Lógica Computacional
|
|
|
- Mikaela Costa Castanho
- 8 Há anos
- Visualizações:
Transcrição
1 Aula Teórica 2: da Lógica Proposicional Departamento de Informática 17 de Fevereiro de 2011
2 Descrição informal Lógica proposicional Objecto Ocupa-se do estudo do comportamento dos conectivos lógicos (negação, disjunção, conjunção, implicação e equivalência) e das regras que os manipulam. Linguagem das asserções ou proposições: afirmações que são ou verdadeiras ou falsas. Linguagem construida a partir de símbolos proposicionais (asserções básicas) e conectivos lógicos (ligam asserções).
3 Descrição informal Asserções Exemplos Básicas: hoje chove; todo o natural par n > 2 é a soma de dois primos. Compostas: estudo hoje ou amanha; jogo hoje e amanha; se tenho aulas então vou à Faculdade; n é par se e só se mod(n, 2) = 0. Não são asserções: passe-me o sal, se faz favor; quanto mais depressa, mais devagar.
4 Alfabeto e linguagem Definição da sintaxe da lógica proposicional Objectivo Obter a linguagem formal das fórmulas proposicionais. A partir de um alfabeto (conjunto de símbolos, representando asserções) define-se como construir palavras (sequências finitas de símbolos, ditas fórmulas). Alfabeto proposicional sobre um conjunto P Seja P um conjunto numerável (de símbolos proposicionais). O alfabeto proposicional sobre P, denotado Alf P, é constituido: por cada um dos elementos de P; pelo símbolo (falso, ou absurdo); pelos conectivos disjunção,, conjunção, e implicação, ; pelos parênteses esquerdo e direito, ( e ).
5 Alfabeto e linguagem Definição da sintaxe da lógica proposicional Linguagem proposicional induzida por Alf P A linguagem proposicional induzida por Alf P, denotada F P, é o conjunto definido indutivamente pelas seguintes regras: F P ; se p P então p F P ; se ϕ, ψ F P então (ϕ ψ) F P, (ϕ ψ) F P e (ϕ ψ) F P. Terminologia Os elementos de F P dizem-se fórmulas. Os elementos de P e o símbolo dizem-se fórmulas atómicas.
6 Representação da linguagem natural Tradução da linguagem natural para lógica proposicional Intuição Os símbolos proposicionais representam asserções básicas (afirmações verdadeiras ou falsas). O conectivo disjunção representa alternativa. Uma frase que comece por ou e tenha um número par de ocorrências dessa palavra procura não ser ambígua. O conectivo conjunção indica que a frase só é verdade se cada uma das partes o for. A fórmula p q traduz as frases p e q, tanto p como q, p tal como q, etc,... O conectivo implicação representa consequência. A fórmula p q traduz as frases se p então q, se p, q, q se p, p só se q, caso p então q, caso p, q, como p, q, etc,...
7 Representação da linguagem natural Tradução da linguagem natural para lógica proposicional Exemplos gosto de lógica escreve-se p; gosto de álgebra escreve-se q; gosto de lógica e de álgebra escreve-se p q; ou gosto de lógica ou de álgebra escreve-se p q; gosto de lógica ou de álgebra e de análise é ambígua, mas ou gosto de lógica ou de álgebra e de análise já não; nas fórmulas, os parênteses desambiguam: p q r é ambígua, mas p (q r) já não. Há ambiguidades difíceis de resolver: o Pedro foi ao médico e ficou doente tanto pode querer dizer p q como p q.
8 Representação da linguagem natural da lógica proposicional Convenção Para simplificar a notação omitem-se os parênteses mais exteriores das fórmulas. Exemplos Sejam p, q, r P. Fórmulas: p q F P, (p q) r F P, p (q r) F P. Não são fórmulas: pq F P, p F P, q F P, porque não foram seguidas as regras para definir fórmulas.
9 Abreviaturas e Subfórmulas Conceitos auxiliares Abreviaturas São úteis novos conectivos para abreviar alguns tipos de fórmulas. Negação: ϕ abv = ϕ ; Verdade: abv = ; Equivalência: ϕ ψ abv = (ϕ ψ) (ψ ϕ). Consideramos que o conectivo tem precedência sobre os outros. Exemplos ( ϕ ψ) abv = ((ϕ ) ψ) ϕ (ψ δ) abv = ((ϕ ) (ψ δ)) ((ψ δ) (ϕ ))
10 Abreviaturas e Subfórmulas Conceitos auxiliares Subfórmulas de uma fórmula O conjunto SBF(ϕ) das subfórmulas de ϕ F P é definido indutivamente pelas seguintes regras: SBF(ϕ) = {ϕ}, se ϕ é atómica; seja δ def = ϕ ψ, δ def = ϕ ψ ou δ def = ϕ ψ; SBF(δ) = {δ} SBF(ϕ) SBF(ψ). Símbolos proposicionais de uma fórmula O conjunto SMB(ϕ) def = SBF(ϕ) P contém os símbolos proposicionais de uma fórmula ϕ F P.
11 Abreviaturas e Subfórmulas Exemplos Símbolos proposicionais e subfórmulas de uma fórmula Sejam p, q, r P e p, (p q) r F P. SMB( p) = {p} e SBF( p) = SBF(p ) = { p} SBF(p) SBF( ) = { p, p, }; SMB((p q) r) = {p, q, r} SBF((p q) r) = {(p q) r} SBF(p q) SBF(r) = {(p q) r} {p q} SBF(p) SBF(q) {r} = {(p q) r, p q, p, q, r}.
A linguagem da Lógica Proposicional (Capítulo 1)
A linguagem da Lógica Proposicional (Capítulo 1) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Alfabeto 3. Fórmulas bem formadas (FBF) 4. Exemplos
Lógica Computacional
Aula Teórica 3: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
Aula 05 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 05 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Outras Traduções; Valor Lógico de Operações sobre proposições. Tabela da Verdade
Lógica de Predicados
Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Predicados com duas variáveis. Equivalências lógicas (Rosen 39) Negando
Lógica para computação Professor Marlon Marcon
Lógica para computação Professor Marlon Marcon INTRODUÇÃO O objetivo geral da logica formal é a mecanização do raciocnio, ou seja, A obtenção de informação a partir de informações prévias por meio de recursos
Representação de Conhecimento. Lógica Proposicional
Representação de Conhecimento Lógica Proposicional Representação de conhecimento O que éconhecimento? O que érepresentar? Representação mental de bola Representação mental de solidariedade Símbolo como
Lógica Binária. Princípios
Lógica Binária Lógica Binária Proposição é toda a expressão da qual faz sentido dizer que é verdadeira ou falsa. Cada proposição tem um e um só valor lógico, Verdadeiro (1) ou Falso (0). Princípios Princípio
Sergio da Silva Aguiar Universidade Estadual do Sudoeste da Bahia - I Seemat
Introdução à Lógica Matemática Sergio da Silva Aguiar Universidade Estadual do Sudoeste da Bahia - I Seemat 1 Introdução O que é a Lógica? O que signi ca estudar Lógica? Qual a sua de nição? Ao iniciar
Construção de tabelas verdades
Construção de tabelas verdades Compreender a Lógica como instrumento da ciência e como estrutura formal do pensamento, conhecendo e compreendendo as operações com os principais conceitos proposicionais
Lógica de Programação. Profas. Simone Campos Camargo e Janete Ferreira Biazotto
Lógica de Programação Profas. Simone Campos Camargo e Janete Ferreira Biazotto O curso Técnico em Informática É o profissional que desenvolve e opera sistemas, aplicações, interfaces gráficas; monta estruturas
Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014
1 2 Questão 1 Um dado é feito com pontos colocados nas faces de um cubo, em correspondência com os números de 1 a 6, de tal maneira que somados os pontos que ficam em cada par de faces opostas é sempre
Matemática Discreta - 03
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 03 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Curso de Formação de Oficiais Conhecimentos Específicos ENGENHARIA DE COMPUTAÇÃO CADERNO DE QUESTÕES
Curso de Formação de Oficiais Conhecimentos Específicos ENGENHARIA DE COMPUTAÇÃO CADERNO DE QUESTÕES 2014 1 a QUESTÃO Valor: 1,00 a) (0,30) Defina gramáticas livre de contexto. b) (0,30) Crie uma gramática
Ficheiro de Matemática
Adivinha quem somos nós! A partir das pistas, descobre qual o nome de cada um dos sólidos. Regista no teu caderno as conclusões a que chegaste. Planificações Suspeitas Descobri estas planificações suspeitas!
Funções Lógicas e Portas Lógicas
Funções Lógicas e Portas Lógicas Nesta apresentação será fornecida uma introdução ao sistema matemático de análise de circuitos lógicos, conhecido como Álgebra de oole Serão vistos os blocos básicos e
Faculdade de Computação
UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra de Amo Lista de Exercícios n o 2 Revisão de Autômatos 1. Fazer os seguintes exercícios do
Conjuntos Finitos e Infinitos
Conjuntos Finitos e Infinitos p. 1/1 Conjuntos Finitos e Infinitos Gláucio Terra [email protected] Departamento de Matemática IME - USP Axiomas de Peano Conjuntos Finitos e Infinitos p. 2/1 Conjuntos
EXERCÍCIOS DE LÓGICA DE 1ª ORDEM
QUANTIFICADORES EXERCÍCIOS DE LÓGICA DE 1ª ORDEM 1 {9.3} Tornar as frases verdadeiras. Abra Bozo s Sentences e Leibniz s World. Algumas das expressões não são wffs, algumas são wffs mas não são frases
Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido.
Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 1 I- Lógica Informal Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Afirmação
AULA 6 LÓGICA DOS CONJUNTOS
Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem
Entropia, Entropia Relativa
Entropia, Entropia Relativa e Informação Mútua Miguel Barão ([email protected]) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos
Carlos de Salles Soares Neto [email protected] Segundas e Quartas, 17h40 às 19h10
Algoritmos I Variáveis, Entrada e Saída de Dados Carlos de Salles Soares Neto [email protected] Segundas e Quartas, 17h40 às 19h10 Variáveis Área de memória para o armazenamento de dados Variáveis
e à Linguagem de Programação Python
Introdução a Algoritmos, Computação Algébrica e à Linguagem de Programação Python Curso de Números Inteiros e Criptografia Prof. Luis Menasché Schechter Departamento de Ciência da Computação UFRJ Agosto
Disciplina: Economia & Negócios Líder da Disciplina: Ivy Jundensnaider Professora: Rosely Gaeta / /
Disciplina: Economia & Negócios Líder da Disciplina: Ivy Jundensnaider Professora: Rosely Gaeta NOTA DE AULA 03 MICROECONOMIA DEMANDA E OFERTA SEMANA E DATA / / 3.1. A curva de demanda Em uma economia
Análise Léxica. Sumário
Análise Léxica Renato Ferreira Sumário Definição informal de Análise Léxica Identifica tokens numa string de entrada Alguns detalhes Lookahead Ambiguidade Especificação de Analisadores Léxicos Expressões
Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas
Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Professor: Arthur Lima AULA 05: RESUMO Caro aluno, Para finalizar nosso curso, preparei um resumo de toda a teoria vista nas
AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE
Disciplina: Matemática Computacional Prof. Diana de Barros Teles AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Quantificadores: são frases do tipo para todo, ou para cada, ou para algum, isso é, frases
MODELAGENS. Modelagem Estratégica
Material adicional: MODELAGENS livro Modelagem de Negócio... Modelagem Estratégica A modelagem estratégica destina-se à compreensão do cenário empresarial desde o entendimento da razão de ser da organização
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades
Pontifícia Universidade Católica de São Paulo Departamento de Ciência da Computação
Pontifícia Universidade Católica de São Paulo Departamento de Ciência da Computação LP: Laboratório de Programação Apontamento 7 Prof. ISVega Março de 2004 Controle de Execução: Seleção Simples CONTEÚDO
Bases Matemáticas. Daniel Miranda 1. 23 de maio de 2011. sala 819 - Bloco B página: daniel.miranda
Daniel 1 1 email: [email protected] sala 819 - Bloco B página: http://hostel.ufabc.edu.br/ daniel.miranda 23 de maio de 2011 Elementos de Lógica e Linguagem Matemática Definição Uma proposição
Introdução à Lógica de Programação
Sistemas Operacionais e Introdução à Programação Introdução à Lógica de Programação 1 Estruturas de dados Representação computacional das informações do problema ser resolvido Informações podem ser de
Para que o NSBASIC funcione corretamente em seu computador, você deve garantir que o mesmo tenha as seguintes características:
Cerne Tecnologia www.cerne-tec.com.br Conhecendo o NSBASIC para Palm Vitor Amadeu [email protected] 1. Introdução Iremos neste artigo abordar a programação em BASIC para o Palm OS. Para isso, precisaremos
Aula 03 Proposições e Conectivos. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 03 Proposições e Conectivos Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Proposições: Valores Lógicos; Tipos (simples e compostas). Conectivos. Revisando O que é
Lógica Formal e Booleana. Cálculo Proposicional
Lógica Formal e Booleana Cálculo Proposicional [email protected] Charada: uma introdução ao uso de símbolos Um homem estava olhando uma foto, e alguém lhe perguntou: - De quem é esta foto? Ao que
Novo Programa de Português do Ensino Básico
Etapa 4 Agora, que já foste introduzido no fascinante mundo das viagens marítimas e quase estiveste a bordo do Navio-Escola Sagres, vais conhecer melhor as aventuras dos portugueses na época dos Descobrimentos.
ACADEMIA DO CONCURSO
ACADEMIA DO CONCURSO Aulão de Lógica - 2015 Prof. Quilelli ( TCU Auditor Federal - CESPE ) As cidades Alfa e Beta estão com suas contas de obras sob análise. Sabe-se que algumas dessas obras são de responsabilidade
Exercício. Exercício
Exercício Exercício Aula Prática Utilizar o banco de dados ACCESS para passar o MER dos cenários apresentados anteriormente para tabelas. 1 Exercício oções básicas: ACCESS 2003 2 1 Exercício ISERIDO UMA
Conjuntos. Lisboa, Março de 2004
Conjuntos Grupo de Matemática da Universidade Técnica de Lisboa: António St. Aubyn, Maria Carlos Figueiredo, Luís de Loura, Luísa Ribeiro, Francisco Viegas Lisboa, Março de 2004 O documento presente foi
2 Segmentação de imagens e Componentes conexas
Universidade Tecnológica Federal do Paraná (UTFPR) Departamento Acadêmico de Informática (DAINF) Algoritmos II Professor: Alex Kutzke ([email protected]) Especificação do Primeiro Trabalho Prático
EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel
EGEA ESAPL - IPVC Resolução de Problemas de Programação Linear, com recurso ao Excel Os Suplementos do Excel Em primeiro lugar deverá certificar-se que tem o Excel preparado para resolver problemas de
* Lógica Proposicional Formas de Argumento
* Lógica Proposicional Formas de Argumento Hoje é segunda-feira ou sexta-feira. Hoje não é segunda-feira. Hoje é sexta-feira. Lógica, Informática e Comunicação Elthon Allex da Silva Oliveira e-mail: [email protected]
Sumário. INF01040 Introdução à Programação. Elaboração de um Programa. Regras para construção de um algoritmo
INF01040 Introdução à Programação Introdução à Lógica de Programação s Seqüenciais Sumário Elaboração de um programa/algoritmo Formas de representação de um algoritmo Elementos manipulados em um programa/algoritmo
Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola
Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.
Tipos de investigação educacional diferenciados por:
Bento Março 09 Tipos de investigação educacional diferenciados por: Praticalidade Básica Aplicada Método Qualitativo Quantitativo Experimental Não experimental Questões Etnográfica Histórica Descritiva
Lógica Matemática. Lisboa, Março de 2004
Lógica Matemática Grupo de Matemática da Universidade Técnica de Lisboa: António St. Aubyn, Maria Carlos Figueiredo, Luís de Loura, Luísa Ribeiro, Francisco Viegas Lisboa, Março de 2004 O documento presente
CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno,
CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4 Prezado Aluno, Neste EP daremos sequência ao nosso estudo da linguagem da lógica matemática. Aqui veremos o conectivo que causa mais dificuldades para os alunos e
TESTES SOCIOMÉTRICOS
TESTES SOCIOMÉTRICOS Docente: Mestre Mª João Marques da Silva Picão Oliveira TESTES SOCIOMÉTRICOS * O Teste Sociométrico ajuda-nos a avaliar o grau de integração duma criança/jovem no grupo; a descobrir
Lista de Exercícios 5: Soluções Teoria dos Conjuntos
UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,
Árvores. ! utilizada em muitas aplicações. ! modela uma hierarquia entre elementos. ! O conceito de árvores está diretamente ligado à recursão
Árvores 1 Árvores! utilizada em muitas aplicações! modela uma hierarquia entre elementos! árvore genealógica! diagrama hierárquico de uma organização! modelagem de algoritmos! O conceito de árvores está
LINGUAGENS, CÓDIGOS E SUAS TECNOLOGIAS
LINGUAGENS, CÓDIGOS E SUAS TECNOLOGIAS GRAMÁTICA - Prof. CARLA CAMPOS De sonhos e conquistas Aluno (a): MORFOLOGIA CLASSE GRAMATICAL SUBSTANTIVO: é o que dá nome a todos os seres: vivos, inanimados, racionais,
Raciocínio Lógico - Parte II
Apostila escrita pelo professor José Gonçalo dos Santos Contato: [email protected] Raciocínio Lógico - Parte II Sumário 1. Operações Lógicas sobre Proposições... 1 2. Tautologia, contradição
I. Conjunto Elemento Pertinência
TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que
Inteligência Artificial
Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?
Programação Elementar de Computadores Jurandy Soares
Programação Elementar de Computadores Jurandy Soares Básico de Computadores Computador: dispositivos físicos + programas Dispositivos físicos: hardware Programas: as instruções que dizem aos dispositivos
Computabilidade 2012/2013. Sabine Broda Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto
Computabilidade 2012/2013 Sabine Broda Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto Capítulo 1 Computabilidade 1.1 A noção de computabilidade Um processo de computação
(Lógica) Fundamentando Proposições. Professor: Renê Furtado Felix E-mail: [email protected] Site: http://www.renecomputer.net/pdflog.
Professor: Renê Furtado Felix E-mail: [email protected] Site: http://www.renecomputer.net/pdflog.html aula 06 - Revisão (Lógica) Fundamentando Proposições Interruptores Aula de Lógica - Professor
Gramáticas Livres de Contexto
Conteúdo da aula Gramáticas Livres de Contexto Marcelo Johann Trabalho - primeira etapa Definição, código e estrutura Mais elementos e detalhes de lex GLCs Gramática, produção, derivações, árvores Ambíguas,
TESTES RESOLVIDOS. É uma sentença aberta. Nada podemos afirmar, não conhecemos o conteúdo da frase. Não é uma proposição.
LÓGICA PROPOSICIONAL 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma
Universidade da Beira Interior Cursos: Matemática /Informática e Ensino da Informática
Folha 1-1 Introdução à Linguagem de Programação JAVA 1 Usando o editor do ambiente de desenvolvimento JBUILDER pretende-se construir e executar o programa abaixo. class Primeiro { public static void main(string[]
Noções básicas de Lógica
Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. uma expressão com significado Uma expressão pode ser expressão sem significado
ISCTE- IUL, Dpto de Métodos Quantitativos. 28 de Maio de 2012 Ano lectivo 2011/2012
1 ISCTE- IUL, Dpto de Métodos Quantitativos CURSOS1 o Ciclo: Gestão,FinançaseContabilidade,GestãoeEng. Industrial, Marketing, Economia Frequênciae1 o ExamedeOPTIMIZAÇÃO/MATEMÁTICAII 28 de Maio de 2012
Apostila Básica de Lógica e Programação para Game Maker por Giosepe Luiz 1
Apostila Básica de Lógica e Programação para Game Maker por Giosepe Luiz 1 Sumário 1. Introdução a Lógica... 03 2. Verdadeiro e Falso... 03 3. Conectivo E e OU... 03 4. Negação... 04 5. Introdução a Programação...
Capítulo 1 - Conectivos lógicos e quantificadores
Capítulo 1 - Conectivos lógicos e quantificadores A linguagem matemática usual combina o português com outros símbolos que têm um significado específico em Matemática. Neste capítulo 1 recordar-se-á, de
Resolução de Questões!!!
1) Considere a seguinte proposição: Raciocínio Lógico Se João está na praia, então João não usa camiseta. Resolução de Questões!!! A negação da proposição acima é logicamente equivalente à proposição:
José Luiz de Morais. RACiOCÍNIO LÓGICO
RACIOCÍNIO LÓGICO José Luiz de Morais RACiOCÍNIO LÓGICO RACIOCÍNIO LÓGICO Prof José Luiz de Morais PROPOSIÇÕES Proposições Simples Proposições Simples Proposição simples átomo ou partícula atômica É a
Ló gica. Para Concursos Públicos. Professor Luiz Guilherme
Ló gica Para Concursos Públicos Professor Luiz Guilherme 2014 1 Lógica Para Concursos Públicos Proposição... 2 Valor Lógico das Proposições... 2 Axiomas da Lógica... 2 Tabela Verdade:... 3 Conectivos:...
Probabilidade. Luiz Carlos Terra
Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.
Roteiro da Aula 3. Sintaxe. 2 Exemplos. 4 Propriedades de Fechamento. Teoria da. 116360 Aula 3. Roteiro
636 da Finitos Nãoterminísticos Finitos Não-terminísticos Sintaxe Semântica 2 3 4 5 636 Finitos Nãoterminísticos Sintaxe Semântica Não-terminismo Determinístico Exatamente uma trajetória sobre uma w Σ.
Lógica. Everson Santos Araujo [email protected]
Lógica Everson Santos Araujo [email protected] Conceitos Coerência de raciocínio, de idéias, ou ainda a sequência coerente, regular e necessária de acontecimentos, de coisas Dicionário Aurélio 2 Conceitos
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;
Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2
Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade
Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE
Seqüências George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Uma seqüência é uma estrutura discreta usada para representar listas ordenadas. Definição 1 Uma seqüência é uma função de um subconjunto
INICIADOS - 2ª Sessão ClubeMath 7-11-2009
INICIADOS - 2ª Sessão ClubeMath 7-11-2009 Adivinhar o dia de aniversário de outra pessoa e o mês Temos uns cartões mágicos, que vão permitir adivinhar o dia de aniversário de qualquer pessoa e outros que
Programação Orientada a Objectos - P. Prata, P. Fazendeiro
Programação Orientada a Objetos 1.1 - Perspectiva histórica: Conceitos A evolução das linguagens de programação tem-se feito na procura de ferramentas: -cada vez mais próximas da percepção humana - e que
AULA DO CPOG. Progressão Aritmética
AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma
Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +
1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos
Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15
Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.
TOM, SEMITOM, SUSTENIDO, BEMOL.
TOM, SEMITOM, SUSTENIDO, BEMOL. Tom e semitom (ou tono e semitono): são diferenças específicas de altura, existentes entre as notas musicais, isto é, são medidas mínimas de diferença entre grave e agudo.
Matemática Discreta para Ciência da Computação
Matemática Discreta para Ciência da Computação P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação
Usando potências de 10
Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.
Noções de Lógica Matemática
Notas de aulas 2009 Noções de Lógica Matemática Lógica é... A Lógica é a ciência que visa estudar e estabelecer leis formais que bem dirijam as operações da mente. A Lógica é a ciência que trata das formas
Prova de Conhecimentos Específicos
Prova de Conhecimentos Específicos Leia o texto e responda às perguntas que se seguem: Texto 5 10 15 O ensino tradicional de língua portuguesa investiu, erroneamente, no conhecimento da descrição da língua
Noções de Lógica - Teoria e Exercícios
ALUNO(A) C O L É G I O PROFESSOR (A) Alan Jefferson Série 1º ano Noções de Lógica - Teoria e Exercícios PROPOSIÇÃO Chama-se proposição ou sentença toda oração declarativa que pode ser classificada em verdadeira
Raciocínio Lógico Matemático
Raciocínio Lógico Matemático Cap. 5 - Equivalência Lógica Equivalência Lógica Caro aluno, no último capítulo estudamos as implicações lógicas e foi enfatizado que o ponto fundamental da implicação lógica
Modelo Comportamental
MEDIDA 2.2 - Cursos de Educação e Formação de Adultos Modelo Comportamental Documento de apoio 3 Diagrama Entidade Relação Curso de Educação e Formação de Adultos Turma de Qualificação Escolar de Nível
DEPARTAMENTO DE MATEMÁTICA
FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática
MODÚLO 1. INTRODUÇÃO A LÓGICA MATEMÁTICA 1.1 SENTENÇA X PROPOSIÇÃO 1.2 NEGAÇÃO SIMPLES
MODÚLO 1. INTRODUÇÃO A LÓGICA MATEMÁTICA 1.1 SENTENÇA X PROPOSIÇÃO Proposição: Permite ser julgado verdadeiro ou falso. Possui um valor lógico. Exemplos: Morro do Alemão só tem bandido A presidenta anulou
Universidade Federal de Goiás Campus Catalão Departamento de Matemática
Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares
MONITORAMENTO E AVALIAÇÃO APSUS - 2012
MONITORAMENTO E AVALIAÇÃO APSUS - 2012 REFLEXÃO INICIAL "Não é possível gerir o que não se pode medir...e, se não se pode gerir, não se poderá melhorar " (William Hewlett) Se você não mede, você não gerencia!
Programação de Computadores I. Linguagem C Função
Linguagem C Função Prof. Edwar Saliba Júnior Fevereiro de 2011 Unidade 07 Função 1 Conceitos As técnicas de programação dizem que, sempre que possível, evite códigos extensos, separando o mesmo em funções,
Circuitos eléctricos Profª Helena Lança Ciências Físico-Química 9ºano
Profª Helena Lança Ciências Físico-Química 9ºano Um circuito eléctrico é um caminho por onde passa a corrente eléctrica. É constituído obrigatoriamente por um gerador e um receptor, podendo-se também intercalar
A LÓGICA NA MATEMÁTICA
A LÓGICA NA MATEMÁTICA 1. BREVE HISTÓRICO O pensamento lógico teve forte presença no cerne da Civilização Grega. Aristóteles (384-322 A.C) é tido como o primeiro sistematizador do conhecimento lógico da
Simulado de Linguagem de Programação Java
Simulado de Linguagem de Programação Java 1. Descreva o processo de criação de programas em Java, desde a criação do código-fonte até a obtenção do resultado esperado, por meio de sua execução. Cite as
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Ciências Experimentais
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Ciências Experimentais Planificação Anual de Matemática A 10º ano Ano Letivo 2015/2016 TEMA
Abdução exemplos. Um jogo de abdução. Apartment 13 O objetivo do Jogo é descobrir como se deu um assassinato.
1 Aula 4 Interação Humano-Computador (com foco em métodos de pesquisa) Prof. Dr. Osvaldo Luiz de Oliveira 2 Abdução exemplos Um jogo de abdução Apartment 13 O objetivo do Jogo é descobrir como se deu um
Biblioteca Escolar. O Dicionário
O Dicionário O que é um dicionário? Livro de referência onde se encontram palavras e expressões de uma língua, por ordem alfabética, com a respetiva significação ou tradução para outra língua e ainda,
Prática. Exercícios didáticos ( I)
1 Prática Exercício para início de conversa Localize na reta numérica abaixo os pontos P correspondentes aos segmentos de reta OP cujas medidas são os números reais representados por: Exercícios didáticos
Trata-se do processo de gestão, organização e orientação da equipe do projeto;
Aula 19 1 2 Trata-se do processo de gestão, organização e orientação da equipe do projeto; A equipe do projeto refere-se às pessoas com papéis e responsabilidades para completar o projeto; É importante
