Lógica Matemática. Prof. Gerson Pastre de Oliveira
|
|
|
- Vítor de Lacerda de Figueiredo
- 8 Há anos
- Visualizações:
Transcrição
1 Lógica Matemática Prof. Gerson Pastre de Oliveira
2 Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica; Álgebra proposicional; Método dedutivo; Argumentos e regras de inferência;
3 Programa da Disciplina e Bibliografia Testes de validade e de não-validade; Sentenças abertas. Bibliografia: ALENCAR FILHO, E. Iniciação à Lógica Matemática. São Paulo : Nobel, SUPPES, P. y HILL, S., Introducción a la lógica matemática, Ed. Revertè, 1982.
4 Conceito de Proposição Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo; As proposições, portanto, exprimem pensamentos, ou seja, afirmam fatos ou exprimem juízos que formamos a respeito de determinados entes; Toda forma de comunicação tem sua linguagem própria; A linguagem é a representação do pensamento humano através de um discurso adequado aos ouvintes; A lógica também tem sua linguagem, que é representada por proposições; Uma proposição pode sem simples ou composta.
5 Exemplos de Proposição a) Porto Alegre é a capital do Rio Grande do Sul; b) 5 x 3 = 15; c) A França fica na Europa; d) 3,1416; Todas as proposições acima são verdadeiras. Entretanto, proposições podem ser falsas: a) 12 3 = 7; b) A Austrália está localizada na América do Sul; c) ½ é um número inteiro; d) A metade de 16 é 9.
6 Valores Lógicos das Proposições Proposições são expressões a respeito das quais tem sentido dizer que são verdadeiras ou falsas; Para uma proposição, são dois os possíveis valores lógicos: VERDADE (V): ocorre quando a proposição é verdadeira; FALSIDADE (F): ocorre quando a proposição é falsa;
7 Axiomas Fundamentais Existem dois axiomas fundamentais na Lógica Matemática: Princípio da Não Contradição: Uma proposição não pode ser verdadeira e falsa ao mesmo tempo ; Princípio do Terceiro Excluído: Toda a proposição é verdadeira ou falsa, isto é, verificase sempre um desses casos e nunca um terceiro.
8 Axiomas Fundamentais Desta forma, podemos dizer que toda a proposição tem um e somente um dos valores lógicos possíveis, V ou F ; Assim, por exemplo, considerando as proposições: O golfinho é um animal mamífero; Kingston é a capital do Egito; Pode-se afirmar que o valor lógico da primeira proposição é VERDADE (V) e o valor lógico da segunda proposição é FALSIDADE (F).
9 Proposições Simples As proposições simples também são conhecidas como átomos ou proposições atômicas ; São aquelas que não contém nenhuma outra proposição em suas estruturas; Geralmente, utiliza-se as letras minúsculas p, q, r, s,... para designar as proposições simples, como nos exemplos: p: Maria é professora; q: O dia está nublado; r : 36 / 6 = 6.
10 Proposições Compostas Também chamadas de proposições moleculares ou moléculas ; São aquelas formadas pela combinação de duas ou mais proposições; Geralmente, utiliza-se as letras maiúsculas P, Q, R, S,... para designar as proposições compostas, como nos exemplos: P: 26 é um número par e tomates são vermelhos; Q: Luísa é brasileira ou Ricardo é mexicano; R: Se a casa é verde, então o sol está brilhando; S: Não está calor se e somente se está chovendo.
11 Notação Utilizamos uma notação para indicar o valor lógico de uma proposição simples: V(p) = V ou V(p) = F A mesma notação pode ser utilizada para indicar o valor lógico de uma proposição composta: V(P) = V ou V(Q) = F Assim, para as proposições abaixo: p: A lua é roxa q: O Sol é maior do que a Terra Temos que V(p) = F, V(q) = V.
12 Operações Lógicas sobre Proposições As operações lógicas sobre proposições estão subordinadas a um conjunto de regras do cálculo proposicional, da mesma forma que as operações aritméticas possuem regras relativas aos números; Tabela-verdade: representa o domínio dos valores lógicos possíveis para determinadas proposições compostas, consideradas todas as combinações possíveis entre as proposições simples componentes; As principais operações lógicas sobre proposições são: negação, conjunção, disjunção, disjunção exclusiva, condicional e bicondicional;
13 Negação (~) A negação de uma proposição p é a proposição representada por não p e indicada por ~p; A negação de uma proposição qualquer possui sempre o valor lógico oposto ao da proposição a que se refere, ou seja: V(p) = V V(~p) = F V(p) = F V(~p) = V daí se conclui que ~V = F daí se conclui que ~F = V p ~p V F F V Tabela-verdade
14 Exemplos (Negação (~) ) p: = 9 (V); ~p: (F) q: 5 > 8 (F); ~q: 5 8 (V) r: A Costa Rica fica na Europa (F); ~r: A Costa Rica não fica na Europa (V); Existe mais de uma maneira de efetuar a negação de uma proposição em linguagem corrente. Assim a negação de s: A chuva é um fenômeno climático pode ser: ~s: A chuva não é um fenômeno climático; ~s: Não é verdade que a chuva é um fenômeno climático; ~s: É falso que a chuva seja um fenômeno climático; Observações: t: Toda a mulher é bonita; ~t: Nem toda mulher é bonita; u: Nenhum jogador é bom; ~u: Algum jogador é bom;
Aula 03 Proposições e Conectivos. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 03 Proposições e Conectivos Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Proposições: Valores Lógicos; Tipos (simples e compostas). Conectivos. Revisando O que é
Ló gica. Para Concursos Públicos. Professor Luiz Guilherme
Ló gica Para Concursos Públicos Professor Luiz Guilherme 2014 1 Lógica Para Concursos Públicos Proposição... 2 Valor Lógico das Proposições... 2 Axiomas da Lógica... 2 Tabela Verdade:... 3 Conectivos:...
* Lógica Proposicional Formas de Argumento
* Lógica Proposicional Formas de Argumento Hoje é segunda-feira ou sexta-feira. Hoje não é segunda-feira. Hoje é sexta-feira. Lógica, Informática e Comunicação Elthon Allex da Silva Oliveira e-mail: [email protected]
Construção de tabelas verdades
Construção de tabelas verdades Compreender a Lógica como instrumento da ciência e como estrutura formal do pensamento, conhecendo e compreendendo as operações com os principais conceitos proposicionais
José Luiz de Morais. RACiOCÍNIO LÓGICO
RACIOCÍNIO LÓGICO José Luiz de Morais RACiOCÍNIO LÓGICO RACIOCÍNIO LÓGICO Prof José Luiz de Morais PROPOSIÇÕES Proposições Simples Proposições Simples Proposição simples átomo ou partícula atômica É a
Aula 05 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 05 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Outras Traduções; Valor Lógico de Operações sobre proposições. Tabela da Verdade
PROPOSIÇÕES. Proposições Simples e Proposições Compostas. Conceito de Proposição
PROPOSIÇÕES Conceito de Proposição Definição: chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo. As proposições transmitem pensamentos, isto é,
Representação de Conhecimento. Lógica Proposicional
Representação de Conhecimento Lógica Proposicional Representação de conhecimento O que éconhecimento? O que érepresentar? Representação mental de bola Representação mental de solidariedade Símbolo como
Noções de Lógica - Teoria e Exercícios
ALUNO(A) C O L É G I O PROFESSOR (A) Alan Jefferson Série 1º ano Noções de Lógica - Teoria e Exercícios PROPOSIÇÃO Chama-se proposição ou sentença toda oração declarativa que pode ser classificada em verdadeira
CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno,
CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4 Prezado Aluno, Neste EP daremos sequência ao nosso estudo da linguagem da lógica matemática. Aqui veremos o conectivo que causa mais dificuldades para os alunos e
Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas
Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Professor: Arthur Lima AULA 05: RESUMO Caro aluno, Para finalizar nosso curso, preparei um resumo de toda a teoria vista nas
Raciocínio Lógico - Parte II
Apostila escrita pelo professor José Gonçalo dos Santos Contato: [email protected] Raciocínio Lógico - Parte II Sumário 1. Operações Lógicas sobre Proposições... 1 2. Tautologia, contradição
Lógica de Predicados
Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Predicados com duas variáveis. Equivalências lógicas (Rosen 39) Negando
Lógica para computação Professor Marlon Marcon
Lógica para computação Professor Marlon Marcon INTRODUÇÃO O objetivo geral da logica formal é a mecanização do raciocnio, ou seja, A obtenção de informação a partir de informações prévias por meio de recursos
Lógica Binária. Princípios
Lógica Binária Lógica Binária Proposição é toda a expressão da qual faz sentido dizer que é verdadeira ou falsa. Cada proposição tem um e um só valor lógico, Verdadeiro (1) ou Falso (0). Princípios Princípio
Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):
Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B
Noções básicas de Lógica
Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. uma expressão com significado Uma expressão pode ser expressão sem significado
Raciocínio Lógico Matemático
Raciocínio Lógico Matemático Cap. 5 - Equivalência Lógica Equivalência Lógica Caro aluno, no último capítulo estudamos as implicações lógicas e foi enfatizado que o ponto fundamental da implicação lógica
Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014
1 2 Questão 1 Um dado é feito com pontos colocados nas faces de um cubo, em correspondência com os números de 1 a 6, de tal maneira que somados os pontos que ficam em cada par de faces opostas é sempre
A linguagem da Lógica Proposicional (Capítulo 1)
A linguagem da Lógica Proposicional (Capítulo 1) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Alfabeto 3. Fórmulas bem formadas (FBF) 4. Exemplos
Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS
Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um
AULA 6 LÓGICA DOS CONJUNTOS
Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem
ADMINISTRAÇÃO DE BANCOS DE DADOS MÓDULO 8
ADMINISTRAÇÃO DE BANCOS DE DADOS MÓDULO 8 Índice 1. Modelagem de Dados - Continuação...3 1.1. Modelo Entidade-Relacionamento (MER) - II... 3 1.1.1. Entidades fortes e entidades fracas... 3 1.2. Dicionário
Resolução da Prova de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015.
de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015. Considerando a proposição P: Se João se esforçar o bastante, então João conseguirá o que desejar, julgue os itens a seguir. 43 A proposição
Definição. Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo.
Proposições Definição. Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo. Vitória é a capital do Espírito Santo π < 15 José é alto Princípios I.
Universidade Federal de Goiás Campus Catalão Departamento de Matemática
Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares
(Lógica) Fundamentando Proposições. Professor: Renê Furtado Felix E-mail: [email protected] Site: http://www.renecomputer.net/pdflog.
Professor: Renê Furtado Felix E-mail: [email protected] Site: http://www.renecomputer.net/pdflog.html aula 06 - Revisão (Lógica) Fundamentando Proposições Interruptores Aula de Lógica - Professor
GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS
PRISMAS Os prismas são sólidos geométricos muito utilizados na construção civil e indústria. PRISMAS base Os poliedros representados a seguir são denominados prismas. face lateral base Nesses prismas,
Probabilidade. Evento (E) é o acontecimento que deve ser analisado.
Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos
AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE
Disciplina: Matemática Computacional Prof. Diana de Barros Teles AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Quantificadores: são frases do tipo para todo, ou para cada, ou para algum, isso é, frases
Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento
Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova de Agente / PF Neste artigo, farei a análise das questões
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime
Unidade 1: O Computador
Unidade : O Computador.3 Arquitetura básica de um computador O computador é uma máquina que processa informações. É formado por um conjunto de componentes físicos (dispositivos mecânicos, magnéticos, elétricos
O erro dessa questão foi traduzir o nem como ou não, quando na verdade o correto é traduzir o nem como e não :
Resolução da Prova de Raciocínio Lógico da DPU (Nível Superior) de 2016, aplicada em 24/01/2016. Um estudante de direito, com o objetivo de sistematizar o seu estudo, criou sua própria legenda, na qual
Matemática - Módulo 1
1. Considerações iniciais Matemática - Módulo 1 TEORIA DOS CONJUNTOS O capítulo que se inicia trata de um assunto que, via-de-regra, é abordado em um plano secundário dentro dos temas que norteiam o ensino
Resolução Comentada Unesp - 2013-1
Resolução Comentada Unesp - 2013-1 01 - Em um dia de calmaria, um garoto sobre uma ponte deixa cair, verticalmente e a partir do repouso, uma bola no instante t0 = 0 s. A bola atinge, no instante t4, um
Noções de Lógica Matemática
Notas de aulas 2009 Noções de Lógica Matemática Lógica é... A Lógica é a ciência que visa estudar e estabelecer leis formais que bem dirijam as operações da mente. A Lógica é a ciência que trata das formas
Aula 03. Processadores. Prof. Ricardo Palma
Aula 03 Processadores Prof. Ricardo Palma Definição O processador é a parte mais fundamental para o funcionamento de um computador. Processadores são circuitos digitais que realizam operações como: cópia
Raciocínio Lógico Quantitativo
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática Raciocínio Lógico Quantitativo Notas de Aula Prof. a
Correção de exercícios do manual. Página 53
Correção de exercícios do manual Página 53 Seja P: a pena de morte foi abolida. a) O enunciado diz-nos que É falso que a pena de morte tenha sido abolida é falsa. Como É falso que a pena de morte tenha
FÍSICA. A) 2 J B) 6 J C) 8 J D) 10 J E) Zero. A) 6,2x10 6 metros. B) 4,8x10 1 metros. C) 2,4x10 3 metros. D) 2,1x10 9 metros. E) 4,3x10 6 metros.
FÍSICA 16) Numa tempestade, ouve-se o trovão 7,0 segundos após a visualização do relâmpago. Sabendo que a velocidade da luz é de 3,0x10 8 m/s e que a velocidade do som é de 3,4x10 2 m/s, é possível afirmar
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:
PASSAGENS BÍBLICAS. O julgamento de Salomão Mar Vermelho
PASSAGENS BÍBLICAS O julgamento de Salomão Mar Vermelho ESPAÇO CATÓLICO Os espaços católicos têm diferentes denominações e cada uma tem significado próprio e um sentido para os fiéis. O mais comum é a
Lógica Formal e Booleana. Cálculo Proposicional
Lógica Formal e Booleana Cálculo Proposicional [email protected] Charada: uma introdução ao uso de símbolos Um homem estava olhando uma foto, e alguém lhe perguntou: - De quem é esta foto? Ao que
Função. Adição e subtração de arcos Duplicação de arcos
Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração
SISTEMAS HIDRÁULICOS E PNEUMÁTICOS.
SISTEMAS HIDRÁULICOS E PNEUMÁTICOS. FUNDAMENTOS DE HIDROSTÁTICA Hidrostática é o ramo da Física que estuda a força exercida por e sobre líquidos em repouso. Este nome faz referência ao primeiro fluido
MÓDULO 2 Topologias de Redes
MÓDULO 2 Topologias de Redes As redes de computadores de modo geral estão presentes em nosso dia adia, estamos tão acostumados a utilizá las que não nos damos conta da sofisticação e complexidade da estrutura,
RACIOCÍNIO LÓGICO INSS. Condições de existência:
RACIOCÍNIO LÓGICO Sentenças: Na linguagem natural utilizamos vários tipos de sentenças em nossa comunicação: - Afirmativas Curitiba é a capital do Paraná. O dia está ensolarado. - Interrogativas Qual time
CARACTERÍSTICAS GERAIS DOS SERES VIVOS PROF. PANTHERA
CARACTERÍSTICAS GERAIS DOS SERES VIVOS PROF. PANTHERA COMPOSIÇÃO QUÍMICA COMPLEXA Está representada por: Substâncias inorgânicas: água e sais minerais. Substâncias orgânicas (possuem o carbono como elemento
Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2
Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade
RACIOCÍNIO LÓGICO MATEMÁTICO ATIVIDADE DO BLOCO 1 20 QUESTÕES
RACIOCÍNIO LÓGICO MATEMÁTICO ATIVIDADE DO BLOCO 1 20 QUESTÕES As questões foram elaboradas pelo prof. Sérgio Faro e valerão apenas como exercício para o seu conhecimento. São 20 questões de múltipla escolha.
Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves
Tópicos Apresentação Entidade, Atributo e Relacionamento Cardinalidade Representação simbólica Generalizações / Especializações Agregações Apresentação O Modelo Entidade-Relacionamento tem o objetivo de
TESTES RESOLVIDOS. É uma sentença aberta. Nada podemos afirmar, não conhecemos o conteúdo da frase. Não é uma proposição.
LÓGICA PROPOSICIONAL 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma
Ciências/15 7º ano Turma:
Ciências/15 7º ano Turma: 1º trimestre Nome: Data: / / 7ºcie301r Roteiro de Estudos- Recuperação de Ciências 7 ANO 1º trimestre O que estudamos no primeiro trimestre? No primeiro trimestre estudamos as
Abdução exemplos. Um jogo de abdução. Apartment 13 O objetivo do Jogo é descobrir como se deu um assassinato.
1 Aula 4 Interação Humano-Computador (com foco em métodos de pesquisa) Prof. Dr. Osvaldo Luiz de Oliveira 2 Abdução exemplos Um jogo de abdução Apartment 13 O objetivo do Jogo é descobrir como se deu um
Abril de 2008. Daniela Alexandra Diogo
O Abril de 2008 Daniela Alexandra Diogo 16 1 Ambos os métodos podem criar severos danos ambientais, portanto, devem ser muito bem controlados. Conclusão Com este trabalho aprendemos que a água é muito
ECOLOGIA. Conceitos fundamentais e relações alimentares
ECOLOGIA Conceitos fundamentais e relações alimentares A ECOLOGIA estuda as relações dos seres vivos entre si e deles com o ambiente onde vivem. Assunto da atualidade: crescimento exagerado da população
APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE
INSTITUTO EDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. one (084) 4005.0765 E-mail: [email protected]
RACIOCÍNIO LÓGICO QUANTITATIVO
RACIOCÍNIO LÓGICO QUANTITATIVO AULA 1 ESTUDO DA LÓGICA O estudo da lógica é o estudo dos métodos e princípios usados para distinguir o raciocínio correto do incorreto. A lógica tem sido freqüentemente
Pronomes e quantificadores universais e indefinidos
Pronomes e quantificadores universais e indefinidos Pronomes e quantificadores indefinidos: referem uma pessoa, coisa ou fenómeno de uma forma imprecisa ou indeterminada, indicando quantidade ou diferença.
FÍSICA - 2 o ANO MÓDULO 17 ELETRODINÂMICA: CORRENTE ELÉTRICA, RESISTORES E LEI DE OHM
FÍSICA - 2 o ANO MÓDULO 17 ELETRODINÂMICA: CORRENTE ELÉTRICA, RESISTORES E LEI DE OHM A B FALTA DE CARGAS NEGATIVAS EXCESSO DE CARGAS NEGATIVAS A V A + - B V B U = V A - V B E A B U = V A - V B A + - B
A LÓGICA NA MATEMÁTICA
A LÓGICA NA MATEMÁTICA 1. BREVE HISTÓRICO O pensamento lógico teve forte presença no cerne da Civilização Grega. Aristóteles (384-322 A.C) é tido como o primeiro sistematizador do conhecimento lógico da
Fundamentos de Programação. Diagrama de blocos
Fundamentos de Programação Diagrama de blocos Prof. M.Sc.: João Paulo Q. dos Santos E-mail: [email protected] Página: http://docente.ifrn.edu.br/joaoqueiroz/ O processo de desenvolvimento (programação),
CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM CURSO DE DIREITO 2º BIMESTRE 1º SEMESTRE - 1º A/B LINGUAGEM JURÍDICA I - PROF.
CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM CURSO DE DIREITO 2º BIMESTRE 1º SEMESTRE - 1º A/B LINGUAGEM JURÍDICA I - PROF. OSVALDO ESTUDO DE PEÇAS JURÍDICAS PROCURAÇÃO AD JUDICIA JUÍZO. PROCURAÇÃO
Fundamentos de Lógica Matemática
Webconferência 4-08/03/2012 Técnicas dedutivas Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Maneiras
Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015
GEOMETRIA Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 O MATERIAL COMO SUPORTE DO PENSAMENTO Muita gente usa o material na sala de aula como se a Geometria estivesse no material.
Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:
Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma
A LÓGICA DO RACIOCÍNIO MATEMÁTICO. GT 02 Educação matemática no ensino médio e ensino superior
A LÓGICA DO RACIOCÍNIO MATEMÁTICO GT 02 Educação matemática no ensino médio e ensino superior Aline Brum Ottes, UFSM, [email protected] Ricardo Fajardo, UFSM, [email protected] Samuel Sonego Zimmermann,
Objetivo do jogo 40 pontos todos os quadrados de um templo todos os quadrados amarelos todos os quadrados verdes Material do jogo 72 cartas
Objetivo do jogo Cada jogador representa o papel de um sumo sacerdote na luta pelo poder em Tebas no antigo Egito. Ganha o jogador que primeiro: Conseguir 40 pontos, ou Ocupar todos os quadrados de um
Módulo de Princípios Básicos de Contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto
Índice. Caderno de Exercícios. Modelo GCVC Gestão do Ciclo de Vida dos Contratos Caderno de Exercícios 3ª Edição 2016
Índice Página Tópico 3 Casos para Exercícios 6 Exercícios Capítulo 1 Introdução à GCVC 9 Exercícios Capítulo 2 Atores 10 Exercícios Capítulo 3a Etapa Pré Contratação 11 Exercícios Capítulo 3b Etapa Contratação
Ceará e o eclipse que ajudou Einstein
Ceará e o eclipse que ajudou Einstein Eixo(s) temático(s) Terra e Universo Tema Sistema Solar Conteúdos Sistema Terra-Lua-Sol / eclipses Usos / objetivos Retomada de conhecimentos / avaliação / problematização
Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola
Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.
AULA 3 DIREITO EMPRESARIAL
AULA 3 DIREITO EMPRESARIAL CAPACIDADE DA PESSOA FÍSICA Capacidade de direito ou capacidade jurídica É a aptidão que a pessoa física possui de exercer direitos e contrair obrigações. O ser humano possui
DEPARTAMENTO DE MATEMÁTICA
FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática
I. Conjunto Elemento Pertinência
TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:
Centro Universitário Anchieta
1) Um elemento da família 2 da tabela periódica forma um composto com o flúor. A massa molar desse composto é 78,074g. Escreva a fórmula e o nome do composto. O composto formado entre flúor e um elemento
Sumário. OS ENIGMAS DE SHERAZADE... 13 I Ele fala a verdade ou mente?... 13 I I Um truque com os números... 14
Sumário OS ENIGMAS DE SHERAZADE... 13 I Ele fala a verdade ou mente?... 13 I I Um truque com os números... 14 CAPÍTULO 1 LÓGICA DE PRIMEIRA ORDEM-PROPOSICIONAL... 15 Estruturas Lógicas... 15 I Sentenças...
Cálculo proposicional
Cálculo proposicional Proposição Proposições são sentenças afirmativas declarativas que não sejam ambígüas e que possuem a propriedade de serem ou verdadeiras ou falsas, mas não ambas. Exemplos:. Gatos
Técnicas de Contagem I II III IV V VI
Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de
Introdução à orientação a objetos
Universidade Federal de Juiz de Fora PET Elétrica Introdução à orientação a objetos Tutor: Francisco José Gomes Aluno: João Tito Almeida Vianna 18/05/2013 1 Programação Estruturada x Orientação a objetos
LÓGICA FORMAL Tabelas Verdade
LÓGICA FORMAL Tabelas Verdade Prof. Evanivaldo C. Silva Jr. Seção 1 Expressões: exclamações, interrogações, afirmações... Aquele aluno deve ser inteligente. Você já almoçou hoje? Um elefante é maior do
4.4 Limite e continuidade
4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição
DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações
Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial
Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo
Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios
Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios O Método Intuitivo de elaboração de circuitos: As técnicas de elaboração de circuitos eletropneumáticos fazem parte
AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU
AULA EQUAÇÕES E SISTEMAS DO º GRAU EQUAÇÕES DO º GRAU Uma equação é classificada como sendo do º grau quando puder ser escrita na forma ax + b 0 onde a e b são reais com a 0. Uma equação do º grau admite
Sinais da. Boa Nutrição. Alice Silveira Granado. CRN 3 : 17638 Nutricionista
ç Sinais da ç Boa Nutrição Alice Silveira Granado CRN 3 : 17638 Nutricionista Crescimento Adequado Funcionamento Regular do Intestino Dentes Fortes e Saudáveis Bom Apetite Boa Imunidade Peso Adequado Pele
IV Seminário de Iniciação Científica
385 AVALIAÇÃO DA RESISTÊNCIA À COMPRESSÃO E DO MÓDULO DE ELASTICIDADE DO CONCRETO QUANDO SUBMETIDO A CARREGAMENTO PERMANENTE DE LONGA DURAÇÃO (Dt = 9 dias) Wilson Ferreira Cândido 1,5 ;Reynaldo Machado
DISCIPLINA: CONTABILIDADE GERAL PROF. BENADILSON
RESOLVA AS QUESTÕES DISCIPLINA: CONTABILIDADE GERAL PROF. BENADILSON 1) Qual o conceito de Contabilidade? 2) Cite três usuários da Contabilidade. 3) Para quem é mantida a Contabilidade? 4) Qual a diferença
Faculdade Novos Horizontes EXERCÍCIOS DE FIXAÇÃO ADMINISTRAÇÃO/CONTÁBEIS INSTITUIÇÕES DE DIREITO PÚBLICO E PRIVADO - IDPP TAÍS CRUZ HABIBE
Faculdade Novos Horizontes EXERCÍCIOS DE FIXAÇÃO CURSO: DISCIPLINA: PROFA.: ALUNO (A): ADMINISTRAÇÃO/CONTÁBEIS INSTITUIÇÕES DE DIREITO PÚBLICO E PRIVADO - IDPP TAÍS CRUZ HABIBE Primeiro Questionário Introdução,
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades
AULA 07 Distribuições Discretas de Probabilidade
1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:
Usando potências de 10
Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.
Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.
PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No
Fonte:intervox.nce.ufrj.br/~diniz/d/direito/ ouapostila_portugues_varlinguistica_2.pdf
Sobre Variação Linguística Você já conversou com uma pessoa simples, que vive na roça? Teve oportunidade de observar como essa pessoa fala? Leia o texto a seguir: Texto I Seu dotô me conhece? Patativa
[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013
Economia I; 01/013 (º semestre) Prova da Época Recurso 3 de Julho de 013 [RESOLUÇÃO] Distribuição das respostas correctas às perguntas da Parte A (6 valores) nas suas três variantes: ER A B C P1 P P3 P4
Resolução da Prova de Raciocínio Lógico do TRE/MT, aplicada em 13/12/2015.
de Raciocínio Lógico do TRE/MT, aplicada em 13/12/2015. Raciocínio Lógico p/ TRE-MT Analista Judiciário QUESTÃO 19 Um grupo de 300 soldados deve ser vacinado contra febre amarela e malária. Sabendo-se
Análise Qualitativa no Gerenciamento de Riscos de Projetos
Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real
