Análise de Algoritmos
|
|
|
- Ana Luiza Rosa Mascarenhas
- 9 Há anos
- Visualizações:
Transcrição
1 Análise de Algoritmos Indução Matemática - parte II Profa. Sheila Morais de Almeida DAINF-UTFPR-PG setembro
2 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z 1, então S tem 2 n subconjuntos. Base: Quando n = 0, S = {}. Subconjuntos de S: {}. Pelo enunciado, S tem 2 0 = 1 subconjunto. A fórmula é condizente com o que verificamos. Portanto, o enunciado está correto quando n = 0. 1 Z denota o conjunto dos números inteiros não-negativos
3 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. Hipótese de Indução: Suponha que S é um conjunto com k elementos, k Z, então S tem 2 k subconjuntos. Passo: Considere um conjunto S com k + 1 elementos. S'
4 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. Seja a um dos elementos em S. Sabemos que a existe, pois S tem k + 1 elementos e k Z. S' a
5 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. O conjunto S a tem k elementos. Pela hipótese de indução, S a tem 2 k subconjuntos. S'-a a
6 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. Cada subconjunto X S a é um subconjunto de S, assim como o subconjunto X {a}. S' X a
7 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. Cada subconjunto X S a é um subconjunto de S, assim como o subconjunto X {a}. S' X X a X U a
8 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. Cada subconjunto X S a é um subconjunto de S, assim como o subconjunto X {a}. Então, S tem o dobro do número de subconjuntos de S a. Portanto, S tem 2(2 k ) subconjuntos, isto é, 2 k+1 subcojuntos. Como essa quantidade de subconjuntos corresponde ao valor que se obtém ao aplicar a fórmula do enunciado para n = k + 1, então a fórmula está correta.
9 Indução Matemática - Exemplo 2 Provar que n j=1 A j = n j=1 A j, sempre que A 1, A 2,..., A n forem subconjuntos de um universo U, com n 2. Base: n = 2 A1 A2 A1 A2 U U A 1 A 2 U A1 A 2 U
10 Indução Matemática - Exemplo 2 Provar que n j=1 A j = n j=1 A j, sempre que A 1, A 2,..., A n forem subconjuntos de um universo U, com n 2. Base: n = 2 A1 A2 A1 A2 U U A 1 A2 A1 A2 U A 1 U A 2
11 Indução Matemática - Exemplo 2 Provar que n j=1 A j = n j=1 A j, sempre que A 1, A 2,..., A n forem subconjuntos de um universo U, com n 2. Hipótese de indução: k j=1 A j = k j=1 A j, onde A 1, A 2,..., A k são subconjuntos de um universo U, com k 2. Passo: k+1 j=1 A j = k j=1 A j Ak+1
12 Indução Matemática - Exemplo 2 Provar que n j=1 A j = n j=1 A j, sempre que A 1, A 2,..., A n forem subconjuntos de um universo U, com n 2. Passo: k+1 j=1 A j = k j=1 A j Ak+1 Observe que k j=1 A j é um conjunto e A k+1 é um conjunto. Como está provado na base que 2 j=1 A j = 2 j=1 A j, tem-se: k+1 j=1 A j = k j=1 A j Ak+1 = k j=1 A j Ak+1 Pela hipótese de indução, k j=1 A j = k j=1 A j, portanto: k j=1 A j Ak+1 = k j=1 A j Ak+1 = k+1 j=1 A j.
13 Indução Matemática - Exemplo 3 Problema de Escalonamento Suponha que exista um grupo de palestras com horários pré-agendados. Gostaríamos de realizar o maior número de palestras possíveis no salão de conferências principal. Como escolher quais as palestras que serão apresentadas nesse salão?
14 Indução Matemática - Exemplo 3 Problema de Escalonamento - Algoritmo Guloso Entrada: inteiro n e conjunto de palestras t 1, t 2,..., t n, onde cada tarefa t i começa no tempo b i e termina no tempo e i. Passo 1: Ordene as tarefas em ordem não-decrescente de término: S = (e 1, e 2,..., e n ), de forma que e 1 e 2... e n. Passo 2: Inicie o conjunto C de palestras agendadas: C = {t 1 }. Passo 3: Remova e 1 de S: S = (e 2, e 3,..., e n ). Passo 4: Para i de 2 a n faça: Se b i é maior que o término da última tarefa incluída em C, então C = C {t i }. Remova e i de S. Passo 5: Apresente o conjunto de tarefas C.
15 Indução Matemática - Exemplo 3 Problema de Escalonamento - Algoritmo Guloso Prove que o algoritmo guloso do Problema do Escalonamento é ótimo, ou seja, sempre seleciona o maior número de palestras possíveis para a sala de conferências principal. Vamos provar P(m): se o algoritmo escolhe m palestras para a sala principal de um conjunto qualquer, então m é o número máximo de palestras que poderiam ocorrer na sala principal.
16 Indução Matemática - Exemplo 3 Vamos provar P(m): se o algoritmo escolhe m palestras para a sala principal de um conjunto qualquer, então m é o número máximo de palestras que poderiam ocorrer na sala principal. Base: Se m = 1. O algoritmo escolhe a palestra t 1 para a sala principal (Passo 2). Como as palestras estavam ordenadas em ordem não-decrescente de tempo de término (Passo 1), t 1 é a palestra que termina mais cedo. Observe que todas as outras palestras, que foram descartadas sem serem incluídas em C, obrigatoriamente terminam junto com ou após t 1, ou seja, no tempo e 1 ou depois.
17 Indução Matemática - Exemplo 3 Lembre: todas as outras palestras, que foram descartadas sem serem incluídas em C, obrigatoriamente terminam no tempo e 1 ou depois. Como as palestras foram descartadas, pelo Passo 4 toda palestra t i, para 2 i n, tem tempo de início menor ou igual a e 1. Então todas as palestras t i, 2 i n, estariam ocorrendo no tempo e 1 e não podem usar a sala principal ao mesmo tempo. Portanto, o algoritmo está correto ao escolher apenas uma palestra.
18 Indução Matemática - Exemplo 3 Vamos provar P(m): se o algoritmo escolhe m palestras para a sala principal de um conjunto qualquer, então m é o número máximo de palestras que poderiam ocorrer na sala principal. Hipótese de indução: Se o algoritmo escolhe k palestras para a sala principal de um conjunto qualquer, então k é o número máximo de palestras que poderiam ocorrer na sala principal. Passo: Suponha que o algoritmo escolhe k + 1 palestras para a sala principal de um conjunto qualquer. Pela prova da base, sabemos que nenhuma palestra que comece antes de e 1 pode ser escolhida. Portanto, considere o conjunto Q das palestras que se iniciam após e 1.
19 Indução Matemática - Exemplo 3 Portanto, considere o conjunto Q das palestras que se iniciam após e 1. Observe que excetuando-se t 1, as demais k palestras escolhidas pelo algoritmo pertencem à Q (pelo Passo 4). Pela hipótese de indução, se o algoritmo escolhe k palestras para a sala principal pertencentes ao conjunto Q, então k é o máximo de palestras que podem ocorrer na sala principal dentre as pertencentes a Q. Como Q contém todas as palestras que poderiam ser escolhidas após e 1, o número máximo de palestras que podem ocorrer na sala principal é k + 1.
20 Indução Matemática - Exemplo 4 Prove que uma postagem que custa pelo menos $12, 00 sempre pode ser feita utilizando-se selos postais que custam $4, 00 e $5, 00. Base: Se o custo da postagem é $12, basta usar 3 selos que custam $4, 00. Hipótese de indução: Uma postagem que custa $k, k inteiro e k 12, pode ser feita utilizando-se selos postais que custam $4, 00 e $5, 00. Passo: Considere uma postagem que custa $k + 1. Pela hipótese de indução, a postagem que custa $k pode ser feita com selos que custam $4 e $5.
21 Indução Matemática - Exemplo 4 Pela hipótese de indução, a postagem que custa $k pode ser feita com selos que custam $4 e $5. Se a postagem que custa $k utiliza algum selo que custa $4, substitua-o por um selo que custa $5. Se a postagem que custa $k usa somente selos que custam $5, então essa postagem usa pelo menos 3 selos que custam $5, já que k 12. Então troque 3 selos que custam $5 por quatro selos que custam $4..
22 Indução Matemática - Exemplo 5 Prove que em uma cerca com n estacas existem n 1 seções, para n inteiro, n 1.
23 Indução Matemática - Exemplo 5 Prove que em uma cerca com n estacas existem n 1 seções, para n inteiro, n 1. Base: Suponha que a cerca tem 1 estaca (n = 1). Não há seções. Coincide com o enunciado que diz que há n 1 = 1 1 = 0 seções.
24 Indução Matemática - Exemplo 5 Prove que em uma cerca com n estacas existem n 1 seções, para n inteiro, n 1. Hipótese de indução: Se a cerca tem k estacas, k inteiro positivo, então a cerca tem k 1 seções. Passo: Considere uma cerca com k + 1 estacas k k+1
25 Indução Matemática - Exemplo 5 Prove que em uma cerca com n estacas existem n 1 seções, para n inteiro, n 1. Remova a última estaca da cerca k Observe que a cerca que restou tem k estacas e uma seção a menos. Pela hipótese de indução, a cerca com k estacas tem k 1 seções.
26 Indução Matemática - Exemplo 5 Prove que em uma cerca com n estacas existem n 1 seções, para n inteiro, n 1. Remova a última estaca da cerca k Pela hipótese de indução, a cerca com k estacas tem k 1 seções. Então a cerca antes de removermos a estaca tinha k seções.
27 Referências Kenneth ROSEN. Discrete Mathematics and Its Applications. McGraw-Hill Education, 6th edition (July 26, 2006).
Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril
Matemática Discreta Indução Matemática Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG Abril - 2017 Indução Matemática Se desejamos provar que A(n) B(n) é verdade para números inteiros k maiores
Matemática Discreta. Teoria de Conjuntos - Parte 2. Profa. Sheila Morais de Almeida. abril DAINF-UTFPR-PG
Matemática Discreta Teoria de Conjuntos - Parte 2 Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Operações em conjuntos As operações entre conjuntos podem ser unárias, binárias, ternárias,
Análise de Algoritmos
Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.
Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.
Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo
Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG
Indução Matemática Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Indução Matemática junho - 2018 1 / 38 Este material é preparado usando como referências os
Relações de Recorrência
Relações de Recorrência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Relações de Recorrência junho - 2018 1 / 102 Este material é preparado usando como referências
Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março
Matemática Discreta Cálculo de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Quantificadores Como expressar a proposição Para todo número inteiro x, o valor de x é positivo. usando
Invariantes de Laço. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG
Invariantes de Laço Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Invariantes de Laço junho - 2018 1 / 28 Este material é preparado usando como referências
Lógica Proposicional
Lógica Proposicional Equivalências Lógicas Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 36 Este material é preparado
Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março
Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
Lógica Proposicional
Lógica Proposicional Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 55 Este material é preparado
Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março
Matemática Discreta Cálculo de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Quantificadores Agrupados Dois quantificadores estão agrupados se um está no escopo do outro. Exemplo:
11º ano - Indução matemática
1 O conjunto dos números racionais Q é enumerável, ou seja, é possível atribuir (associar) a cada número racional um número natural Abaixo, os números racionais positivos estão representados na forma de
Elementos de Matemática Finita
Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
Soluções dos exercícios propostos
Indução e Recursão Soluções dos exercícios propostos 1 Iremos demonstrar que a expressão proposta a seguir é correta: i = 0 + + + + + (n 1) = n(n 1), para n > 0 0 i
PCC104 - Projeto e Análise de Algoritmos
PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 7 de outubro de 2016 Marco Antonio
Indu c ao Matem atica Indu c ao Matem atica T opicos Adicionais
Indução Matemática Indução Matemática Tópicos Adicionais Indução Matemática Indução Matemática Eercícios Introdutórios Eercício Prove por indução que: + + + n n(n + ) Eercício Prove que + + 5 + + (n )
Análise I Solução da 1ª Lista de Exercícios
FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado
Módulo Tópicos Adicionais. Recorrências
Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma
Algoritmos de aproximação - Problema de cobertura por conjuntos
Algoritmos de aproximação - Problema de cobertura por conjuntos Marina Andretta ICMC-USP 22 de setembro de 205 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M.
Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE
Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se
Lógica Matemática - Indução
Lógica Matemática - Indução Prof. Elias T. Galante - 017 Breve introdução losóca à indução Raciocinar é inferir, ou seja, passar do que já se conhece de algum modo ao que ainda não se conhece. Este processo
Algoritmos gulosos (greedy)
Algoritmos gulosos (greedy) CLRS 16.1 e mais... Algoritmos p. 1 Algoritmos gulosos Algoritmo guloso procura ótimo local e acaba obtendo ótimo global costuma ser muito simples e intuitivo muito eficiente
Teoria dos Grafos. Coloração de Vértices
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada [email protected], [email protected], [email protected] Coloração de
Matemática Discreta para Ciência da Computação
Matemática Discreta para Ciência da Computação P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 16: Grafos Planares Preparado a partir do texto: Rangel, Socorro. Teoria do
Análise Combinatória. Matemática Discreta. Prof Marcelo Maraschin de Souza
Análise Combinatória Matemática Discreta Prof Marcelo Maraschin de Souza Introdução Combinatória é o ramo da matemática que trata de contagem. Esses problema são importantes quando temos recursos finitos,
Matemática Discreta - 05
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 05 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Sumário. 2 Índice Remissivo 9
i Sumário 1 Teoria dos Conjuntos e Contagem 1 1.1 Teoria dos Conjuntos.................................. 1 1.1.1 Comparação entre conjuntos.......................... 2 1.1.2 União de conjuntos...............................
RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1
DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA 1 1. Considere a soma S n = 1 2 0 + 2 2 1 + 3 2 2 + + n 2 n 1. Mostre, por indução finita, que S n = (n 1)2 n + 1. Indique claramente a base da indução, a
Problema de seleção de atividades. Aula 14. Exemplo. Algoritmos Gulosos. Algoritmos Gulosos. Intervalo: par ordenado de números
Problema de seleção de atividades Aula 14 Algoritmos Gulosos Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Intervalo: par ordenado de números [s[i],f[i]): início e fim do intervalo
Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE
Ruy J. G. B. de Centro de Informática, UFPE 2007.1 Conteúdo 1 Seqüências Definição Uma seqüência é uma função cujo domíno é um número natural ou N. Uma seqüência cujo domínio é algum número natural n N
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
Projeto de Algoritmos por Indução
Projeto de Algoritmos por Indução Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Projeto de Algoritmos por Indução junho - 2018 1 / 40 Este material é preparado
Axiomatizações equivalentes do conceito de topologia
Axiomatizações equivalentes do conceito de topologia Giselle Moraes Resende Pereira Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação Tutorial
Elementos de Matemática Finita
Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o
Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução)
Grafos e Algoritmos Raimundo Macêdo Teorema de Hall (Prova por Indução) Teorema de Hall (teorema do casamento, 1935) Seja G uma grafo bipartide V = X U Y, então G contém um emparelhamento que satura todos
Lista de Exercícios 9 (Extra): Soluções Grafos
UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 9 (Extra): Soluções Grafos Ciências Exatas & Engenharias 1 o Semestre de 018 Para cada uma das seguintes armações, diga se é verdadeira ou falsa
Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG
Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade
Alguns comentários. Segunda prova. Programação dinâmica em grafos. Guloso em grafos. Algoritmos p. 1
Alguns comentários Segunda prova Programação dinâmica em grafos Guloso em grafos Algoritmos p. 1 Problema dos intervalos disjuntos Problema: Dados intervalos [s[1],f[1]),...,[s[n],f[n]), encontrar coleção
Algoritmos Greedy. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/ / 40
Algoritmos Greedy Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/2015 1 / 40 Algoritmos Greedy Vamos falar de algoritmos greedy. Em português são conhecidos como: Algoritmos
15 - Coloração Considere cada um dos grafos abaixo:
15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes [email protected] DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor
XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio
XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio Reservado para a correção Prova Probl. 1 Probl. Probl. 3 Probl. 4 Probl. 5 Total # 3000 Nota - - - - - - - - - - - - - - - - - - - - - - - -
Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (5)
1 Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (5) DECOM/UFOP 2012/2 5º. Período Anderson Almeida Ferreira Adaptado do material de Andréa Iabrudi Tavares BCC241/2012-2 3 Algoritmos Gulosos
Método Guloso. Troco mínimo. Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) junho/2012. Troco mínimo. Troco mínimo
Notas de aula da disciplina IME - ALGORITMOS E ESTRUTURAS DE DADOS II Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) Troco mínimo Dados os tipos de moedas de um país, determinar o número mínimo
Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito
Capítulo 2 Conjuntos Infinitos Um exemplo de conjunto infinito é o conjunto dos números naturais: mesmo tomando-se um número natural n muito grande, sempre existe outro maior, por exemplo, seu sucessor
Roteiro da segunda aula presencial - ME
PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência
Matemática Discreta - 07
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Produtos de potências racionais. números primos.
MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e
Soluções dos Exercícios do Capítulo 2
A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 2 2.1. Seja X = {n N; a + n Y }. Como a Y, segue-se que a + 1 Y, portanto 1 X. Além disso n X a + n Y (a + n) + 1 Y n + 1 X. Logo
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.
5COP096 TeoriadaComputação
Sylvio 1 Barbon Jr [email protected] 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema
Teoria dos Grafos. Edson Prestes
Edson Prestes Árvores Algoritmo de Kruskal O algoritmo de Kruskal permite determinar a spanning tree de custo mínimo. Este custo corresponde à soma dos pesos (distância, tempo, qualidade,...) associados
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/10 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
Matemática Discreta. Aula nº 22 Francisco Restivo
Matemática Discreta Aula nº 22 Francisco Restivo 2006-05-26 Definição: Um grafo cujos vértices são pontos no plano e cujos lados são linhas no plano que só se encontram nos vértices do grafo são grafos
Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados
Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados A lista abaixo é formada por um subconjunto dos exercícios dos seguintes livros: Djairo G. de Figueiredo, Análise na reta Júlio
Árvores Árvores Geradoras de Custo Mínimo 0/16
Conteúdo 1 Árvores 2 Árvores Geradoras de Custo Mínimo Árvores Árvores Geradoras de Custo Mínimo 0/16 Árvores Definição (Grafo Acíclico) Um grafo acíclico é um grafo que não contém ciclos. Árvores Árvores
Aula 6: Dedução Natural
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado
Estruturas de Dados 2
Estruturas de Dados 2 Recorrências IF64C Estruturas de Dados 2 Engenharia da Computação Prof. João Alberto Fabro - Slide 1/31 Recorrências Análise da Eficiência de Algoritmos: Velocidade de Execução; Análise
Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.
1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um
Problema do Caminho Mínimo
Departamento de Engenharia de Produção UFPR 63 Problema do Caminho Mínimo O problema do caminho mínimo ou caminho mais curto, shortest path problem, consiste em encontrar o melhor caminho entre dois nós.
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 17: Coloração de Vértices Preparado a partir do texto: Rangel, Socorro. Teoria
Capítulo 2. Conjuntos Infinitos
Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,
A resolução desses problemas pode geralmente ser feita com o seguinte procedimento: Problemas de divisibilidade 1
Três VIPs da Teoria dos Números É claro, VIP significa Very Important Problems. Os problemas discutidos aqui, além de suas variações, são bastante comuns em Olimpíadas de Matemática e costumam ser resolvidos
2 Erro comum da indução. 3 Corretude de Algoritmos. > Indução Forte X Indução Fraca Erro comum da indução Corretude de Algoritmos 0/17
Conteúdo 1 Indução Forte X Indução Fraca 2 Erro comum da indução 3 Corretude de Algoritmos > Indução Forte X Indução Fraca Erro comum da indução Corretude de Algoritmos 0/17 Indução Forte X Indução Fraca
Coloração de intervalos
Coloração de intervalos Problema: Dados intervalos de tempo [s 1,f 1 ),...,[s n,f n ), encontrar uma coloração dos intervalos com o menor número possível de cores em que dois intervalos de mesma cor sempre
Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada
Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 18: Coloração de Arestas Preparado a partir do texto: Rangel, Socorro. Teoria
MA21: Resolução de Problemas - gabarito da primeira prova
MA21: Resolução de Problemas - gabarito da primeira prova Problema 1 (2 pontos) Prove que a maior área dentre todos os retângulos de perímetro 1 é atingida por um quadrado. Dificuldade: MUITO FÁCIL Sejam
Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por
GEOMETRIA ESPACIAL Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por P e Q. Axioma I 2 : Toda reta possui
Matemática Discreta - 07
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
14 Coloração de vértices Considere cada um dos grafos abaixo:
14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual
Estruturas Discretas
Estruturas Discretas 2017.2 Marco Molinaro > Indução Forte Corretude de Algoritmos 1/20 Indução Forte > Indução Forte Corretude de Algoritmos 2/20 Indução Forte X Indução Fraca Para provar Propriedade
A equação da circunferência
A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada
Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6
Lista 6 Exercício. O objetivo deste exercício é modelar o problema de emparelhamento em um grafo bipartido como um problema de fluxo, e verificar que o Teorema de Konig é essencialmente o Teorema de Fluxo
Matemática Discreta - 06
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 06 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Predicados e Quantificadores
Predicados e Quantificadores Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Predicados e Quantificadores junho - 2018 1 / 57 Este material é preparado usando
Teoria dos Grafos. Edson Prestes
Edson Prestes Existem três companhias que devem abastecer com gás, eletricidade e água três prédios diferentes através de tubulações subterrâneas. Estas tubulações podem estar à mesma profundidade? Isto
Projeto de Algoritmos e Indução Matemática
Capítulo 3 Projeto de Algoritmos e Indução Matemática Um algoritmo é uma descrição precisa de um método para a resolução de determinado problema. Este capítulo apresenta a relação entre a prova de teoremas
Teoria Combinatória dos Números
Teoria Combinatória dos Números Samuel Feitosa, Yuri Lima, Davi Nogueira 27 de fevereiro de 2004 O objetivo deste artigo é mostrar algumas propriedades dos números inteiros, que combinadas podem originar
Algoritmos Gulosos. Norton T. Roman
Algoritmos Gulosos Norton T. Roman Apostila baseada no trabalho de Delano M. Beder, Luciano Digianpietri, David Matuszek, Marco Aurelio Stefanes e Nivio Ziviani Algoritmos Gulosos São aqueles que, a cada
Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização
Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização 1 Provas, lemas, teoremas e corolários Uma prova é um argumento lógico de que uma afirmação é verdadeira Um teorema
Polos Olímpicos de Treinamento. Aula 7. Curso de Teoria dos Números - Nível 2. Aula de Revisão e Aprofundamento. Prof.
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 7 Aula de Revisão e Aprofundamento Observação 1. É recomendável que o professor instigue seus alunos a pensarem
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
LISTA DE EXERCÍCIOS. Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 O Princípio da Indução Finita e Aplicações [01] Usando
