LÓGICA FORMAL Tabelas Verdade
|
|
|
- Augusto Bicalho Caminha
- 9 Há anos
- Visualizações:
Transcrição
1 LÓGICA FORMAL Tabelas Verdade Prof. Evanivaldo C. Silva Jr. Seção 1
2 Expressões: exclamações, interrogações, afirmações... Aquele aluno deve ser inteligente. Você já almoçou hoje? Um elefante é maior do que um gato. Proposição ou sentença (p): pode ser somente verdadeira (V ou 1) ou falsa (F ou 0) EXEMPLOS: Dez é menor que sete A distância entre a terra e a lua é maior do que a distância entre a terra e o sol. 2
3 Negação de uma proposição (~p): podemos negar uma sentença de modo a inverter o seu valor verdade Exemplo: Seja p a sentença: 5 é menor que 3 (*). Então ~p pode ser escrita como 5 não é menor que 3 ou 5 é maior ou igual a 3 (**) OBS: (*) p possui valor (F ou 0) e ~p possui valor (V ou 1) (**) Devemos observar a tricotomia nos números reais, isto é, a>b, a<b ou a=b 3
4 Conectivos e valores verdade Conectivos são elementos utilizados para associar sentenças produzindo outras mais complexas EXEMPLOS: 2 < 3 e 10 7, temos o conectivo e (Conjunção) 3 2 R ou > 2 2, temos o conectivo ou (Disjunção) 4
5 Conjunção (^) O conectivo de conjunção p ^ q associa as sentenças p e q resultando valor verdade somente quando ambas p e q são verdadeiras. Correspondem ao e lógico A chamada tabela verdade desse conectivo é obtida fazendo-se todas as combinações possíveis que as sentenças p e q podem assumir. Assim temos: p q p ^ q
6 EXEMPLOS (Conectivo de conjunção): (1) Qual o valor da sentença p: 5 > 12 e q: 9 4? (2) Analise a frase Pessoas com mais de 18 anos podem possuir carteira nacional de habilitação (CNH) e com mais de 60 anos possuem atendimento especial a filas e serviços. (3) Considerando p: 2 < 1, q: ( 2) 2 < ( 1) 2 determinar o valor de p ^ q 6
7 RESPOSTAS (1) Temos que 5 > 12 (0) e 9 4 (1). Então pela tabela verdade p ^ q resulta em (0) (2) Para p: Pessoas com mais de 18 anos podem possuir carteira nacional de habilitação (CNH) é (1) e q: pessoas com mais de 60 anos possuem atendimento especial a filas e serviços. é (1), logo p ^ q resulta em (1) (3) Temos que p é (1) e q (0), logo p ^ q resulta em (0) 7
8 Disjunção (v) O conectivo de disjunção p v q associa as sentenças p e q resultando valor falso somente quando ambas p e q são falsas. Corresponde ao ou lógico A tabela verdade desse conectivo é obtida fazendo-se todas as combinações possíveis que as sentenças p e q podem assumir. Assim temos: p q p v q
9 EXEMPLOS (Conectivo de disjunção): (1) Qual o valor da sentença p:5 > 12 ou q:9 4? (2) Analise a frase Pessoas com mais de 18 anos podem possuir carteira nacional de habilitação (CNH) ou com mais de 60 anos possuem atendimento especial a filas e serviços. (3) Considerando p: 2 < 1, q: ( 2) 2 < ( 1) 2 determinar o valor de p v q (4) Considerando p: 98 < 57, q: (7) 2 < (5) 2 determinar o valor de p v q 9
10 RESPOSTAS (1) Temos que 5 > 12 (0) e 9 4 (1). Então pela tabela verdade p resulta em (1) (2) Para p: Pessoas com mais de 18 anos podem possuir carteira nacional de habilitação (CNH) é (1) e q: pessoas com mais de 60 anos possuem atendimento especial a filas e serviços. é (1), logo p v q resulta em (1) (3) Temos que p é (1) e q (0), logo p v q resulta em (1) (4) p: 98 < 57 é (0) e q: (7) 2 < (5) 2 é (0). Portanto o valor de p v q é (0) 10
11 Condicionais Expressam, como o próprio nome diz, condição(ões) para uma dada sentença a partir de outra Podem ser de implicação ( ) ou de equivalência ( ) Também geram tabelas verdades 11
12 Condicional de implicação ( ) Se p e q são proposições dadas então denotamos o condicional por p q o qual pode ser lido como se p, então q ou p é condição necessária para q ou ainda q é suficiente para p O condicional p q é falso somente quando p é verdadeira e q é falsa, ou seja, uma verdade não pode implicar em algo falso Tabela verdade: p q p q
13 EXEMPLOS: (1) Avalie a sentença: Se peixes nadam então cães voam (2) Considerando p: 2 11, q: π R determinar o valor de p q (3) Considerando p: 9,99 > 9,9, q: -2< (5) 2 determinar o valor de p q (4) Avalie a sentença: Se peixes latem então a maça é uma fruta 13
14 RESPOSTAS: (1) Considerando p: peixes nadam e q: cães voam temos que p é (1) e q é (0) e p q (0) (2) p: 2 11 é (0) e q: π R (0) então p q (1) (3) p: 9,99 > 9,9 é (1) e q: -2< (5) 2 é (1) então p q (1) (4) Considerando p: peixes latem e q: maça é uma fruta temos que p é (0) e q é (1) e p q (1) 14
15 Condicional de equivalência ( ) Se p e q são proposições dadas então denotamos o condicional por p q o qual pode ser lido como p se, e somente se, q ou p é condição necessária e suficiente para q O condicional p q é verdadeiro somente quando p e q são ambas falsas ou verdadeiras Tabela verdade: p q p q Por que? 15
16 EXEMPLOS: (1) Avalie a sentença: Peixes nadam se, e somente se, cães latem (2) Considerando p: 4 5, q: 1+2i R determinar o valor de p q (3) Considerando p: 9,99 > 9,9, q: (-5) 2 < -(5 2 ) determinar o valor de p q (4) Avalie a sentença: Peixes latem se, e somente se, maça é um derivado do leite 16
17 RESPOSTAS: (1) Considerando p: Peixes nadam e q: cães latem, então p qé (1) (2) Temos que p é (0) e q é (1) assim p qé (0) (3) Temos que p é (1) e q é (0) assim p qé (0) (4) Considerando p: Peixes latem e q: maça é um derivado do leite então p qé (1) 17
18 Tautologias: uma proposição é chamada de tautologia ou proposição logicamente verdadeira quando sempre resulta no valor lógico (1) independente dos conetivos e condicionais envolvidos EXEMPLO: Consideremos a proposição (p ^ ~ p) (q v p) 18
19 Resolução: P q ~p p ^ ~p q v p (p ^ ~ p) (q v p)
20 Contradição: uma proposição é chamada de contradição ou proposição logicamente falsa quando sempre resulta no valor lógico (0) independente dos conetivos e condicionais envolvidos EXEMPLO: Consideremos a proposição (p v ~ q) (~p ^ q) 20
21 Resolução: p q ~p ~q p v ~q ~p ^ q (p v ~ q) (~p ^ q)
22 Aplicações: (1) Um circuito eletrônico basicamente é um dispositivo eletrônico formado por um conjunto de chaves chamadas de portas lógicas que podem ser representadas conforme diagrama abaixo: Porta aberta significa ausência de sinal com valor lógico 0 (ou F) Porta fechada significa presença de sinal com valor lógico 1 (ou V) OBS: As portas podem ser ligadas em série (uma seguida da outra) ou em paralelo. 22
23 Nesse contexto um sinal significa uma corrente elétrica, por exemplo Simbolicamente os conectivos lógicos são representados por: 23
24 Assim, uma placa mãe de computador, por exemplo, é formada por componentes eletrônicos mais sofisticados mas que fundamentalmente trabalham com essas portas lógicas. Suponhamos que um sistema de segurança primário de uma usina termoelétrica seja formado pelos seguintes subsistemas monitorados por sensores tabelados a seguir: 24
25 Rótulo Subsistemas (Pontos Críticos) Limiares A Pressão da caldeira Abaixo do valor crítico (0), acima (1) B Temperatura da caldeira Abaixo de 150 graus (0), acima (1) C Sistema de resfriamento do rotor Funcionando (0), com défict (1) Dados fictícios elaborados pelo autor,
26 Seja uma rede lógica que determina a análise do sistema dada por: Se (A v B) ^ C assumir valor 1 então bloquear funcionamento da caldeira Em quais condições o sistema de funcionamento da caldeira será bloqueado? OBS: A rede lógica é determinada a partir de fatores de segurança e programada de acordo com as entradas (sinal) fornecidas pelos sensores. 26
27 Analisando a tabela verdade da proposição temos: A B C A v B (A v B) ^C (*) (*) (*)
28 A caldeira será bloqueada quando o valor lógico de saída for 1. Assim, o sistema será acionado quando a saída for 1 (*) o que significa: Os três subsistemas falharem simultaneamente; Os subsistemas A (Pressão da caldeira) e C (Resfriamento do rotor) falharem; ou Os subsistemas B (Temperatura da caldeira) e C (Resfriamento do rotor) falharem 28
29 Relação de Equivalência ( ) Dizemos que a sentença p é equivalente a sentença q, quando as tabelas verdade de p e q resultam nos mesmos valores lógicos, ou seja, possuem tabelas verdade iguais. Denotamos por p q EXEMPLO: (p q) (~q ~p) 29
30 p q p q ~q ~p ~q ~p mesmos valores lógicos 30
31 Negação de Proposições Negação da conjunção: ~(p ^ q) (~p v ~q) p q p ^ q ~(p ^ q) p q ~p ~q (~p v ~q)
32 Negação de Proposições Negação da disjunção: ~(p v q) (~p ^ ~q) p q p v q ~(p v q) p q ~p ~q (~p ^ ~q)
33 Negação de Proposições Negação de um condicional: ~(p q) (p ^ ~q) p q p q ~(p q) p q ~q (p ^ ~q)
34 Propriedades p ^ q = q ^ p e p v q = q v p (propriedade comutativa) (p ^ q) ^ z = p ^ (q ^ z) e (p v q) v z = p v (q v z) (propriedade associativa) p ^ (1) = p e p v (0) = p (Elemento identidade) ~(~p)=p p ^ p = p e p v p = p p ^ (q v z) = (p ^ q) v (p ^ z) e p v (q ^ z) = (p v q) ^ (p v z) (Propriedades distributivas) p ^ (~p) = (0) e p v (~p) = (1) 34
35 Leis de DeMorgan ~(p ^ q) = ~p v ~q ~(p v q) = ~p ^ ~q 35
36 Observações 1. Na análise de proposições mais complexas devemos considerar a seguinte ordem dos operadores lógicos: a) ( ), [ ], { } b) ~ c) ^, v d), 2. Os valores lógicos V e F podem ser representados pelos números 1 e 0, respectivamente. 36
37 Referências Bibliográficas [1] Iezzi, G. e Murakami, C., Fundamentos de matemática Elementar, vol. 1, ed. Atual, [2] Scheinerman, E. R., Matemática Discreta: Uma introdução, ed. Thomson, [3] Gersting, J.L., Fundamentos Matemáticos para a Ciência da Computação., ed. Rio de Janeiro: Livros Técnicos e Científicos,
1. À primeira coluna (P), atribui-se uma quantidade de valores V igual à metade do total de linhas
LÓGICA MATEMÁTICA Walter Sousa Resumo teórico 1) PROPOSIÇÕES LÓGICAS SIMPLES Uma proposição é uma sentença declarativa que pode ser classificada em verdadeira (V) ou falsa (F), mas não ambas as interpretações.
RACIOCÍNIO LÓGICO Simplif icado
Sérgio Carvalho Weber Campos RACIOCÍNIO LÓGICO Simplif icado Volume 1 2ª edição Revista, atualizada e ampliada Inclui Gráficos, tabelas e outros elementos visuais para melhor aprendizado Exercícios resolvidos
Bases Matemáticas. Daniel Miranda 1. 23 de maio de 2011. sala 819 - Bloco B página: daniel.miranda
Daniel 1 1 email: [email protected] sala 819 - Bloco B página: http://hostel.ufabc.edu.br/ daniel.miranda 23 de maio de 2011 Elementos de Lógica e Linguagem Matemática Definição Uma proposição
PROPOSIÇÕES. Proposições Simples e Proposições Compostas. Conceito de Proposição
PROPOSIÇÕES Conceito de Proposição Definição: chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo. As proposições transmitem pensamentos, isto é,
UM JOGO DE DOMINÓ PARA A LÓGICA PROPOSICIONAL
UM JOGO DE DOMINÓ PARA A LÓGICA PROPOSICIONAL Fernanda Pires da Silva 1 e José Ricardo R. Zeni 2, 3 1 Curso de licenciatura em matemática 2 o ano e-mail: [email protected] 2 DMEC (Departamento de Matemática,
Noções básicas de Lógica
Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. uma expressão com significado Uma expressão pode ser expressão sem significado
Fundamentos de Lógica Matemática
Webconferência 4-08/03/2012 Técnicas dedutivas Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Maneiras
RACIOCÍNIO LÓGICO QUANTITATIVO
RACIOCÍNIO LÓGICO QUANTITATIVO AULA 1 ESTUDO DA LÓGICA O estudo da lógica é o estudo dos métodos e princípios usados para distinguir o raciocínio correto do incorreto. A lógica tem sido freqüentemente
(Equivalência e Implicação lógica aula 10
Aula 2 (Equivalência e Implicação lógica aula 10 Professor: Renê Furtado Felix - Faculdade: UNIP E-mail: [email protected] - Site: renecomputer.net Equivalência em Lógica Logica - Professor Renê F
RACIOCÍNIO LÓGICO Simplificado
Sérgio Carvalho Weber Campos RCIOCÍNIO LÓGICO Simplificado Volume 1 2ª edição Revista, atualizada e ampliada Material Complementar PRINCIPIS CONCEITOS, REGRS E FÓRMULS DO LIVRO RCIOCÍNIO LÓGICO SIMPLIFICDO
Cálculo proposicional
Cálculo proposicional Proposição Proposições são sentenças afirmativas declarativas que não sejam ambígüas e que possuem a propriedade de serem ou verdadeiras ou falsas, mas não ambas. Exemplos:. Gatos
Raciocínio Lógico Matemático
Raciocínio Lógico Matemático Cap. 5 - Equivalência Lógica Equivalência Lógica Caro aluno, no último capítulo estudamos as implicações lógicas e foi enfatizado que o ponto fundamental da implicação lógica
Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2
Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade
Aula 00. Raciocínio Lógico Quantitativo para IBGE. Raciocínio Lógico Quantitativo Professor: Guilherme Neves
Aula 00 Raciocínio Lógico Quantitativo Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Raciocínio Lógico Quantitativo Apresentação... 3 Modelos de questões resolvidas
Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL...1 2. PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55
IX Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL...1 Solução dos exercícios... 29 2. PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55 Solução dos exercícios... 64 3. conjuntos...77
RACIOCÍNIO LÓGICO MATEMÁTICO ATIVIDADE DO BLOCO 1 20 QUESTÕES
RACIOCÍNIO LÓGICO MATEMÁTICO ATIVIDADE DO BLOCO 1 20 QUESTÕES As questões foram elaboradas pelo prof. Sérgio Faro e valerão apenas como exercício para o seu conhecimento. São 20 questões de múltipla escolha.
Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de Melo Revisão 3 Lógica das Proposições
Professor Adeilson de Melo www.profranciscojunior.com.br p. 1 de 7 Olá galera! Estou de volta! Agora iniciaremos o estudo de lógica das proposições. Esse assunto é muito importante para seu concurso. Pois,
Resolução de Questões!!!
1) Considere a seguinte proposição: Raciocínio Lógico Se João está na praia, então João não usa camiseta. Resolução de Questões!!! A negação da proposição acima é logicamente equivalente à proposição:
Todos os exercícios sugeridos nesta apostila se referem ao volume 1.
INTRODUÇÃO... 2 DEFINIÇÃO... 2 DESCRIÇÃO... 2 APRESENTAÇÃO... 2 RELAÇÃO DE PERTINÊNCIA... 3 CONJUNTOS IGUAIS... 4 SUBCONJUNTOS E RELAÇÃO DE INCLUSÃO... 7 QUANTIFICADORES... 10 IMPLICAÇAO E EQUIVALÊNCIA...
PLANO DE ENSINO DA DISCIPLINA
PLANO DE ENSINO DA DISCIPLINA Docente: FABIO LUIS BACCARIN Telefones: (43) 3422-0725 / 9116-4048 E-mail: [email protected] Nome da Disciplina: Álgebra Elementar Curso: Licenciatura em Matemática Carga
Relações. Antonio Alfredo Ferreira Loureiro. [email protected] http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1
Relações Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Relações 1 Introdução O mundo está povoado por relações: família, emprego, governo, negócios, etc. Entidades
Notas de Aula 1: Lógica, Predicados, Quantificadores e Inferência
IFMG Campus Formiga Matemática Discreta Notas de Aula 1: Lógica, Predicados, Quantificadores e Inferência Prof. Diego Mello 2o. Semestre 2012 Sumário 1 Introdução 3 2 Lógica Proposicional 3 3 Proposições
Correção de exercícios do manual. Página 53
Correção de exercícios do manual Página 53 Seja P: a pena de morte foi abolida. a) O enunciado diz-nos que É falso que a pena de morte tenha sido abolida é falsa. Como É falso que a pena de morte tenha
Lista de Exercícios 5: Soluções Teoria dos Conjuntos
UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,
Questões de Concursos Tudo para você conquistar o seu cargo público
Comentadas pelo professor: Gabriel Rampini Raciocínio Lógico-Quantitativo 1) Q264165 Raciocínio Lógico Raciocínio Lógico-Psicotécnico Ano: 2012 Banca: ESAF Órgão: Receita Federal Prova: Auditor Fiscal
Álge g bra b B ooleana n Bernardo Gonçalves
Álgebra Booleana Bernardo Gonçalves Sumário Histórico Álgebra de Boole Axiomas da Álgebra de Boole Álgebra de Boole de dois valores literais Teoremas da Álgebra de Boole Simplificação de expressões booleanas
Aula 03 Proposições e Conectivos. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 03 Proposições e Conectivos Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Proposições: Valores Lógicos; Tipos (simples e compostas). Conectivos. Revisando O que é
Árvores de Decisão Matemática Discreta
Bruno Duarte Eduardo Germano Isolino Ferreira Vagner Gon Árvores de Decisão Matemática Discreta 28/04/2011 Serra IFES Definição de Árvores de Decisão: Arvore de Decisão é uma árvore em que seus nós internos
Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido.
Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 1 I- Lógica Informal Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Afirmação
Simplificação de Expressões Booleanas e Circuitos Lógicos
Simplificação de Expressões Booleanas e Circuitos Lógicos Margrit Reni Krug Julho/22 Tópicos Revisão Álgebra Booleana Revisão portas lógicas Circuitos lógicos soma de produtos produto de somas Simplificação
Matemática - Módulo 1
1. Considerações iniciais Matemática - Módulo 1 TEORIA DOS CONJUNTOS O capítulo que se inicia trata de um assunto que, via-de-regra, é abordado em um plano secundário dentro dos temas que norteiam o ensino
Circuitos Aritméticos
Circuitos Aritméticos Semi-Somador Quando queremos proceder à realização de uma soma em binário, utilizamos várias somas de dois bits para poderemos chegar ao resultado final da operação. Podemos, então,
Sumário. OS ENIGMAS DE SHERAZADE... 13 I Ele fala a verdade ou mente?... 13 I I Um truque com os números... 14
Sumário OS ENIGMAS DE SHERAZADE... 13 I Ele fala a verdade ou mente?... 13 I I Um truque com os números... 14 CAPÍTULO 1 LÓGICA DE PRIMEIRA ORDEM-PROPOSICIONAL... 15 Estruturas Lógicas... 15 I Sentenças...
Comandos de Desvio 1
Programação de Computadores I UFOP DECOM 2014 1 Aula prática 3 Comandos de Desvio 1 Sumário Resumo Nesta aula você irá resolver problemas que requerem uma decisão com base em um teste, ou condição. Para
VEJA O CONTEÚDO DO ÚLTIMO EDITAL (2011/2012, ORGANIZADO PELA FCC)
AULA 01 CONCEITOS BÁSICOS DE LÓGICA E PRINCÍPIOS Olá amigos, meu nome é Adeilson de Melo. Fui convidado para ministrar aulas dessa apaixonante matéria que é o Raciocínio Lógico Matemático. ESPERO QUE TODOS
Lógica para computação Professor Marlon Marcon
Lógica para computação Professor Marlon Marcon INTRODUÇÃO O objetivo geral da logica formal é a mecanização do raciocnio, ou seja, A obtenção de informação a partir de informações prévias por meio de recursos
Resolução da Prova de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015.
de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015. Considerando a proposição P: Se João se esforçar o bastante, então João conseguirá o que desejar, julgue os itens a seguir. 43 A proposição
1 Teoria de conjuntos e lógica
1 Teoria de conjuntos e lógica Estes breves apontamentos dizem respeito à parte do programa dedicada à teoria de conjuntos e à lógica matemática. Embora concebidos sem grandes formalismos e com poucas
PROPOSIÇÕES (SIMPLES E COMPOSTAS)/ CONECTIVOS/TAUTOLOGIA/TABELA VERDADE
PROPOSIÇÕES (SIMPLES E COMPOSTAS)/ CONECTIVOS/TAUTOLOGIA/TABELA VERDADE Ser síndico não é fácil. Além das cobranças de uns e da inadimplência de outros, ele está sujeito a passar por desonesto. A esse
* Lógica Proposicional Formas de Argumento
* Lógica Proposicional Formas de Argumento Hoje é segunda-feira ou sexta-feira. Hoje não é segunda-feira. Hoje é sexta-feira. Lógica, Informática e Comunicação Elthon Allex da Silva Oliveira e-mail: [email protected]
Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de
Escola Secundária c/3º CE José Macedo Fragateiro Curso Profissional de Nível Secundário Componente Técnica Disciplina de Sistemas Digitais e Arquitectura de Computadores 2009/2010 Módulo 2: Álgebra e Lógica
Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015.
de Raciocínio Lógico do STJ de 20, aplicada em 27/09/20. Raciocínio Lógico p/ STJ Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que
FUNDAMENTOS DE LÓGICA PARA ADMINISTRAÇÃO. André Luiz Galdino
FUNDAMENTOS DE LÓGICA PARA ADMINISTRAÇÃO André Luiz Galdino SUMÁRIO 1. Noções de Lógica Matemática 3 1.1 Cálculo Proposicional 4 1.2 Tabelas Verdade 16 1.3 Contingência, Tautologia e Contra-Tautologia
Módulos Combinatórios
Arquitectura de Computadores I Engenharia Informática (11537) Tecnologias e Sistemas de Informação (6616) Módulos Combinatórios Nuno Pombo / Miguel Neto Arquitectura Computadores I 2014/2015 1 Somadores
Aula 01 TEOREMAS DA ANÁLISE DE CIRCUITOS. Aula 1_Teoremas da Análise de Circuitos.doc. Página 1 de 8
ESCOLA TÉCNICA ESTADUAL ZONA SUL CURSO TÉCNICO EM ELETRÔNICA II. CIRCUITOS ELÉTRICOS Aula 0 TEOREMAS DA ANÁLISE DE CIRCUITOS Prof. Marcio Leite Página de 8 0 TEOREMA DA ANÁLISE DE CIRCUITOS.0 Introdução
Tabela de um Enunciado Simbolizado
Lógica para Ciência da Computação I Lógica Matemática Texto 5 Tabela de um Enunciado Simbolizado Sumário 1 Tabelas dos conectivos 2 1.1 Observações................................ 5 1.2 Exercício resolvido............................
ÁLGEBRA BOOLEANA- LÓGICA DIGITAL
ÁLGEBRA BOOLEANA- LÓGICA DIGITAL LÓGICA DIGITAL Álgebra Booleana Fundamentação matemática para a lógica digital Portas Lógicas Bloco fundamental de construção de circuitos lógicos digitais Circuitos Combinatórios
BC-0504 Natureza da Informação
BC-0504 Natureza da Informação Aulas 4 Sistemas de numeração. Operações em binário e algebra booleana. Equipe de professores de Natureza da Informação Santo André Julho de 2010 Parte 0 Realizar 6 problemas
AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4
MATEMÁTICA A AULA 0 FUNÇÃO COMPOSTA Sejam as unções : A B e g: B C, chama-se unção composta de g com à unção h: A C tal que h() = g[()] = g o (). Determinando as somas: () + g() = () + g() = e g() - ()
SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA.
SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA. Professor Joselias www.concurseiros.org Março de 2008. Um dos indicadores de saúde comumente utilizados
LÓGICA CLÁSSICA: UM PROBLEMA DE IDENTIDADE
15 LÓGICA CLÁSSICA: UM PROBLEMA DE IDENTIDADE Robinson Moreira Tenório Prof. Assistente do Dep. de Ciências Humanas e Filosofia Doutorando em Educação - USP RESUMO - O princípio da identidade afirma que
Noções de Lógica e de Topologia
Análise Matemática 1 Ano Lectivo 2012/2013 Fernanda Sousa Isabel Silva Magalhães Faculdade de Engenharia da Universidade do Porto Mestrado Integrado em Engenharia Civil Prefácio A lógica e a topologia
Parte 05 - Técnicas de programação (mapas de Veitch-Karnaugh)
Parte 05 - Técnicas de programação (mapas de Veitch-Karnaugh) Mapas de Veitch-Karnaugh Montar circuitos lógicos a partir de tabela verdade, embora seja tarefa fácil, geral um circuito extremamente grande.
Resolução da Prova de Raciocínio Lógico da ANS (Técnico Administrativo) de 2016, aplicada em 21/02/2016.
Raciocínio Lógico p/ NS Resolução da Prova de Raciocínio Lógico da NS (Técnico dministrativo) de 2016, aplicada em 21/02/2016. 11 - De acordo com o raciocínio lógico-matemático, a negação da frase: o obstetra
Roteiro da aula. MA091 Matemática básica. Conjuntos. Subconjunto. Aula 12 Conjuntos. Intervalos. Inequações. Francisco A. M. Gomes.
Roteiro da aula MA091 Matemática básica Aula 1... Francisco A. M. Gomes UNICAMP - IMECC Março de 016 1 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de 016 1 / 8 Francisco A.
Lógica. Na Grécia Antiga, 342 a.c, o filósofo Aristóteles sistematizou o conhecimento existente em Lógica, elevando-o à categoria de ciência.
Notas de aula Prof. Licinius (ICIBE/UFRA) Lógica A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. Na Grécia Antiga,
ELETRÔNICA DIGITAL 1
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA UNIDADE SÃO JOSÉ CURSO DE TELECOMUNICAÇÕES ELETRÔNICA DIGITAL 1 CAPÍTULO 2 SUMÁRIO 2. Funções Lógicas 2 2.1 Introdução 2 2.2 Funções Lógicas Básicas
4. Álgebra Booleana e Simplificação Lógica. 4. Álgebra Booleana e Simplificação Lógica 1. Operações e Expressões Booleanas. Objetivos.
Objetivos 4. Álgebra Booleana e Simplificação Lógica Aplicar as leis e regras básicas da álgebra Booleana Aplicar os teoremas de DeMorgan em expressões Booleanas Descrever circuitos de portas lógicas com
ELETRÔNICA DIGITAL. Parte 6 Display, Decodificadores e Codificadores. Prof.: Michael. 1 Prof. Michael
ELETRÔNICA DIGITAL Parte 6 Display, Decodificadores e Codificadores Prof.: Michael LED Diodo emissor de luz (LED) Para nós será utilizado para dar uma indicação luminosa do nível lógico de sinal; Ligado
Introdução ao Cálculo
MATEMÁTICA Graduação Introdução ao Cálculo Jorge Andrés Julca Avila Maria Teresa Menezes Freitas Jorge Andrés Julca Avila Maria Teresa Menezes Freitas Introdução ao Cálculo 2011 A958i Avila, Jorge Andrés
CARGOS: Assistente em Ciência e Tecnologia Assistente I AS 1 - Técnico em Secretariado,
RETIFICAÇÃO E REPUBLICAÇÃO DO GABARITO OFICIAL DO CONCURSO PÚBLICO DO MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO COMISSÃO NACIONAL DE ENERGIA NUCLEAR. CARGOS: Assistente em Ciência e Tecnologia Assistente
a) 2 b) 3 c) 4 d) 5 e) 6
Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
NÚCLEO PREPARATÓRIO PARA CONCURSOS CURSO DELEGADO FEDERAL
RACIOCÍNIO LÓGICO II Professor Ademir Bispo AULAS 3 e 4 PROPOSIÇÕES CONDICIONAIS As proposições condicionais relacionam causa com efeito ou hipótese com tese. p: O mês de maio tem 31 dias. q: O sol é uma
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente
INTERFACE PARALELA. Área: Eletrônica Nível de conhecimento necessário: básico. Autor:
INTERFACE PARALELA Área: Eletrônica Nível de conhecimento necessário: básico Tópicos abordados: O que é a interface paralela? Quantas entradas e saídas ela possui? Construindo a interface Manipulando no
Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1
Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação
Proposições Compostas TABELA VERDADE
TABELA ERDADE Iremos abordar nesta apostila uma diferente forma de argumentação que se associa diretamente com a língua portuguesa. Apesar de analisarmos frases muitas vezes de forma subjetiva a matéria
Resolução da Prova de Raciocínio Lógico do TRE/MT, aplicada em 13/12/2015.
de Raciocínio Lógico do TRE/MT, aplicada em 13/12/2015. Raciocínio Lógico p/ TRE-MT Analista Judiciário QUESTÃO 19 Um grupo de 300 soldados deve ser vacinado contra febre amarela e malária. Sabendo-se
Representação de Circuitos Lógicos
1 Representação de Circuitos Lógicos Formas de representação de um circuito lógico: Representação gráfica de uma rede de portas lógicas Expressão booleana Tabela verdade 3 representações são equivalentes:
13/09/2011. Atividades. Aula 5: REDE PERT/CPM PRINCÍPIOS DO PERT-CPM
Tecnologia em Logística e Transportes Métodos Quantitativos de Gestão PRINCÍPIOS DO PERT-CPM Prof. Msc. João Gilberto Mendes dos Reis Aula 5: REDE PERT/CPM Segundo Monks (1985), o método do caminho crítico
Introdução à Psicrometria. Parte1
Introdução à Psicrometria Parte1 Introdução Estudo de sistemas envolvendo ar seco e água Ar seco + vapor d água (+ eventualmente condensado) Importante na análise de diversos sistemas Ar condicionado Torres
Laboratório de Circuitos Digitais 1
Universidade Estadual Paulista ampus de Sorocaba Laboratório de ircuitos Digitais 1 Experimento 03: Projeto e simulação de decodificador para display Experimento com atividade pré-aula Prof. lexandre da
uma variável proposicinal P 1 é uma fórmula (proposicional), chamada de fórmula atômica, e sua complexidade é c(p ) = 0;
Capítulo 5 Cálculo Proposicional 51 Conceitos Iniciais Vamos introduzir a primeira linguagem formal (artificial) em nosso estudo, que é a Linguagem Proposicional Os símbolos com os quais será definida
Aula 5: determinação e simplificação de expressões lógicas
Aula 5: determinação e simplificação de expressões lógicas Circuitos Digitais Rodrigo Hausen CMCC UFABC 4 e 6 de Fev. de 2013 http://compscinet.org/circuitos Rodrigo Hausen (CMCC UFABC) Aula 5: determinação
PREPARATÓRIO PROFMAT/ AULA 3
PREPARATÓRIO PROFMAT/ AULA 3 Números, Progressões e Lógica Prof. Ronaldo Busse Números Uma questão presente nos exames de seleção até aqui foi a comparação entre grandezas numéricas. O procedimento indicado
Profª Danielle Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Automação e Controle Aula 09 Linguagem LadderSistemas Profª Danielle Casillo Sistemas Os diagramas lógicos estudados anteriormente
RACIOCÍNIO LÓGICO MATEMÁTICO. Ana Paula Gargano
RACIOCÍNIO LÓGICO MATEMÁTICO Ana Paula Gargano ESTRUTURAS LÓGICAS Sentenças São frases que apresentam significado. As sentenças podem ser abertas ou fechadas. 1. Sentença aberta: apresentam variáveis.
INF01 118 Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 2
INF01 118 Técnicas Digitais para Computação Conceitos Básicos de Circuitos Elétricos Aula 2 1. Grandezas Elétricas 1.1 Carga A grandeza fundamental em circuitos elétricos é a carga elétrica Q. As cargas
www.anpadcurso.com [email protected] Página 1
1º DOMINGO 27/7/14 01. Considere a seguinte sentença: Não é verdade que, se Aline viaja, então haverá mais diversão. Pode-se concluir que: a) Haverá mais diversão se Aline viajar b) Se Aline viajar, não
(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,
Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)
Proposições simples e compostas
Proposições simples Observe as seguintes sentenças: Os gatos não voam. Como é o seu nome? Saia já daqui! Não se esqueça de estudar. Que dia lindo! Embora todas as sentenças anteriores façam parte da nossa
LISTA DE EXERCÍCIOS DE FIXAÇÃO CURSO DE ENGENHARIA DE PRODUÇÃO AUTOMAÇÃO E CONTROLE DE PROCESSOS INSTRUMENTAÇÃO
1) Com base no diagrama abaixo, numere a coluna da direita de acordo com os itens da coluna da esquerda. 1. Válvula de controle ( ) A 2. Controlador indicador de nível ( ) B 3. Transmissor de nível ( )
INF1005: Programação I. Algoritmos e Pseudocódigo
INF1005: Programação I Algoritmos e Pseudocódigo Tópicos Principais Definição de Algoritmo Exemplos Básicos Formas de representação Condicionais Exemplos com Condicionais Repetições Exemplos com Repetições
Capítulo VI. Teoremas de Circuitos Elétricos
apítulo VI Teoremas de ircuitos Elétricos 6.1 Introdução No presente texto serão abordados alguns teoremas de circuitos elétricos empregados freqüentemente em análises de circuitos. Esses teoremas têm
Reguladores de Tensão
Reguladores de Tensão Diodo Zener - Introdução O diodo zener é um diodo de silício que o fabricante otimizou para operar na região de ruptura. O diodo zener é o elemento principal dos reguladores de tensão,
Exemplo. Seja uma função matemática descrita por: y = 5x 2 + 3. A relação funcional entre x e y pode ser dada por:
Capítulo 3: Álgebra Binária Booleana O Conceito de Função O conceito de variável e de função de uma variável nos é familiar. O campo de uma variável, isto é, o intervalo de valores que pode ser assumido
MATÉRIA TÉCNICA APTTA BRASIL
MATÉRIA TÉCNICA APTTA BRASIL TRANSMISSÕES FORD 6F50 e GM 6T70 - PARECIDAS PORÉM DIFERENTES As transmissões 6F50 e 6T70 foram desenvolvidas por um esforço conjunto entre FORD e General Motors. Devido ao
INTEGRAÇÃO JAVA COM ARDUINO
INTEGRAÇÃO JAVA COM ARDUINO Alessandro A. M. De Oliveira 3, Alexandre O. Zamberlan 3, Reiner F Perozzo 3, Rafael O. Gomes 1 ;Sergio R. H Righi 2,PecilcesP. Feltrin 2 RESUMO A integração de Linguagem de
CURSO COMPLETO DE RACIOCÍNIO LÓGICO MATEMÁTICO. Bom dia, boa tarde, boa noite concurseiro. Hoje nosso estudo será sobre Álgebra das Proposições.
CURSO COMPLETO DE RACIOCÍNIO LÓGICO MATEMÁTICO Encontro 3 Álgebra das Proposições Bom dia, boa tarde, boa noite concurseiro. Hoje nosso estudo será sobre Álgebra das Proposições. Álgebra das Proposições
ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 2011-12 SOLUÇÃO DAS QUESTÕES DE MATEMÁTICA
dessa Escoladessa Escola MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DFA ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLFF FILHO EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 011-1 Questão
2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y
EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,
Aula 6 Propagação de erros
Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se
Se a força de tração de cálculo for 110 kn, a área do tirante, em cm 2 é A) 5,0. B) 4,5. C) 3,0. D) 2,5. E) 7,5.
25.(TRT-18/FCC/2013) Uma barra de aço especial, de seção circular com extremidades rosqueadas é utilizada como tirante em uma estrutura metálica. O aço apresenta f y = 242 MPa e f u = 396 MPa. Dados: Coeficientes
defi departamento Lei de Ohm de física
defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida, 572 4200-072 Porto. Telm.
FLIP FLOPS. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos M-1113A
FLIP FLOPS M-1113A *Only illustrative image./imagen meramente ilustrativa./ Imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos Conteúdo 1. Objetivos... 2 2.
MODELAGEM MATEMÁTICA DE UM SISTEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA EM MÉDIA TENSÃO 1. Gabriel Attuati 2, Paulo Sausen 3.
MODELAGEM MATEMÁTICA DE UM SISTEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA EM MÉDIA TENSÃO 1 Gabriel Attuati 2, Paulo Sausen 3. 1 Parte integrante do Projeto de pesquisa Análise, Modelagem e Desenvolvimento
