdade Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 30 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 30 de março de 2015 1 / 20 1 Introdução

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

Atenção: Esse conectivo transmite a ideia de e / ou e não apenas a de exclusão como muitas pessoas imaginam.

Atenção: Esse conectivo transmite a ideia de e / ou e não apenas a de exclusão como muitas pessoas imaginam. CONCEITO DE PROPOSIÇÃO É todo conjunto de palavras ou símbolos que exprimem uma ideia de sentido completo e que, além disso, pode ser julgado como verdadeiro (V) ou falso (F). NÃO SÃO PROPOSIÇÕES Frases

Leia mais

Lógica Proposicional

Lógica Proposicional Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. ([email protected]) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo

Leia mais

Unidade II LÓGICA. Profa. Adriane Paulieli Colossetti

Unidade II LÓGICA. Profa. Adriane Paulieli Colossetti Unidade II LÓGICA Profa. Adriane Paulieli Colossetti Relações de implicação e equivalência Implicação lógica Dadas as proposições compostas p e q, diz-se que ocorre uma implicação lógica entre p e q quando

Leia mais

Gabarito da lista de Exercícios sobre Conjuntos

Gabarito da lista de Exercícios sobre Conjuntos Universidade Federal Fluminense Curso: Sistemas de Informação Disciplina: Fundamentos Matemáticos para Computação Professora: Raquel Bravo Gabarito da lista de Exercícios sobre Conjuntos 1. Determine quais

Leia mais

Lógica para computação

Lógica para computação Lógica para computação PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Introdução Esta seção considera a análise de algumas propriedades semânticas da LP que relacionam os resultados

Leia mais

Conhecimento e Raciocínio Lógica Proposicional

Conhecimento e Raciocínio Lógica Proposicional Conhecimento e Raciocínio Lógica Proposicional Agente Baseado em Conhecimento ou Sistema Baseado em Conhecimento Representa conhecimento sobre o mundo em uma linguagem formal (KB) Raciocina sobre o mundo

Leia mais

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2.

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2. Lógica formal A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação I) Simbolização 1. Simples 2. Composta B)Leis do pensamento I) Princípio da Identidade II) Principio do não-contraditório

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

Prof. Leonardo Augusto Casillo

Prof. Leonardo Augusto Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Aula 6 Álgebra de Boole Prof. Leonardo Augusto Casillo Álgebra de Boole (ou Boleana) Desenvolvida pelo matemático britânico George

Leia mais

Lógica. Cálculo Proposicional. Introdução

Lógica. Cálculo Proposicional. Introdução Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

LÓGICA EM COMPUTAÇÃO

LÓGICA EM COMPUTAÇÃO CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 0.1 - MARÇO DE 2017 Professor: Luís Rodrigo E-mail: [email protected]

Leia mais

Projeto de Algoritmos por Divisão e Conquista

Projeto de Algoritmos por Divisão e Conquista Projeto de Algoritmos por Divisão e Conquista Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Divisão e Conquista junho - 2018 1 / 70 Este material é preparado

Leia mais

Lógica Proposicional e Álgebra de Boole

Lógica Proposicional e Álgebra de Boole Lógica Proposicional e Álgebra de Boole A lógica proposicional remonta a Aristóteles, e teve como objectivo modelizar o raciocínio humano. Partindo de frases declarativas ( proposições), que podem ser

Leia mais

Fundamentos 1. Lógica de Predicados

Fundamentos 1. Lógica de Predicados Fundamentos 1 Lógica de Predicados Predicados e Quantificadores Estudamos até agora a lógica proposicional Predicados e Quantificadores Estudamos até agora a lógica proposicional A lógica proposicional

Leia mais

Introdução à Lógica Matemática

Introdução à Lógica Matemática Introdução à Lógica Matemática Disciplina fundamental sobre a qual se fundamenta a Matemática Uma linguagem matemática Paradoxos 1) Paradoxo do mentiroso (A) Esta frase é falsa. A sentença (A) é verdadeira

Leia mais

Universidade Federal do ABC

Universidade Federal do ABC Universidade Federal do ABC Eletrônica Digital Aula 3: Álgebra Booleana Prof. Rodrigo Reina Muñoz [email protected] RRM T3 2017 1 Teoremas Booleanos Auxiliam a simplificar expressões lógicas e

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

01/09/2014. Capítulo 3. Propriedades semânticas da Lógica Proposicional

01/09/2014. Capítulo 3. Propriedades semânticas da Lógica Proposicional Capítulo 3 Propriedades semânticas da Lógica Proposicional 1 Introdução Propriedades Definição 3.1 (propriedades semânticas básicas da Lógica Proposicional) Sejam H, G, H 1, H 2,...,H n, fórmulas da Lógica

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes [email protected] DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

UFMA-CCET-DEINF Estruturas Discretas e Lógica Matemática

UFMA-CCET-DEINF Estruturas Discretas e Lógica Matemática UFMA-CCET-DEINF Estruturas Discretas e Lógica Matemática Slides adaptados de Kees Van Demter Curso baseado no Livro: Discrete Mathemathics & Its Applications (5 th Edition) Kenneth H. Rosen 8/24/2005 Prof.Anselmo

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios

Leia mais

Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur

Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Proposições Prof clezio 26 de Abril de 2017 Curso de Ciência da Computação Inferência Lógica Uma inferência lógica, ou, simplesmente uma inferência, é uma tautologia da forma

Leia mais

Faculdade de Informática e Tecnologia de Pernambuco. Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias

Faculdade de Informática e Tecnologia de Pernambuco. Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias Faculdade de Informática e Tecnologia de Pernambuco Primeira lista de exercícios de Álgebra Aplicada à Computação Prof. Diego Machado Dias Instruções 1. No início de cada seção da lista há uma sugestão

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Rosen 47 6) Considere N(x) como o predicado x visitou Dakota do Norte, em que o domínio são os estudantes de sua escola. Expresse cada uma dessas quantificações em português. a) x

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia: Banco de dados e Sistemas para Internet Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL EXERCÍCIOS

Leia mais

Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções

Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções João Paulo Baptista de Carvalho (Prof. Auxiliar do IST) [email protected] Álgebra de Boole Binária A Álgebra de Boole binária

Leia mais

Lógica para Computação

Lógica para Computação Aula 07 - Lógica Proposicional 1 Faculdade de Informática - PUCRS August 27, 2015 1 Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores. Sinopse Nesta aula,

Leia mais

Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22

Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22 Introdução ao Curso Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG - 2019/01 1 / 22 Introdução: O que é

Leia mais

Propriedades Semânticas da Lógica Proposicional(Capítulo 3)

Propriedades Semânticas da Lógica Proposicional(Capítulo 3) Propriedades Semânticas da Lógica Proposicional(Capítulo 3) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Tautologia 2. Satisfatível 3. Contingência 4. Contraditória

Leia mais

Lógica Matemática. Prof. Gerson Pastre de Oliveira

Lógica Matemática. Prof. Gerson Pastre de Oliveira Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;

Leia mais

Álgebra Booleana: Axiomas, Teoremas e Leis de De Morgan

Álgebra Booleana: Axiomas, Teoremas e Leis de De Morgan Arquitectura de Computadores I Engenharia Informática (11537) Tecnologias e Sistemas de Informação (6616) Álgebra Booleana: Axiomas, Teoremas e Leis de De Morgan Nuno Pombo / Miguel Neto Arquitectura Computadores

Leia mais

MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira

MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira MATEMÁTICA 3 Professor Renato Madeira MÓDULO 1 Lógica SUMÁRIO 1. Proosição. Negação 3. Conectivos 4. Condicionais 4.1. Relação de imlicação 4.. Relação de equivalência 5. Álgebra das roosições 6. Quantificadores

Leia mais

Matemática Básica I Notas de aula - versão

Matemática Básica I Notas de aula - versão 1 - Departamento de Matemática Aplicada (GMA) Matemática Básica I Notas de aula - versão 3 2011-1 Marlene Dieguez Fernandez Observações preliminares A disciplina Matemática Básica I é oferecida no mesmo

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 8: Forma Normal Conjuntiva António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade

Leia mais

Circuitos Digitais Álgebra de Boole

Circuitos Digitais Álgebra de Boole Circuitos Digitais Álgebra de Boole Álgebra de Boole (ou Booleana) Desenvolvida pelo matemático britânico George Boole para estudo da lógica. Definida sobre um conjunto de dois elementos: (falso, verdadeiro)

Leia mais

Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu.

Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu. Raciocínio Lógico Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu www.acasadoconcurseiro.com.br Raciocínio Lógico NEGAÇÃO DE UMA PROPOSIÇÃO COMPOSTA Agora vamos aprender

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (18 de setembro a 17 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/10 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Lógica proposicional

Lógica proposicional Lógica proposicional Sintaxe Proposição: afirmação que pode ser verdadeira ou falsa Proposições podem ser expressas como fórmulas Fórmulas são construídas a partir de símbolos: De verdade: true (verdadeiro),

Leia mais

Conteúdo. Correção de Exercício Quantificadores Rosen (pg 33) Tradução Português Lógica Rosen (pg 42)

Conteúdo. Correção de Exercício Quantificadores Rosen (pg 33) Tradução Português Lógica Rosen (pg 42) Conteúdo Correção de Exercício Quantificadores Rosen (pg 33) Tradução Português Lógica Rosen (pg 42) Correção exercicios 11) P(x) = x = x 2 P(0) P(1) P(2) 12) Q(x) = x + 1 = 2x Q(0) Q(-1) Q(1) Correção

Leia mais

Lógica Proposicional Métodos de Validação de Fórmulas. José Gustavo de Souza Paiva. Introdução

Lógica Proposicional Métodos de Validação de Fórmulas. José Gustavo de Souza Paiva. Introdução Lógica Proposicional Métodos de Validação de Fórmulas José Gustavo de Souza Paiva Introdução Análise dos mecanismos que produzem e verificam os argumentos válidos apresentados na linguagem da lógica Três

Leia mais

LÓGICA EM COMPUTAÇÃO

LÓGICA EM COMPUTAÇÃO CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 4 - ABRIL DE 2018 Professor: Luís Rodrigo E-mail: [email protected]

Leia mais

Fundamentos de Lógica e Algoritmos

Fundamentos de Lógica e Algoritmos INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS SÃO GONÇALO DO AMARANTE Fundamentos de Lógica e Algoritmos #EquivalênciaLógica Eliezio Soares [email protected]

Leia mais

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 APROG Algoritmia e Programação Algoritmia 1 Lógica (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 Sumário Lógica Qual é o interesse para a algoritmia? O que é? Cálculo (Noções Básicas) Operações

Leia mais

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças. NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo

Leia mais

Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 04 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Tabela da Verdade; Operações Lógicas sobre Proposições; Revisando As proposições

Leia mais