Proposições Compostas TABELA VERDADE
|
|
|
- Luiz Henrique Rijo Nunes
- 9 Há anos
- Visualizações:
Transcrição
1 TABELA ERDADE Iremos abordar nesta apostila uma diferente forma de argumentação que se associa diretamente com a língua portuguesa. Apesar de analisarmos frases muitas vezes de forma subjetiva a matéria que transmitirei a vocês abordará de forma simples, concisa e precisa conclusões das frases ligadas com a nossa língua, que muitas vezes serão levantadas em questões em sala de aula. Porém com a lógica não teremos como discutir a validade da frase, pois ela irá detalhar precisamente o certo do errado. amos ao que interessa. Proposições Compostas Ao utilizarmos a linguagem combinamos idéias simples, ligando as proposições simples através de símbolos lógicos, formando assim as chamadas proposições compostas. Conectivos Lógicos ejamos os conectivos (e seus símbolos ) que ligam as proposições simples, formando as proposições compostas. Proposições Conjunções XXX e YYY Chama-se proposição toda sentença declarativa que pode ser classificada ou só como verdadeira ou só como falsa. Temos dois tipos de proposições: simples e composta. Proposições Simples Conectivos Disjunções não excludentes Disjunções excludentes XXX ou YYY Ou XXX ou YYY Chama-se proposição simples toda oração declarativa que pode ser classificada ou só como verdadeira ou só como falsa. Representaremos uma proposição simples como uma letra minúscula qualquer de nosso alfabeto. Tipos de Sentenças Declarativas Imperativas Interrogativa Exclamativas Exemplos Carlos é escritor. Todos os gatos são pardos Existem estrelas maiores do que o Sol Segure firme! Não faça isto Pegue aquele negócio Quem peidou? Quantos japoneses moram no Brasil? Que morena! Parabéns! alores Lógicos das Proposições Simples Podemos classificar uma proposição simples ou como verdadeira ou como falsa. Exercícios de ixação 1. Das sentenças abaixo, assinale quais são proposições a.) O Chile e o Brasil. b.) Emerson é professor. c.) Ela é professora. d.) O Brasil foi campeão de futebol em 1982 e.) Que legal! f.) 5 x 4 = 20 g.) 4 x > 4 h.) (-2) 3 > 4 i.) O Brasil perdeu o título j.) X + Y é maior do que 7. k.) Que horas são? l.) Aquela mulher é linda. m.) O Brasil ganhou 5 medalhas de ouro em Atlanta n.) = 7 o.) 4 x < 9 p.) (-2) 3 < 4 Condicionais Bicondicionais XXX então YYY XXX se e somente se YYY Para analisar os valores lógicos das proposições compostas, iremos utilizar uma tabela que prevê todos os possíveis valores lógicos que uma sentença pode possuir a partir dos valores lógicos das proposições simples. O nome desta tabela é: TABELA ERDADE. Número de Linhas da Tabela erdade Quando trabalhamos com tabela verdade, é sempre importante verificar quantas linhas deveremos analisar. E para isso é preciso conhecermos a seguinte fórmula: 2 n onde n é o número de proposições simples que estamos analisando. Por exemplo, caso formos analisar uma proposição composta com duas proposições simples (p e q), poderemos analisá-las das seguintes maneiras: p Repare que fórmula já previa quatro linhas para serem analisadas. 2 2 = 4 linhas amos analisar agora uma proposição composta com três proposições simples (p,q e r). q p q r f Repare que fórmula já previa oito linhas para serem analisadas. 2 3 = 8 linhas Atualizada em 12/01/2011 1
2 Exercícios de ixação 2. Assinale a alternativa que exibe a quantidade de linhas que uma proposição composta com 8 proposições simples pode possuir em uma tabela verdade. a.) 16 linhas b.) 32 linhas c.) 64 linhas d.) 128 linhas e.) 256 linhas 3. Assinale a alternativa que exibe a quantidade de linhas que uma proposição composta com 6 proposições simples pode possuir em uma tabela verdade. a.) 64 linhas b.) 128 linhas c.) 256 linhas d.) 512 linhas e.) 1024 linhas Negação ( p) Uma proposição quando negada, recebe valores lógicos opostos dos valores lógicos da proposição original. O símbolo que iremos utilizar é p. p p alores Lógicos das Proposições Compostas Tabela verdade do conectivo e, Conjunção ( ^ ) Iremos estudar a lógica entre duas proposições p e q através do uso a conjunção e. Simbolicamente temos p ^ q (lê-se p e q). Este conectivo traduz a idéia de simultaneidade. Assim, uma proposição composta do tipo: p ^ q é verdadeira apenas quando as proposições simples p e q forem simultaneamente verdadeiras, em qualquer outro caso p ^ q é falsa. Resumindo na tabela verdade: p q p ^ q A conjunção p ^ q é verdadeira se p e q são verdadeiras ao mesmo tempo. E caso uma delas for falsa, então p ^ q é falsa. eja o exemplo abaixo com frases. Paris não se situa na África e a África tem uma Repare que as duas proposições simples são verdadeiras, gerando uma idéia verdadeira à frase como um todo. Paris não se situa na África e a África não tem uma Paris situa-se na África e a África tem uma população predominante negra. Repare que a primeira proposição é falsa e a segunda é verdadeira, gerando uma idéia falsa à frase como um todo Paris situa-se na África e a África não tem uma Repare que as duas proposições simples são falsas, gerando uma idéia falsa à frase como um todo. Tabela verdade do conectivo ou, Disjunção não exclusiva ( ) Iremos estudar a lógica entre duas proposições p e q através do uso da disjunção não exclusiva ou. Simbolicamente temos p q (lê-se p ou q). Este conectivo traduz a idéia de que pelo menos uma das hipóteses ocorre. Assim, uma proposição composta do tipo p q é verdadeira quando pelo menos uma das proposições simples forem verdadeiras, sendo falsa apenas quando ambas forem falsas. Resumindo na tabela verdade: p q p q A disjunção p q é verdadeira se ao menos uma das proposições p ou q é verdadeira. Caso p e q são falsas ao mesmo tempo então p q é falsa. eja o exemplo abaixo com frases. Paris não se situa na África ou a África tem uma Repare que as duas proposições simples são verdadeiras, gerando uma idéia verdadeira à frase como um todo. Paris não se situa na África ou a África não uma Repare que a primeira proposição é verdadeira e a segunda é falsa, gerando uma idéia verdadeira à frase como um todo Paris situa-se na África ou a África tem uma população predominante negra. Repare que a primeira proposição é falsa e a segunda é verdadeira, gerando uma idéia verdadeira à frase como um todo Paris situa-se na África ou a África não tem uma Repare que as duas proposições simples são falsas, gerando uma idéia falsa à frase como um todo. Repare que a primeira proposição é verdadeira e a segunda é falsa, gerando uma idéia falsa à frase como um todo 2 Atualizada em 12/01/2011
3 Tabela verdade do conectivo ou, Disjunção exclusiva ( ) Iremos estudar a lógica entre duas proposições p e q através do uso da disjunção exclusiva ou. Simbolicamente temos p q (lê-se p ou q). Este conectivo traduz a idéia hipóteses mutuamente exclusivas. Antes de continuar qualquer tipo de explicação é importante salientar a diferença entre os dois tipos de ou. Esse ou que iremos abordar, dá a idéia de exclusão plena: ou Irei ao shopping ou ao estádio. Repare que o personagem ou vai ao shopping ou vai ao estádio, ele não poderá ir aos dois locais ao mesmo tempo. Temos aqui, a idéia da disjunção que estamos apresentando. Uma proposição composta do tipo p q é verdadeira quando apenas uma das proposições simples forem verdadeiras, sendo falsa quando ambas forem falsas ou ambas verdadeiras. Resumindo na tabela verdade: p q p q A disjunção p q é verdadeira se ao menos uma das proposições p ou q é verdadeira, caso p e q são falsas ao mesmo tempo então p q é falsa. eja o exemplo abaixo com frases. Ou Sérgio mora em Curitiba ou mora em ortaleza. Repare que se as duas proposições simples forem verdadeiras, Sérgio morará nas duas cidades. Sabemos que uso deste conectivo lógico significa que ele poderá morar em apenas uma das cidades, ou Curitiba ou ortaleza. Exercício de ixação 4. Classifique em verdadeira ou falsa cada uma das seguintes proposições compostas. a) 4 0 = = 4 b) 2! = 2 ^ 0! =1 c) 4 0 = = 6 d) 2! = 2 ^ 0! =0 e) Sérgio Altenfelder é professor de matemática e de estatística f) Sérgio Altenfelder está de blusa verde ou calça jeans. g) 1! = 0 ^ 0! = 0 h) Londres é a capital da Inglaterra ou a torre Eiffel situa-se em Londres i) 2 2 = = 6 j) O meridiano de Greenwich passa por Londres e Londres é a capital do Chile k) 4-1 = 3 2 x 3. = 8 l) 3 2 = 9 2 x 3 = 8 m) 4-1 = 3 ^ 2 x 3 = 8 5. Sejam as proposições: p: A vaca foi para o brejo q: O boi seguiu a vaca. orme sentenças, na linguagem natural, que correspondam às proposições abaixo: a) p b) q c) p ^ q d) p q e) p ^ q f) p q g) (p ^ q) h) (p q) i) p q j) p ^ q k) ( q) l) ( p) 6. Sejam as proposições simples. p: João é alto q: João é jogador de Basquete. Escreva na forma simbólica a) João não é alto b) Não é verdade que João não é alto c) João é alto e é jogador de basquete. d) João não é alto e é jogador de basquete. e) João não é alto ou não é jogador de basquete. f) João não é jogador de basquete. g) Não é verdade que João não é jogador de basquete h) João é alto ou é jogador de basquete. i) João é alto e não é jogador de basquete j) Não é verdade que João é alto e é jogador de basquete k) Não é verdade que João é alto ou é jogador de basquete l) Não é verdade que João não é alto ou é jogador de basquete m) João não é alto nem é jogador de basquete. Tabela verdade do conectivo Se xxx então yyy, Condicional ( ) Iremos estudar a lógica entre duas proposições p e q através do uso da condicional Se xxx então yyy. Simbolicamente temos p q (lê-se se p então q). Este conectivo traduz a idéia de condição, em outras palavras, causa e efeito. É importante apresentar um outro conceito que costuma cair de uma frase condicional. Temos p q. p é condição suficiente para q. Ou ainda p é chamado de causa. q é condição necessária para p Ou ainda q é chamado de conseqüência ou efeito Este conectivo traduz a idéia de condição. Assim, uma proposição composta do tipo p q só é falsa se tivermos p é verdadeira e q falsa; em qualquer outro caso, ela é verdadeira. Resumindo na tabela-verdade: p q p q O condicional p q é falso somente quando p é verdadeira e q é falsa; caso contrário, p q será verdadeiro Como este conectivo é muito difícil de entender, vamos imaginar a seguinte situação: Imaginemos que você seja uma pessoa que normalmente carrega seu guarda Atualizada em 12/01/2011 3
4 chuva na sua bolsa ou mala ou de qualquer outra forma. Suponha, também, que está chovendo é uma frase verdadeira e que levar o guarda chuva também será verdadeira. Se não está chovendo então eu levo o guarda chuva. Esta frase pode ser falada por uma pessoa com esse perfil, pois chovendo ou não ela carrega o guarda chuva. Logo, concluímos que causa falsa e efeito verdadeiro, gera uma frase verdadeira como um todo. Se não está chovendo então eu não levo o guarda chuva. Esta frase pode ser falada por uma pessoa com esse perfil, pois chovendo ou não ela carrega o guarda chuva. Logo, concluímos que causa falsa e efeito falso, gera uma frase verdadeira como um todo. amos interpretar as duas situações acima. Pessoas que normalmente carregam seu guarda chuva, em dias que não chove, elas podem ou não carregar seu guarda chuva. Por isso que as frases acima são verdadeiras. Se está chovendo então eu levo o guarda chuva. Esta frase pode ser falada por uma pessoa com esse perfil, pois está realmente chovendo e com certeza ela irá carregar o guarda chuva. Logo, concluímos que causa verdadeira e efeito verdadeiro, gera uma frase verdadeira como um todo. Se está chovendo então eu não levo o guarda chuva. Esta frase NÃO pode ser falada por uma pessoa com esse perfil, pois se chove, pessoas com esse perfil com certeza levarão seu guarda chuva. Logo, concluímos que causa verdadeira e efeito falso, gera uma frase falsa como um todo. amos interpretar as duas situações acima. Pessoas que normalmente carregam seu guarda chuva, em dias que chove, elas sempre carregarão seu guarda chuva. Por isso que das duas frases acima uma é verdadeira e a outra é falsa. PROPRIEDADES DA CONDICIONAL Ainda sobre o conectivo se então, temos que memorizar 3 conceitos sobre tal conectivo: Proposições Inversas: para encontrar a inversa de uma proposição composta basta negar as frases. p q sua inversa é p q x y sua inversa é x y Proposições recíprocas: para encontrar a recíproca de uma proposição composta basta inverter as frases. p q sua recíproca é q p x y sua recíproca é y x Proposições contrapositivas: para encontrar a contrapositiva de uma proposição composta basta inverter e negar as frases. p q sua contrapositiva é q p x y sua contrapositiva é y x Tabela verdade do conectivo xxx se e somente se yyy, Bicondicional ( ) Iremos estudar a lógica entre duas proposições p e q através do uso da bicondicional xxx se somente se yyy. Simbolicamente temos p q (lê-se p se e somente se q). Este conectivo traduz a idéia de bicondição. Este conectivo não é muito usado em nossa língua portuguesa,usamos mais em frases matemáticas,para provar certas teorias. É importante salientar que em alguns concursos este conectivo nunca caiu. Onde costuma cair este conectivo é nas provas da banca examinadora ESA Temos p q. p é condição suficiente e necessária para q. Ou ainda p é chamado de causa e efeito ao mesmo tempo. q é condição necessária e suficiente para p Ou ainda q é chamado de causa e efeito ao mesmo tempo. Este conectivo traduz a idéia de bicondição. Assim, uma proposição composta do tipo p q só será falsa se tivermos p e q apresentando valores lógicos diferentes; e se p e q possuírem os mesmos valores lógicos a frase será verdadeira. Resumindo na tabela-verdade: p q p q A bicondicional p q só será falsa se tivermos p e q apresentarem valores lógicos diferentes; e se p e q são proposições com os mesmos valores lógicos a frase será verdadeira. 2 x 3 = 6 se e somente se = 6. Conclusão 2 x 3 = 6 se e somente se Conclusão 2 x 3 6 se e somente se = 6. Conclusão 2 x 3 6 se e somente se Conclusão Exercícios de ixação 7.) Classifique em verdadeira ou falsa cada uma das seguintes proposições compostas: a.) 2! = 2 0! = 1 b.) 2 2 = = 6 c.) 2 0 = 0 0! = 0 d.) 2 2 = = 9 e.) 2 é impar 3 é impar f.) 2-1 = = 3 x 4 g.) 5 2 = = -1 h.) 2 é par 3 é impar i.) 5 2 = = 7 4 Atualizada em 12/01/2011
5 j.) 2 é impar 3 é par k.) 5 2 = = -1 l.) 5 2 = = 1 m.) 5-4 = 1 2 = 2 0 n.) ) Sejam as proposições: p: A vaca foi para o brejo q: O boi seguiu a vaca. orme sentenças, na linguagem natural, que correspondam às proposições abaixo: a) p q b) p q c) (p q) d) (p q) q e) p (p q) f) p q g) p q h) p q i) p (p q) j) p (p q) k) p q l) p q m) p (p q) n) p (p q) o) (p q) q p) (p q) q) p q r) p (p q) s) (p q) q t) p (p q) 9.) Sejam as proposições: p: João é alto q: João é jogador de Basquete Escreva na forma simbólica a.) Se João não é alto então ele é jogador de basquete. b.) Se João não é alto então ele não é jogador de basquete. c.) É mentira que se João não é alto então ele é jogador de basquete. d.) João é alto se e somente se ele não é jogador de basquete. e.) João não é alto se e somente se ele é jogador de basquete. f.) João não é alto se e somente se ele não é jogador de basquete. g.) É mentira que João não é alto se e somente se ele é jogador de basquete. h.) É mentira que João não é alto se e somente se ele não é jogador de basquete. i.) Se João é alto então ele é jogador de basquete. j.) Se João é alto então ele não é jogador de basquete. k.) Não é verdade que se João é alto então ele é jogador de basquete. l.) Não é verdade que se João é alto então ele não é jogador de basquete. m.) João é alto se e somente se ele é jogador de basquete. n.) É mentira que se João não é alto então ele não é jogador de basquete. o.) Não é verdade que João é alto se e somente se ele é jogador de basquete. p.) Não é verdade que João é alto se e somente se ele não é jogador de basquete. Montagem de Tabelas erdades Pelo uso repetido dos conectivos estudados e da negação, podemos construir proposições compostas progressivamente mais complexas, cujos valores lógicos não temos condições de determinar imediatamente. No entanto, o valor de uma proposição sempre pode ser determinado a partir dos valores lógicos das proposições simples componentes e dos conectivos utilizados. Um modo organizado, sistemático, de fazer isso é a utilização de uma tabela com todas as possíveis combinações entre os valores lógicos das proposições componentes e com o correspondente valor lógico da proposição composta. A partir do uso desta técnica, podemos descobrir os valores lógicos das proposições compostas e verificar se elas são equivalentes, ou negações, ou tautológicas, contraditórias ou ainda contingentes. Dupla Negação (p) A dupla negação nada mais é do que a própria proposição. Isto é, p = ( p) Exemplos p p (-p) ( p) = p amos determinar todos os possíveis valores lógicos da proposição p ^ q, construindo a seguinte tabelaverdade p q q p ^ q amos determinar todos os possíveis valores lógicos da proposição p q construindo a seguinte tabelaverdade: p q p q p q Contingência Sempre que uma proposição composta recebe valores lógicos falsos e verdadeiros, independentemente dos valores lógicos das proposições simples componentes, dizemos que a proposição em questão é uma CONTINGÊNCIA. Contradição amos determinar os possíveis valores lógicos da proposição p. p, construindo a seguinte tabela verdade: p p p ^ p Exemplo: Hoje é sábado e hoje não é sábado Atualizada em 12/01/2011 5
6 Sempre que uma proposição composta recebe todos os seus possíveis valores lógicos falsos, independentemente dos valores lógicos das proposições simples componentes, dizem que a proposição em questão é uma CONTRADIÇÃO Tautologia amos determinar todos os possíveis valores lógicos da proposição p p, construindo a seguinte tabela verdade p p p p Exemplo: O céu está claro ou não está. Sempre que uma proposição composta recebe todos os seus possíveis valores lógicos verdadeiros, independentemente dos valores lógicos das proposições simples componentes, dizemos que a proposição em questão é uma Tautologia Equivalências Lógicas: Dizemos que duas proposições compostas são equivalentes quando os valores lógicos das suas tabelas verdades são equivalentes. ejamos se essas duas frases são equivalentes: p q e p q p q p p q p q Percebe-se que os valores lógicos das duas proposições compostas analisadas são equivalentes. Desse modo podemos dizer que elas são equivalentes. Analisando outras frases. A proposição Não é verdade que nossos produtos são caros e duram pouco é equivalente a Nossos produtos não são caros ou não duram pouco. amos verificar: p: Nossos produtos são caros p: Nossos produtos não são caros q: Nossos produtos duram pouco q: Nosso produtos não duram pouco (p ^ q): Não é verdade que nossos produtos são caros e duram pouco. p q: Nossos produtos não são caros ou não duram pouco. p q p q p ^ q (p ^ q) p q Como podemos notar (p ^ q) p q Analogamente, podemos verificar que a proposição Não é verdade que Bráulio passou no concurso ou se matou. Garante o mesmo que Bráulio não passou no concurso e não se matou. amos verificar: p: Bráulio passou no concurso. p: Bráulio não passou no concurso. q: Bráulio se matou. q: Bráulio não se matou. (p q): Não é verdade que Bráulio passou no concurso ou se matou. p ^ q: Bráulio não passou no concurso e não se matou. p q p q p q (p q) p ^ q Como podemos notar (p q) p ^ q Negação de Proposições Compostas Dizemos que uma proposição composta é a negação da outra quando os valores lógicos das suas tabelas verdades são opostas. ejamos se uma frase é a negação da outra e vice-versa: p q e p ^ q p q q p q p ^ q Como podemos notar (p q) p ^ q. Em outras palavras, a negação da proposição p q é p ^ q Percebe-se que os valores lógicos das duas proposições compostas analisadas são opostas. Desse modo podemos dizer que uma é a negação da outra e vice versa. Exercício de ixação 10. Se A, B e C são enunciados verdadeiros e X, Y e Z são enunciados falsos. Classifique os enunciados abaixo em verdadeiros ou falsos: a) (C Z) ^ (Y B) b) (A ^ B) (X ^ Y) c) (B X) ^ (Y Z) d) (C B) ( X ^ Y) e) B X f) X A g) X Y h) [( B A) ( A B)] i) [( Y Z) ( Z Y)] j) [( C Y) ( Y C)] k) [( X A) ( A X)] l) [A (B C)] [(A B) C] m) [X (Y Z)] [(X Y) Z] n) [X ^ ( A Z)] [(X ^ A) (X ^ Z)] o) {[( A B) ^ ( B A)] ^ [(A ^ B) ( A ^ B)]} p) [B ( X ^ A)] ^ [(B X) ^ (B A)] q) A (B C) r) A (B Z) s) A (Y Z) t) X (B Z) u) X (Y Z) v) (X Y) Z w) (A B) Z 6 Atualizada em 12/01/2011
7 11. Sendo: p: Tânia é cantora q: Tânia é pernambucana Escreva na linguagem natural as proposições e aponte quais delas podem ser equivalentes: a.) p q b.) p q c.) ( p q) d.) ( p q ) e.) ( p q ) f.) p q 12. Mostre que a proposição (p q) p é uma contradição. 13. Mostre que a proposição (p q) p é uma tautologia. 14. Mostre que a proposição (p q) p é uma contingência. Testes que podem cair na prova 15. (PUC/RS) Sejam p e q duas proposições. A negação p ^ q a.) p q b.) p ^ q c.) p q d.) p ^ q e.) p ^ q 16. Sejam p e q duas proposições. A negação p q a.) p q b.) p ^ q c.) p q d.) p ^ q e.) p ^ q 17. Sejam p e q duas proposições. A negação p q a.) p q b.) p ^ q c.) p q d.) p ^ q e.) p ^ q 18. Sejam p e q duas proposições. A proposição p q a.) p q b.) p q c.) p q d.) p q e.) p ^ q 19. Sejam p e q duas proposições. A proposição p q a.) p ^ q b.) p q c.) p q d.) p q e.) q p 20. Sejam p e q duas proposições. A proposição p q a.) p q b.) p q c.) q p d.) q p e.) p q 21. Sejam p e q duas proposições. A proposição p q a.) p q b.) p ^ q c.) p q d.) p ^ q e.) p q 28. Assinale a alternativa que exibe a quantidade de linhas que uma proposição composta com 4 proposições simples pode possuir em uma tabela verdade. a.) 16 linhas b.) 32 linhas c.) 64 linhas d.) 128 linhas e.) 256 linhas 29. Assinale a alternativa que exibe a quantidade de linhas que uma proposição composta com 10 proposições simples pode possuir em uma tabela verdade. a.) 64 linhas b.) 128 linhas c.) 256 linhas d.) 512 linhas e.) 1024 linhas 30. Se A, B, C são sentenças verdadeiras e X, Y, Z são sentenças falsas, então os valores de verdade de ( A ^ X) (Y C), B (Y Z) e B Z respectivamente são: a) verdadeiro, verdadeiro, falso b) falso, verdadeiro, falso c) falso, falso, verdadeiro d) verdadeiro, falso, falso e) verdadeiro, falso, verdadeiro 31. Considere o argumento João passou no concurso Logo se João não passou no concurso, então ele faltou às provas Representando por: p a frase João passou no concurso e por q a sentença ele faltou às provas, a tradução correta do argumento acima, para a linguagem simbólica, é: a) p q p q b) p q p q c) p q p q d) p p q e) p q p ^ q Atualizada em 12/01/2011 7
8 32. Considere as seguintes correspondências I. p (p q) II. (p p) p III. p [(p q) q] Assinale a alternativa correta: a) I é contingente, II é contraditória e III é tautológica b) I é tautológica, II é contraditória e III é contingente c) I é tautológica, II é contraditória e III é tautológica d) I é tautológica, II é contingente e III é tautológica e) I é contingente, II é contingente e III é contingente 33. A tabela verdade que corresponde à sentença p (p q) é a p q q p q p p (p q) b p q p q p q p (p q) c p q p q p q p q p (p q) d p q q (p q) p (p q) e p q p q p q (p q) p (p q) Equivalências Lógicas ou Equivalência entre Proposições Iremos ver esse tópico novamente, só que agora iremos utilizar um modo de resolver as equivalências de um modo mais rápido. Mas para isso precisamos decorar as propriedades lógicas. Propriedade das Equivalências Lógicas 1. Distributiva com inversão do conectivo (p ^ q) p q 2. Distributiva com inversão do conectivo (p q) p ^ q Obs: essas propriedades só podem ser aplicadas para os conectivos e ou ou. 3. Então virando então (inverte e nega) p q q p 4. Então virando ou (nega a primeira, mantém a segunda) ou Ou virando então p q p q Testes que podem cair na prova 34. (PUC/RS) Sejam p e q duas proposições. A negação p ^ q a) p q b) p ^ q c) p q d) p q e) p ^ q 35. Sejam p e q duas proposições. A negação p q a) p q b) p ^ q c) p q d) p ^ q e) p ^ q 36. Sejam p e q duas proposições. A negação p q a) p q b) p ^ q c) p q d) p q e) p ^ q 37. Sejam p e q duas proposições. A proposição p q a) p q b) p q c) p q d) p q e) p ^ q 38. Sejam p e q duas proposições. A proposição p q a) p ^ q b) p q c) p q d) p q e) q p 39. Sejam p e q duas proposições. A proposição p q a) p q b) p q c) q p d) q p e) p q 40. Sejam p e q duas proposições. A proposição p q a) p q b) p ^ q c) p q d) p ^ q e) p q 41. (Mackenzie/SP) Duas grandezas x e y são tais que se x = 3, então y = 7. Pode-se concluir que: a) se x 3, então y 7 b) se y = 7, então x = 3 c) se y 7, então x 3 d) se x = 5, então y - 5 e) Nenhuma das conclusões acima é válida 8 Atualizada em 12/01/2011
9 42. (MPU) Uma sentença logicamente equivalente a: Se Pedro é economista, então Luíza é solteira é: a.) Pedro é economista ou Luíza é solteira. b.) Pedro é economista ou Luíza não é solteira. c.) Se Luíza é solteira, Pedro é economista. d.) Se Pedro não é economista então Luíza não é solteira. e.) Se Luíza não é solteira então Pedro não é economista. 43. (ICMS) Se Rodrigo mentiu, então ele é culpado. Logo, a.) Se Rodrigo não é culpado, então ele não mentiu. b.) Rodrigo é culpado. c.) Se Rodrigo não mentiu, então ele não é culpado. d.) Rodrigo mentiu. e.) Se Rodrigo é culpado, então ele mentiu. 44. (ICMS) Se você se esforçar, então irá vencer. Assim sendo, a.) seu esforço é condição suficiente para vencer. b.)seu esforço é condição necessária para vencer. c.) Se você não se esforçar, então não irá vencer. d.) você vencerá só se esforçar. e.) mesmo que você se esforce, você não vencerá. 45. (ISCAL DO TRABALHO) Chama-se tautologia a toda proposição que é sempre verdadeira, independentemente da verdade dos termos que a compõem. Um exemplo de tautologia é: a.) Se João é alto, então João é alto ou Guilherme é gordo b.) Se João é alto, então João é alto e Guilherme é gordo c.) Se João é alto ou Guilherme é gordo, então Guilherme é gordo d.) Se João é alto ou Guilherme é gordo, então João é alto e Guilherme é gordo e.) Se João é alto ou não é alto, então Guilherme é gordo 46. (ISCAL DO TRABALHO) A negação da afirmação condicional se estiver chovendo, eu levo o guardachuva é: a.) Se não estiver chovendo, eu levo o guarda-chuva b.) Não está chovendo e eu levo o guarda-chuva c.) Não está chovendo e eu não levo o guarda-chuva d.) Se estiver chovendo, eu não levo o guarda-chuva e.) Está chovendo e eu não levo o guarda-chuva 47. (ISCAL DO TRABALHO) Dizer que Pedro não é pedreiro ou Paulo é paulista é, do ponto de vista lógico, o mesmo que dizer que: a.) Se Pedro é pedreiro, então Paulo é paulista b.) Se Paulo é paulista, então Pedro é pedreiro c.) Se Pedro não é pedreiro, então Paulo é paulista d.) Se Pedro é pedreiro, então Paulo não é paulista e.) Se Pedro não é pedreiro, então Paulo não é paulista 48. Dizer que Ana não é alegre ou Beatriz é feliz é do ponto de vista lógico, o mesmo que dizer: a.) se Ana não é alegre, então Beatriz é feliz. b.) se Beatriz é feliz, então Ana é alegre. c.) se Ana é alegre, então Beatriz é feliz. d.) se Ana é alegre, então Beatriz não é feliz. e.) se Ana não é alegre, então Beatriz não é feliz. GABARITO 1. a) Não é proposição. b) É proposição. c) Não é proposição. d) É proposição. e) Não é proposição. f) É proposição. g) É proposição. h) É proposição. i) É proposição j) Não é proposição k) Não é proposição l) Não é proposição m) É proposição. n) É proposição. o) É proposição. p) É proposição. 2. E 3. A 4. a) verdadeira b) verdadeira c) verdadeira d) falsa e) verdadeira f) verdadeira. g) falsa h) verdadeira i) verdadeira j) falsa k) verdadeira l) verdadeira m) falsa 5. a) A vaca não foi para o brejo. b) O boi não seguiu a vaca. c) A vaca foi para o brejo e o boi seguiu a vaca. d) A vaca foi para o brejo ou o boi seguiu a vaca. e) A vaca não foi para o brejo e o boi seguiu a vaca. f) A vaca foi para o brejo ou o boi não seguiu a vaca. g) Não é verdade que a vaca foi para o brejo e o boi seguiu a vaca. h) Não é verdade que a vaca foi para o brejo ou o boi seguiu a vaca. i) A vaca não foi para o brejo ou o boi não seguiu a vaca. j) A vaca não foi para o brejo e o boi não seguiu a vaca. k) Não é verdade que o boi não seguiu a vaca. l) Não é verdade que a vaca não foi para o brejo. 6. a) p b) ( p) c) p q d) p q e) p q f) q g) ( q) h) p q i) p q j) ( p q) k) ( p q) l) ( p q) m) p q 7. a) verdadeira b) falso c) verdadeira d) verdadeira e) falso f) verdadeiro g) verdadeira h) verdadeira i) verdadeira j) verdadeira k) verdadeira l) falso m) falso n) verdadeira 8. a) Se a vaca foi para o brejo então o boi seguiu a vaca. b) Se a vaca não foi para o brejo então o boi não seguiu a vaca. c) Não é verdade que a vaca foi para o brejo se e somente se o boi seguiu a vaca. d) Se a vaca foi para o brejo e o boi seguiu a vaca então o boi não seguiu a vaca. e) Se a vaca foi para o brejo então não é verdade que a vaca foi para o brejo ou o boi seguiu a vaca. f) Se a vaca não foi para o brejo então o boi seguiu a vaca. g) A vaca foi para o brejo se e somente se o boi seguiu a vaca. h) A vaca não foi para o brejo se e somente se o boi não seguiu a vaca. i) Se a vaca foi para o brejo então não é verdade que a vaca foi para o brejo e o boi seguiu a vaca. j) Se a vaca não foi para o brejo então não é verdade que a vaca foi para o brejo ou o boi seguiu a vaca. k) Se a vaca foi para o brejo então o boi não seguiu a vaca. l) A vaca não foi para o brejo se e somente se o boi seguiu a vaca. m) Se a vaca foi para o brejo então a vaca foi para o brejo e o boi seguiu a vaca. n) Se a vaca não foi para o brejo então não é verdade que a vaca foi para o brejo e o boi seguiu a vaca. o) Se não é verdade que a vaca foi para o brejo ou o boi Atualizada em 12/01/2011 9
10 seguiu a vaca então boi não seguiu a vaca. p) Não é verdade que se a vaca foi para o brejo então o boi seguiu a vaca. q) A vaca foi para o brejo se e somente se o boi não seguiu a vaca. r) Se a vaca não foi para o brejo então a vaca foi para o brejo e o boi seguiu a vaca. s) Se não é verdade que a vaca foi para o brejo e o boi seguiu a vaca então o boi não seguiu a vaca. t) A vaca foi para o brejo se e somente se a vaca foi para o brejo e o boi seguiu a vaca. 9. a) p q b) p q c) ( p q) d) p q e) p q f) p q g) ( p q) h) ( p q) i) p q j) p q k) (p q) l) (p q) m) p q n) ( p q) o) (p q) p) (p q) 10. a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) 11. a) Tânia é cantora e é pernambucana. b) Tânia não é cantora ou não é pernambucana. c) Não é verdade que Tânia não é cantora ou não é pernambucana. d) Não é verdade que Tânia é cantora e é pernambucana. e) Não é verdade que Tânia é cantora ou é pernambucana. f) Tânia não é cantora e não é pernambucana. a c b d e f 12. é contradição 13. é tautologia 14. é contingência 15. A 16. D 17. E 18. A 19. E 20. C 21. C 28. A 29. E 30. A 31. D 32. D 33. E 34. A 35. D 36. E 37. B 38. E 39. C 40. C 41. C 42. E 43. A 44. A 45. A 46. E 47. A 48. C 2. (ICMS) Cinco ciclistas apostaram uma corrida. - A chegou depois de B. - C e E chegaram juntos. - D chegou antes de B - Quem ganhou chegou sozinho. Quem ganhou a corrida a.) A b.) B c.) C d.) D e.) E 3. Sérgio possui quatro irmãos, certo dia foi usar sua camiseta do SÃO PAULO e não a encontrou no seu armário. No seguinte, lá estava ela no seu armário. Querendo descobrir qual dos seus irmão que a tinha usado, recebeu as seguintes respostas em sua averiguação. Marcos declarou: João que a usou. João declarou: Quem a usou foi Márcia. Nelson declarou: Eu não usei a camiseta. Márcia protestou: João está mentindo. Sabendo-se que apenas umas das respostas é verídica. Quem foi o responsável pelo repentino sumiço de sua camiseta do SÃO PAULO, O MELHOR DOS TIMES!!!!!! a.) Marcos b.) João c.) Nelson d.) Márcia e.) Ninguém, pois o SÃO PAULO não é o melhor time do mundo. 4. (CC) Em um dia de trabalho no escritório, em relação aos funcionários Ana, Cláudia, Luís, Paula e João, sabese que: - Ana chegou antes de Paula e Luís. - Paula chegou antes de João. - Cláudia chegou antes de Ana. - João não foi o último a chegar. Nesse dia, o terceiro a chegar no escritório para o trabalho foi a.) Ana. b.) Cláudia. c.) João. d.) Luís. e.) Paula. 5. (CC) Em uma repartição pública que funciona de 2 a a 6 a feira, 11 novos funcionários foram contratados. Em relação aos contratados, é necessariamente verdade que a) todos fazem aniversário em meses diferentes. b) ao menos dois fazem aniversário no mesmo mês. c) ao menos dois começaram a trabalhar no mesmo dia do mês. d) ao menos três começaram a trabalhar no mesmo dia da semana. e) algum começou a trabalhar em uma 2 a feira. 6. (CC) A tabela indica os plantões de funcionários de uma repartição pública em três sábados consecutivos: INTERPRETAÇÃO 1. (ISCAL DO TRABALHO) Um crime foi cometido por um e apenas uma pessoa de um grupo de cinco suspeitos: Armando, Celso, Edu, Juarez e Tarso. Perguntados sobre quem era o culpado, cada um deles respondeu: Armando: Sou inocente Celso: Edu é o culpado Edu: Tarso é o culpado Juarez: Armando disse a verdade Tarso: Celso mentiu Sabendo-se que apenas um dos suspeitos mentiu e que todos os outros disseram a verdade, pode-se concluir que o culpado é: a.) Armando b.) Celso c.) Edu d.) Juarez e.) Tarso Dos seis funcionários indicados na tabela, 2 são da área administrativa e 4 da área de informática. Sabe-se que para cada plantão de sábado são convocados 2 funcionários da área de informática, 1 da área administrativa, e que ernanda é da área de informática. Um funcionário que necessariamente é da área de informática é a.) Beatriz b.) Cristina c.) Julia d.) Ricardo e.) Silvia 10 Atualizada em 12/01/2011
11 7. (CC) Um departamento de uma empresa de consultoria é composto por 2 gerentes e 3 consultores. Todo cliente desse departamento necessariamente é atendido por uma equipe formada por 1 gerente e 2 consultores. As equipes escaladas para atender três diferentes clientes são mostradas abaixo: Cliente 1: André, Bruno e Cecília. Cliente 2: Cecília, Débora e Evandro. Cliente 3: André, Bruno e Evandro. A partir dessas informações, pode-se concluir que a.) Evandro é consultor. b.) André é consultor. c.) Bruno é gerente. d.) Cecília é gerente. e.)débora é consultora. 8. (CC) Com relação a três funcionários do Tribunal, sabe-se que I. João é mais alto que o recepcionista; II. Mário é escrivão; III. Luís não é o mais baixo dos três; I. um deles é escrivão, o outro recepcionista e o outro segurança. Sendo verdadeiras as quatro afirmações, é correto dizer que a.) João é mais baixo que Mário. b.) Luís é segurança. c.) Luís é o mais alto dos três. d.) João é o mais alto dos três. e.) Mário é mais alto que Luís. 9. (EPUSP) Carlos, João, Ana, Márcia e Alfredo estão numa festa. Sabendo-se que cada um deles possuem diferentes profissões: Advogado, Administrador, Psicólogo, ísico e Médico. Temos: O advogado gosta de conversar com Ana, Márcia e João, mas odeia conversar com o médico. Carlos, Ana e o advogado têm três filhos. O médico diz a Alfredo que salvou ontem a vida de quatro crianças. Carlos, Ana e Márcia dançam com o administrador. Podemos afirmar que João é o: a.) Advogado b.) Administrador c.) Psicólogo d.) ísico e.) Médico 10. (ATN) Os carros de Artur, Bernardo e César são, não necessariamente nesta ordem, uma Brasília, uma Parati e um santana. Um dos carros é cinza, um outro é verde, e o outro é azul. O carro de Artur é cinza; o carro de César é o Santana; o Carro de Bernardo não é verde e não é a brasília. As cores da brasília, da parati e do santana são, respectivamente a.) cinza, verde e azul b.) azul, cinza e verde c.) azul, verde e cinza d.) cinza, azul e verde e.) verde, azul e cinza GABARITO 1. E 2. D 3. C 4. E 5. D 6. A 7. A 8. D 9. B 10. D Atualizada em 12/01/
Raciocínio Lógico. Raciocínio Lógico. Sumário EDITORA APROVAÇÃO V Q (INCLUSIVA OU NÃO EX- 13. RELAÇÃO DE IMPLICAÇÃO TABELA VERDADE
Raciocínio Lógico Raciocínio Lógico Sumário 7. RELAÇÃO DE IMPLICAÇÃO TABELA VERDADE 7. RELAÇÕES ENTRE IMPLICAÇÕES PREPOSIÇÕES 8. RELAÇÃO DE EQUIVALÊNCIA CONECTIVOS LÓGICOS 8 EXERCÍCIOS E PRÁTICA PROPRIEDADE
(Equivalência e Implicação lógica aula 10
Aula 2 (Equivalência e Implicação lógica aula 10 Professor: Renê Furtado Felix - Faculdade: UNIP E-mail: [email protected] - Site: renecomputer.net Equivalência em Lógica Logica - Professor Renê F
Teoria e Exercícios Prof. Sérgio Data de impressão: 17/ 11/2010. Raciocínio Lógico. Turma Extensiva 05
Turma Extensiva 05 Teoria e Exercícios Prof. Sérgio Data de impressão: 17/ 11/2010 ELABORAÇÃO E PRODUÇÃO: UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR/CURITIBA MATERIAL
Teoria e Exercícios. Raciocínio Lógico. Prof. Sérgio Data de impressão: 13/06/2011
PF Teoria e Exercícios Prof. Sérgio Data de impressão: 13/06/2011 ELABORAÇÃO E PRODUÇÃO: UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR/CURITIBA MATERIAL DIDÁTICO EXCLUSIVO
Raciocínio Lógico Matemático
Raciocínio Lógico Matemático Cap. 5 - Equivalência Lógica Equivalência Lógica Caro aluno, no último capítulo estudamos as implicações lógicas e foi enfatizado que o ponto fundamental da implicação lógica
1. À primeira coluna (P), atribui-se uma quantidade de valores V igual à metade do total de linhas
LÓGICA MATEMÁTICA Walter Sousa Resumo teórico 1) PROPOSIÇÕES LÓGICAS SIMPLES Uma proposição é uma sentença declarativa que pode ser classificada em verdadeira (V) ou falsa (F), mas não ambas as interpretações.
Resolução da Prova de Raciocínio Lógico do TRE/MT, aplicada em 13/12/2015.
de Raciocínio Lógico do TRE/MT, aplicada em 13/12/2015. Raciocínio Lógico p/ TRE-MT Analista Judiciário QUESTÃO 19 Um grupo de 300 soldados deve ser vacinado contra febre amarela e malária. Sabendo-se
Que morena! Parabéns!
TABELA ERDADE Iremos abordar nesta apostila uma diferente forma de argumentação que se associa diretamente com a língua portuguesa. Apesar de analisarmos frases muitas vezes de forma subjetiva a matéria
Bases Matemáticas. Daniel Miranda 1. 23 de maio de 2011. sala 819 - Bloco B página: daniel.miranda
Daniel 1 1 email: [email protected] sala 819 - Bloco B página: http://hostel.ufabc.edu.br/ daniel.miranda 23 de maio de 2011 Elementos de Lógica e Linguagem Matemática Definição Uma proposição
PROPOSIÇÕES. Proposições Simples e Proposições Compostas. Conceito de Proposição
PROPOSIÇÕES Conceito de Proposição Definição: chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo. As proposições transmitem pensamentos, isto é,
LÓGICA FORMAL Tabelas Verdade
LÓGICA FORMAL Tabelas Verdade Prof. Evanivaldo C. Silva Jr. Seção 1 Expressões: exclamações, interrogações, afirmações... Aquele aluno deve ser inteligente. Você já almoçou hoje? Um elefante é maior do
Resolução da Prova de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015.
de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015. Considerando a proposição P: Se João se esforçar o bastante, então João conseguirá o que desejar, julgue os itens a seguir. 43 A proposição
VEJA O CONTEÚDO DO ÚLTIMO EDITAL (2011/2012, ORGANIZADO PELA FCC)
AULA 01 CONCEITOS BÁSICOS DE LÓGICA E PRINCÍPIOS Olá amigos, meu nome é Adeilson de Melo. Fui convidado para ministrar aulas dessa apaixonante matéria que é o Raciocínio Lógico Matemático. ESPERO QUE TODOS
RACIOCÍNIO LÓGICO MATEMÁTICO ATIVIDADE DO BLOCO 1 20 QUESTÕES
RACIOCÍNIO LÓGICO MATEMÁTICO ATIVIDADE DO BLOCO 1 20 QUESTÕES As questões foram elaboradas pelo prof. Sérgio Faro e valerão apenas como exercício para o seu conhecimento. São 20 questões de múltipla escolha.
6 - PROVAS CESGRANRIO(CONCURSOS BANCO CENTRAL E OUROS)
1 6 - PROVAS CESGRANRIO(CONCURSOS BANCO CENTRAL E OUROS) 01 - Em uma rua há 10 casas do lado direito e outras 10 do lado esquerdo. Todas as casas são numeradas de tal forma que, de um lado da rua, ficam
Fundamentos de Lógica Matemática
Webconferência 4-08/03/2012 Técnicas dedutivas Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Maneiras
RACIOCÍNIO LÓGICO Simplif icado
Sérgio Carvalho Weber Campos RACIOCÍNIO LÓGICO Simplif icado Volume 1 2ª edição Revista, atualizada e ampliada Inclui Gráficos, tabelas e outros elementos visuais para melhor aprendizado Exercícios resolvidos
Correção de exercícios do manual. Página 53
Correção de exercícios do manual Página 53 Seja P: a pena de morte foi abolida. a) O enunciado diz-nos que É falso que a pena de morte tenha sido abolida é falsa. Como É falso que a pena de morte tenha
RACIOCÍNIO LÓGICO Simplificado
Sérgio Carvalho Weber Campos RCIOCÍNIO LÓGICO Simplificado Volume 1 2ª edição Revista, atualizada e ampliada Material Complementar PRINCIPIS CONCEITOS, REGRS E FÓRMULS DO LIVRO RCIOCÍNIO LÓGICO SIMPLIFICDO
NÚCLEO PREPARATÓRIO PARA CONCURSOS CURSO DELEGADO FEDERAL
RACIOCÍNIO LÓGICO II Professor Ademir Bispo AULAS 3 e 4 PROPOSIÇÕES CONDICIONAIS As proposições condicionais relacionam causa com efeito ou hipótese com tese. p: O mês de maio tem 31 dias. q: O sol é uma
AULA 1 Frases, proposições e sentenças 3. AULA 2 Conectivos lógicos e tabelas-verdade 5. AULA 3 Negação de proposições 8
Índice AULA 1 Frases, proposições e sentenças 3 AULA 2 Conectivos lógicos e tabelas-verdade 5 AULA 3 Negação de proposições 8 AULA 4 Tautologia, contradição, contingência e equivalência 11 AULA 5 Argumentação
Aula 00. Raciocínio Lógico Quantitativo para IBGE. Raciocínio Lógico Quantitativo Professor: Guilherme Neves
Aula 00 Raciocínio Lógico Quantitativo Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Raciocínio Lógico Quantitativo Apresentação... 3 Modelos de questões resolvidas
Cálculo proposicional
Cálculo proposicional Proposição Proposições são sentenças afirmativas declarativas que não sejam ambígüas e que possuem a propriedade de serem ou verdadeiras ou falsas, mas não ambas. Exemplos:. Gatos
Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2
Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade
Mentiras & Verdades. Introdução. Introdução. Introdução. Lógica Aplicada
s & s Marco Vaz Sérgio Rodrigues Envolve enunciados com uma série de declarações entrelaçadas entre si, e que, a princípio, não sabemos são verdadeiras ou falsas (mentiras). Trata de questões em que alguns
RACIOCÍNIO LÓGICO MATEMÁTICO. Ana Paula Gargano
RACIOCÍNIO LÓGICO MATEMÁTICO Ana Paula Gargano ESTRUTURAS LÓGICAS Sentenças São frases que apresentam significado. As sentenças podem ser abertas ou fechadas. 1. Sentença aberta: apresentam variáveis.
Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de Melo Revisão 3 Lógica das Proposições
Professor Adeilson de Melo www.profranciscojunior.com.br p. 1 de 7 Olá galera! Estou de volta! Agora iniciaremos o estudo de lógica das proposições. Esse assunto é muito importante para seu concurso. Pois,
Prof. Sérgio Altenfelder Raciocínio Lógico Aulas 24 Raciocínio Lógico Professor: Sérgio Altenfelder Aulas: 24 aulas
Professor: Sérgio Altenfelder Aulas: 24 aulas Prof. Sergio Altenfelder www.aprovaconcursos.com.br Página 1 de 70 APRESENTAÇÃO Professor de Matemática Financeira, Estatística, Matemática e - Quantitativo
RACIOCÍNIO LÓGICO QUANTITATIVO
RACIOCÍNIO LÓGICO QUANTITATIVO AULA 1 ESTUDO DA LÓGICA O estudo da lógica é o estudo dos métodos e princípios usados para distinguir o raciocínio correto do incorreto. A lógica tem sido freqüentemente
Prof. Sérgio Altenfelder. h) (p q) i) p q j) p ^ q k) ( q) l) ( p)
Exercícios de Fixação 1. Das sentenças abaixo, assinale quais são proposições a.) O Chile e o Brasil. b.) Emerson é professor. c.) Ela é professora. d.) O Brasil foi campeão de futebol em 1982 e.) Que
Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015.
de Raciocínio Lógico do STJ de 20, aplicada em 27/09/20. Raciocínio Lógico p/ STJ Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que
PROPOSIÇÕES (SIMPLES E COMPOSTAS)/ CONECTIVOS/TAUTOLOGIA/TABELA VERDADE
PROPOSIÇÕES (SIMPLES E COMPOSTAS)/ CONECTIVOS/TAUTOLOGIA/TABELA VERDADE Ser síndico não é fácil. Além das cobranças de uns e da inadimplência de outros, ele está sujeito a passar por desonesto. A esse
Resolução de Questões!!!
1) Considere a seguinte proposição: Raciocínio Lógico Se João está na praia, então João não usa camiseta. Resolução de Questões!!! A negação da proposição acima é logicamente equivalente à proposição:
Lógica - Insper. 3. (Insper 2012) Uma pessoa dispõe dos seis adesivos numerados reproduzidos a seguir, devendo colar um em cada face de um cubo.
Lógica - Insper 1. (Insper 2012) As duas afirmações a seguir foram retiradas de um livro cuja finalidade era revelar o segredo das pessoas bem sucedidas. I. Se uma pessoa possui muita força de vontade,
Aula 03 Proposições e Conectivos. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 03 Proposições e Conectivos Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Proposições: Valores Lógicos; Tipos (simples e compostas). Conectivos. Revisando O que é
Questões de Concursos Tudo para você conquistar o seu cargo público
Comentadas pelo professor: Gabriel Rampini Raciocínio Lógico-Quantitativo 1) Q264165 Raciocínio Lógico Raciocínio Lógico-Psicotécnico Ano: 2012 Banca: ESAF Órgão: Receita Federal Prova: Auditor Fiscal
* Lógica Proposicional Formas de Argumento
* Lógica Proposicional Formas de Argumento Hoje é segunda-feira ou sexta-feira. Hoje não é segunda-feira. Hoje é sexta-feira. Lógica, Informática e Comunicação Elthon Allex da Silva Oliveira e-mail: [email protected]
UM JOGO DE DOMINÓ PARA A LÓGICA PROPOSICIONAL
UM JOGO DE DOMINÓ PARA A LÓGICA PROPOSICIONAL Fernanda Pires da Silva 1 e José Ricardo R. Zeni 2, 3 1 Curso de licenciatura em matemática 2 o ano e-mail: [email protected] 2 DMEC (Departamento de Matemática,
01. Mario, ao chegar a uma cidade com princípios lógicos, viu na placa de Bem Vindo! o ( ) x Px Bx Vx. Mais adiante, em outra placa, havia a
PROVA DE RACIOCÍNIO LÓGICO EDIÇÃO JUNHO 2009 01. Mario, ao chegar a uma cidade com princípios lógicos, viu na placa de Bem Vindo! o ( ) seguinte escrito: ( ) x Px Bx Vx. Mais adiante, em outra placa, havia
Análise e Resolução da prova do ICMS-PE Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento
Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova do ICMS-PE Neste artigo, farei a análise das questões de Matemática
Noções básicas de Lógica
Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. uma expressão com significado Uma expressão pode ser expressão sem significado
SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA.
SOLUÇÃO DA PROVA DE MATEMÁTICA E RACIOCÍNIO LÓGICO DO INSS - 2008 TÉCNICO DO SEGURO SOCIAL PROVA BRANCA. Professor Joselias www.concurseiros.org Março de 2008. Um dos indicadores de saúde comumente utilizados
Lógica para computação Professor Marlon Marcon
Lógica para computação Professor Marlon Marcon INTRODUÇÃO O objetivo geral da logica formal é a mecanização do raciocnio, ou seja, A obtenção de informação a partir de informações prévias por meio de recursos
- o cachorro de Davi e o gato de Charles têm o nome do dono do gato chamado Charles.
Alberto,, Charles e Davi são amigos, e cada um deles é dono de um gato e de um cachorro. O gato e o cachorro de cada um dos quatro amigos têm nomes distintos e escolhidos dentre os nomes dos três amigos
PREPARATÓRIO PROFMAT/ AULA 3
PREPARATÓRIO PROFMAT/ AULA 3 Números, Progressões e Lógica Prof. Ronaldo Busse Números Uma questão presente nos exames de seleção até aqui foi a comparação entre grandezas numéricas. O procedimento indicado
CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno,
CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4 Prezado Aluno, Neste EP daremos sequência ao nosso estudo da linguagem da lógica matemática. Aqui veremos o conectivo que causa mais dificuldades para os alunos e
Matemática. Divisão Proporcional. Professor: Dudan. www.acasadoconcurseiro.com.br
Matemática Divisão Proporcional Professor: Dudan www.acasadoconcurseiro.com.br Matemática DIVISÃO PROPORCIONAL Existem problemas que solicitam a divisão de um número em partes diretamente proporcionais
Tabela de um Enunciado Simbolizado
Lógica para Ciência da Computação I Lógica Matemática Texto 5 Tabela de um Enunciado Simbolizado Sumário 1 Tabelas dos conectivos 2 1.1 Observações................................ 5 1.2 Exercício resolvido............................
Raciocínio Lógico (Professor Uendel)
Raciocínio Lógico (Professor Uendel) Material (02); SEFAZ; JULHO DE 2017 (Álgebra das Proposições) PROPOSIÇÕES EQUIVALENTES P Q Lê se: P é LOGICAMENTE equivalent e a Q São proposições cujas tabelas-verdade
RECEITA FEDERAL ANALISTA
SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como
FUNDAMENTOS DE LÓGICA PARA ADMINISTRAÇÃO. André Luiz Galdino
FUNDAMENTOS DE LÓGICA PARA ADMINISTRAÇÃO André Luiz Galdino SUMÁRIO 1. Noções de Lógica Matemática 3 1.1 Cálculo Proposicional 4 1.2 Tabelas Verdade 16 1.3 Contingência, Tautologia e Contra-Tautologia
Porém, não se aprende o Raciocínio Lógico sem se resolver o máximo de exercícios! Neste curso estaremos apresentando vários exercícios resolvidos.
MÓDULO 0: ORIENTAÇÕES INICIAIS Olá, amigos! Apresenta0 lhes o Curso on line de RACIOCÍNIO LÓGICO! Antes de tratarmos acerca do conteúdo, uma breve palavra sobre a matéria. Do que se trata? Trata se de
Lógica Matemática e Computacional. 2.3 Equivalência Lógica
Lógica Matemática e Computacional 2.3 Equivalência Lógica Equivalência Lógica Definição: Dadas as proposições compostas P e Q, diz-se que ocorre uma equivalência lógica entre P e Q quando suas tabelas-verdade
Proposições simples e compostas
Proposições simples Observe as seguintes sentenças: Os gatos não voam. Como é o seu nome? Saia já daqui! Não se esqueça de estudar. Que dia lindo! Embora todas as sentenças anteriores façam parte da nossa
Silogística Aristotélica
Silogística Aristotélica Prof. Paulo Margutti Com base na possibilidade de padronizar todas as sentenças de conformidade com os tipos A, E, I e O, Aristóteles considerava que todos os argumentos poderiam
Todos os exercícios sugeridos nesta apostila se referem ao volume 1.
INTRODUÇÃO... 2 DEFINIÇÃO... 2 DESCRIÇÃO... 2 APRESENTAÇÃO... 2 RELAÇÃO DE PERTINÊNCIA... 3 CONJUNTOS IGUAIS... 4 SUBCONJUNTOS E RELAÇÃO DE INCLUSÃO... 7 QUANTIFICADORES... 10 IMPLICAÇAO E EQUIVALÊNCIA...
Sumário. OS ENIGMAS DE SHERAZADE... 13 I Ele fala a verdade ou mente?... 13 I I Um truque com os números... 14
Sumário OS ENIGMAS DE SHERAZADE... 13 I Ele fala a verdade ou mente?... 13 I I Um truque com os números... 14 CAPÍTULO 1 LÓGICA DE PRIMEIRA ORDEM-PROPOSICIONAL... 15 Estruturas Lógicas... 15 I Sentenças...
RESOLUÇÃO DAS QUESTÕES
RESOLUÇÃO DAS QUESTÕES Caro aluno, Disponibilizo abaixo a resolução das questões de Matemática e Raciocínio Lógico da prova de Perito Criminal da Polícia Científica de Goiás 2015. Note que as 3 primeiras
1 Teoria de conjuntos e lógica
1 Teoria de conjuntos e lógica Estes breves apontamentos dizem respeito à parte do programa dedicada à teoria de conjuntos e à lógica matemática. Embora concebidos sem grandes formalismos e com poucas
FUNDAMENTOS DA LÓGICA
UNDAMENTOS DA LÓGICA Professor Rodrigo Melo Rodrigo Melo Rodrigo Melo PRIMEIROS CONCEITOS O primeiro conceito que iremos estudar será a proposição. Toda proposição deve: - ser uma oração, que tenha sujeito
A raiz quadrada. Qual é o número positivo que elevado ao 16 = 4
A UA UL LA A raiz quadrada Introdução Qual é o número positivo que elevado ao quadrado dá 16? Basta pensar um pouco para descobrir que esse número é 4. 4 2 = 4 4 = 16 O número 4 é então chamado raiz quadrada
C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 2
Descrição: RACIOCÍNIO LÓGICO AULA 2 O RACIOCÍNIO LÓGICO O exame de lógica é preparado para avaliar as sua habilidade em relacionar elementos e sua capacidade de raciocínio lógico e de resolução de problemas
ANDRÉ REIS RACIOCÍNIO LÓGICO. 1ª Edição ABR 2014
ANDRÉ REIS RACIOCÍNIO LÓGICO TEORIA 246 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS 90 EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. André Reis Organização e Diagramação: Mariane dos Reis
OBS.1: As palavras Se e então podem estar ocultas na. Proposição
RACIOCÍNIO LÓGICO PRO. IGOR BRASIL 1) Proposição: Observação!!! Não são proposições 1. 2. 3. 4. 5. 6. 7. 2) Conectivos São utilizados em proposições.» O conectivo e é conhecido por, representado pelo símbolo
Conjuntos mecânicos II
A UU L AL A Conjuntos mecânicos II Nesta aula trataremos de outro assunto também relacionado a conjuntos mecânicos: o desenho de conjunto. Introdução Desenho de conjunto Desenho de conjunto é o desenho
Lista de Exercícios 5: Soluções Teoria dos Conjuntos
UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,
COMO DETERMINAR O IMPACTO DAS VARIAÇÕES PERCENTUAIS
COMO DETERMINAR O IMPACTO DAS VARIAÇÕES! O que é Variação Percentual?! O que é Número Índice?! Como transformar um valor percentual em valor decimal?! Como comparar diferentes taxas percentuais?! Como
LISTA DE EXERCÍCIOS DE PROGRESSÃO GEOMÉTRICA. 2. Determine o 12ª elemento de uma progressão geométrica onde o primeiro elemento é 1 e a razão é 2.
COLÉGIO ESTADUAL SÃO JUDAS TADEU - ENSINO FUNDAMENTAL E MÉDIO Nome: SIMULADO MATEMÁTICA Bimestre: 3º Data: / /2013. Valor: 1,0 Nota: Professor (a): JOELMA A. BACH PONCHEKI Ass. Responsável: LISTA DE EXERCÍCIOS
Notas de Aula 1: Lógica, Predicados, Quantificadores e Inferência
IFMG Campus Formiga Matemática Discreta Notas de Aula 1: Lógica, Predicados, Quantificadores e Inferência Prof. Diego Mello 2o. Semestre 2012 Sumário 1 Introdução 3 2 Lógica Proposicional 3 3 Proposições
Árvores de Decisão Matemática Discreta
Bruno Duarte Eduardo Germano Isolino Ferreira Vagner Gon Árvores de Decisão Matemática Discreta 28/04/2011 Serra IFES Definição de Árvores de Decisão: Arvore de Decisão é uma árvore em que seus nós internos
RACIOCÍNIO LÓGICO PROFESSOR: LUCIANO PACHECO
RACIOCÍNIO LÓGICO PROFESSOR: LUCIANO PACHECO EXERCÍCIOS DE FIXAÇÃO 1 - (Engenheiro do Trabalho-1998) Dizer que Pedro não é pedreiro ou Paulo é paulista é do ponto de vista lógico, o mesmo que dizer : A)
INTRODUÇÃO À LÓGICA DE ARGUMENTAÇÃO
RACIOCÍNIO LÓGICO LÓGICA DE ARGUMENTAÇÃO DIAGRAMAS LÓGICOS Prof. Gleisson Rubin INTRODUÇÃO À LÓGICA DE ARGUMENTAÇÃO I CONCEITOS BÁSICOS Proposição Conceituamos proposição como toda sentença de caráter
Álge g bra b B ooleana n Bernardo Gonçalves
Álgebra Booleana Bernardo Gonçalves Sumário Histórico Álgebra de Boole Axiomas da Álgebra de Boole Álgebra de Boole de dois valores literais Teoremas da Álgebra de Boole Simplificação de expressões booleanas
http://geocities.yahoo.com.br/logicaemconcursos Prof. Leonardo Barroso http://geocities.yahoo.com.br/logicaemconcursos Prof.
PROVA DE RACIOCÍNIO LÓGICO-QUANTITATIVO ANEEL - Técnico Administrativo Aplicada em 07//2004pela ESAF 3- Surfo ou estudo. Fumo ou não surfo. Velejo ou não estudo. Ora, não velejo. Assim, a) estudo e fumo.
MATEMÁTICA E RACIOCÍNIO LÓGICO
SENTENÇAS OU PROPOSIÇÕES MODIICADORES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (),
CURSO COMPLETO DE RACIOCÍNIO LÓGICO MATEMÁTICO. Bom dia, boa tarde, boa noite concurseiro. Hoje nosso estudo será sobre Álgebra das Proposições.
CURSO COMPLETO DE RACIOCÍNIO LÓGICO MATEMÁTICO Encontro 3 Álgebra das Proposições Bom dia, boa tarde, boa noite concurseiro. Hoje nosso estudo será sobre Álgebra das Proposições. Álgebra das Proposições
a) 2 b) 3 c) 4 d) 5 e) 6
Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355
entre Sentenças Abertas; Propriedade das Equivalências Lógicas; Operação com Conjuntos. Lógica de Argumentação e Diagramas Lógicos.
Aula 5 - Questões Comentadas e Resolvidas Estruturas Lógicas: Proposições; Valores Lógicos das Proposições; Sentenças Abertas; Número de Linhas da Tabela Verdade; Conectivos; Proposições Simples; Proposições
TESTES RESOLVIDOS. É uma sentença aberta. Nada podemos afirmar, não conhecemos o conteúdo da frase. Não é uma proposição.
LÓGICA PROPOSICIONAL 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma
Congruências Lineares
Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir
Ficha de Exercícios nº 2
Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 2 Matrizes, Determinantes e Sistemas de Equações Lineares 1 O produto de duas matrizes, A e B, é a matriz nula (mxn). O que pode
GUIA PRÁTICO PARA APROVAÇÃO EM CONCURSOS PÚBLICOS
GUIA PRÁTICO PARA APROVAÇÃO EM CONCURSOS PÚBLICOS Wilton Vieira Junior GUIA PRÁTICO PARA APROVAÇÃO EM CONCURSOS PÚBLICOS LIVROS Copyright by 2013 Wilton Vieira Jr. Projeto editorial: Wilbett Oliveira
Comandos de Desvio 1
Programação de Computadores I UFOP DECOM 2014 1 Aula prática 3 Comandos de Desvio 1 Sumário Resumo Nesta aula você irá resolver problemas que requerem uma decisão com base em um teste, ou condição. Para
Usando potências de 10
Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.
Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:
Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma
FOLHA 1 - Raciocínio Lógico
FOLHA 1 - Raciocínio Lógico 1) Considerando com o verdades que ALGUMAS PESSOAS SÃO PACÍFICAS e que NENHUM HOMEM É PACÍFICO. então é necessariamente verdadeiro que: a) Nenhum homem é pessoa b) Alguma pessoa
Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido.
Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 1 I- Lógica Informal Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Afirmação
www.souvestibulando.com.br CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 2 TEORIA DOS CONJUNTOS
1 CURSO PRÉ-VESTIULR MTEMÁTIC UL 02 SSUNTO: TEORI DOS CONJUNTOS Esta aula é composta pelo texto da apostila abaixo e por um link de acesso à UL VIRTUL gravada. Estude com atenção o texto antes de acessar
Lógica Sentencial de 1ª ordem
Lógica Sentencial de 1ª ordem Estudo das proposições 01. (FCC) Considere as seguintes frases: I. Amar o próximo. II. 2x 5 0, para qualquer x inteiro. III. Lula foi eleito em 1989. IV. 3 + 4 + 7 + 2 É verdade
Gestão Empresarial Prof. Ânderson Vieira
NOÇÕES DE LÓGICA Gestão Empresarial Prof. Ânderson ieira A maioria do texto apresentado neste arquivo é do livro Fundamentos de Matemática Elementar, ol. 1, Gelson Iezzi e Carlos Murakami (eja [1]). Algumas
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) Em um edifício residencial com 54 apartamentos, 36 condôminos pagam taxa de condomínio de R$ 180,00; para os demais, essa taxa é de R$ 240,00. Qual é o valor da taxa média de condomínio nesse edifício?
Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL...1 2. PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55
IX Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL...1 Solução dos exercícios... 29 2. PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55 Solução dos exercícios... 64 3. conjuntos...77
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur QUESTÕES DE RACIOCÍNIO LÓGICO PARTE I 1. A negação da afirmação: Vai fazer frio
Solução da prova da 2a fase OBMEP 2014 Nível 2. Questão 1. item a)
Questão 1 Cada nova pilha tem dois cubinhos a mais em sua base. Assim, como a terceira pilha tem 5 cubinhos em sua base, a quarta pilha tem 5 + 2 = 7 cubinhos e a quinta pilha tem 7 + 2 = 9 cubinhos em
Exercícios de Matemática para Concurso Público. Lógica Matemática
Exercícios de Matemática para Concurso Público Lógica Matemática TEXTO PARA A PRÓXIMA QUESTÃO: Um jogo é disputado por duas pessoas em um tabuleiro quadrado 5 5. Cada jogador, de maneira alternada, escolhe
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Disciplina: Lógica Computacional I Professora: Juliana Pinheiro Campos Data: 25/08/2011 Lista
Aula 00 Curso: Raciocínio Lógico Professores: Custódio Nascimento e Fábio Amorim
Aula 00 Curso: Raciocínio Lógico Professores: Custódio Nascimento e Fábio Amorim APRESENTAÇÃO Futuros Auditores-Fiscais do Trabalho, Bem vindos ao curso on-line preparatório para o cargo de Auditor-Fiscal
ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação
O valor nominal do título é de R$ 500,00, a taxa é de 1% ao mês e o prazo é de 45 dias = 1,5 mês.
13. (ISS-Cuiabá 2016/FGV) Suponha um título de R$ 500,00, cujo prazo de vencimento se encerra em 45 dias. Se a taxa de desconto por fora é de 1% ao mês, o valor do desconto simples será igual a a) R$ 7,00.
Algoritmos e Programação : Conceitos e estruturas básicas. Hudson Victoria Diniz
Algoritmos e Programação : Conceitos e estruturas básicas Hudson Victoria Diniz Relembrando... Um algoritmo é formalmente uma seqüência finita de passos que levam a execução de uma tarefa. Podemos pensar
