LÓGICA I ANDRÉ PONTES
|
|
|
- Jorge Terra
- 6 Há anos
- Visualizações:
Transcrição
1 LÓGICA I ANDRÉ PONTES
2 4. Lógica Proposicional
3 A Linguagem da Lógica Proposicional Letras Proposicionais: P, Q, R, S, T,... Conectivos Lógicos: Símbolos auxiliares: (, ), = Conectivo Leitura Símbolo Símbolos alternativos Negação não... não é o caso que... Conjunção... e... &. Disjunção... ou... Implicação/Condicional Se..., então... Bi-implicação/Bicondicional... se e, somente se,...
4 Definindo recursivamente fórmulas bem formadas (fbf) F 0 Toda letra proposicional é uma fbf. F 1 Se é uma fbf, então não é uma fbf. F 2 Se e são fbf, então é uma fbf. F 3 Se e são fbf, então é uma fbf. F 4 Se e são fbf, então é uma fbf. F 5 Se e são fbf, então é uma fbf. F 6 Nada mais é uma fbf.
5 4.1 Tabelas de Verdade
6 Tabelas de verdade Negação (): não V F F V
7 Tabelas de verdade Conjunção ():... e V V V V F F F V F F F F
8 Tabelas de verdade Disjunção ():... ou V V V V F V F V V F F F
9 Tabelas de verdade Implicação/Condicional (): Se..., então V V V V F F F V V F F V
10 Tabelas de verdade Justificando [FV] resultar em verdade: Uma aplicação na aritmética Definição: Primo é todo aquele número que só é divisível por ele mesmo e por 1. n (n é primo n2) 1 é primo 12 [FF] V 4 é primo 42 [FV] V A implicação lógica expressa condição suficiente, mas não necessária. Se um dado animal é uma baleia, então ele é um mamífero. Podemos ainda provar por equivalência: PQ (PQ) Aplicando a interpretação P(F) e Q(V), obtemos V para ambas as sentenças. O resultado pode ser verificado via tabelas de verdade.
11 Tabelas de verdade Bicondicional/Bi-implicação ():... se, somente se, V V V V F F F V F F F V
12 Valorações booleanas Uma valoração sobre o conjunto de todas as fórmulas da lógica proposicional é dita uma valoração booleana, caso quaisquer fórmulas e do conjunto em questão satisfaçam as seguintes regras: 1. Uma fórmula recebe o valor V, caso receba o valor F; e recebe o valor F, caso receba o valor V. 2. Uma fórmula recebe o valor V, apenas caso e recebam ambas o valor V; em caso contrário, recebe o valor F. 3. Uma fórmula recebe o valor V, caso pelo menos umas das duas fórmulas, ou, receba valor V; em caso contrário, recebe o valor F. 4. Uma fórmula recebe o valor F, quando e recebem, respectivamente, os valores V e F; em caso contrário, recebe o valor V. 5. Uma fórmula recebe o valor V casos ambas as fórmulas, e, recebam o mesmo valor; em caso contrário, recebe valor F.
13 Exercício: completude vero-funcional 1. Prove que: a) é definível a partir de {, } b) é definível a partir de {, } c) é definível a partir de {, } d) é definível a partir de {, } e) é definível a partir de {, } f) é definível a partir de {, } Um par de conectivo é dito completo vero-funcionalmente, caso ele possa expressar as funções de verdade de todos os outros conectivos além deles. Sendo assim, 2. Prove que os pares {, }, {, } e {, } são completos vero-funcionalmente. 3. Prove que o par {, } não é completo vero-funcionalmente.
14 Aplicação: Lógica de Circuitos Circuito conjuntivo (): Circuito disjuntivo ():
15 4.2 Regras de Inferência: Dedução Natural
16 Negação () Dupla Negação (DN)
17 Conjunção () Eliminação da Conjunção (E-) Introdução da Conjunção (I-)
18 Disjunção () Eliminação da Disjunção (E-) Introdução da Disjunção (I-)
19 Implicação () Modus Ponens (MP): Modus Tollens (MT): Condicionalização (Cond.):
20 Bi-implicação/Bicondicional () Eliminação da Bi-implicação (E-) Introdução da Bi-implicação (I-)
21 Redução ao Absurdo (RA)
22 4.2 Tablôs Semânticos
23 Regras do Tablô Negação V F F V
24 Regras do Tablô Conjunção V V V F F F
25 Regras do Tablô Disjunção V V V F F F
26 Regras do Tablô Implicação (Condicional) V F V F V F
27 Regras do Tablô Bi-implicação (Bi-condicional) V F V F V F V F F V
Lógica Proposicional Parte II. Raquel de Souza Francisco Bravo 25 de outubro de 2016
Lógica Proposicional Parte II e-mail: [email protected] 25 de outubro de 2016 Argumento Válido Um argumento simbólica como: pode ser ser representado em forma P 1 P 2 P 3 P n Q Onde P 1, P 2,,P n são proposições
Sistema dedutivo. Sistema dedutivo
Sistema dedutivo Estudaremos um sistema dedutivo axiomático axiomas lógicos e axiomas não lógicos (ou esquemas de axiomas) e regras de inferência (ou esquemas de regra) do tipo de Hilbert para a lógica
Lógica Proposicional (Consequência lógica / Dedução formal)
Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /
Dedução Natural e Sistema Axiomático Pa(Capítulo 6)
Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista
3.3 Cálculo proposicional clássico
81 3.3 Cálculo proposicional clássico 3.3.1 Estrutura dedutiva Neste parágrafo serão apresentados, sem preocupação com excesso de rigor e com riqueza de detalhes, alguns conceitos importantes relativos
Fundamentos de Lógica Matemática
Webconferência 5-22/03/2012 Prova por resolução Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução É possível
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 4 - ABRIL DE 2018 Professor: Luís Rodrigo E-mail: [email protected]
Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5)
Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Conjunto de conectivos completo 2. na
Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior
Lógica Formal Matemática Discreta Prof. Vilson Heck Junior [email protected] Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 0.1 - MARÇO DE 2017 Professor: Luís Rodrigo E-mail: [email protected]
Lógica. Cálculo Proposicional. Introdução
Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL Prof. Cesar Tacla/UTFPR/Curitiba Slides baseados no capítulo 1 de DA SILVA, F. S. C.; FINGER M. e de MELO A. C. V.. Lógica para Computação. Thomson Pioneira Editora, 2006. Conceitos
Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por:
LÓGICA Objetivos Apresentar regras e estruturas adicionais sobre o uso de proposições. Conceituar implicação lógica, tautologias, e as propriedade sobre proposições. Apresentar os fundamentos da dedução,
Lógica para Computação
Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Sistemas Dedutivos Um Sistema Dedutivo (SD) tem por objetivo obter, a partir de um conjunto
Lógica para computação
Lógica para computação PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Introdução Esta seção considera a análise de algumas propriedades semânticas da LP que relacionam os resultados
n. 5 Implicações Lógicas Def.: Diz-se que uma proposição P (p, q, r, ) implica V V V V F F F V V F F V
n. 5 Implicações Lógicas A implicação lógica trata de um conjunto de afirmações, proposições simples ou compostas, cujo encadeamento lógico resultará em uma conclusão, a ser descoberta. Tal conclusão deverá
Exemplo 7 1 I. p q: Se o time joga bem, então o time ganha o campeonato. q s: Se o time ganha o campeonato então. s: Os torcedores não estão felizes.
Exemplo 7 1 I p q: Se o time joga bem, então o time ganha o campeonato }{{}}{{} p q p r: Se o time não joga bem, então o técnico é o culpado }{{}}{{} p r q s: Se o time ganha o campeonato então }{{} q
Lógica para computação - Propriedades Semânticas da Lógica Proposicional (parte 2/2) Alfabeto Simplificado e Formas Normais
DAINF - Departamento de Informática Lógica para computação - Propriedades Semânticas da Lógica Proposicional (parte 2/2) Alfabeto Simplificado e Formas Normais Prof. Alex Kutzke (http://alex.kutzke.com.br/courses)
Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César
Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições
Lógica para Computação
Aula 07 - Lógica Proposicional 1 Faculdade de Informática - PUCRS August 27, 2015 1 Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores. Sinopse Nesta aula,
Lógica Computacional
Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de
3.4 Fundamentos de lógica paraconsistente
86 3.4 Fundamentos de lógica paraconsistente A base desta tese é um tipo de lógica denominada lógica paraconsistente anotada, da qual serão apresentadas algumas noções gerais. Como já foi dito neste trabalho,
Lógica Computacional
Lógica Computacional Modus Ponens e Raciocínio Hipotético Introdução e eliminação da Implicação e da Equivalência Completude e Coerência do Sistema de Dedução Natural 24 Outubro 2016 Lógica Computacional
NHI Lógica Básica (Lógica Clássica de Primeira Ordem)
NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático
Fundamentos de Lógica Matemática
Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise
Lógica Proposicional
Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. ([email protected]) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo
CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY. Proposições Fuzzy. Regras são implicações lógicas. Introdução Introdução, Objetivo e Histórico
CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos ásicos Definição, Características e Formas de Imprecisão Conjuntos Fuzz Propriedades, Formas de Representação e Operações Relações, Composições,
Aula 6: Dedução Natural
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado
Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza
Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Argumento Sequência de sentenças......uma das quais se afirma verdadeira
Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22
Introdução ao Curso Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG - 2019/01 1 / 22 Introdução: O que é
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.
Lógica proposicional
Lógica proposicional Sintaxe Proposição: afirmação que pode ser verdadeira ou falsa Proposições podem ser expressas como fórmulas Fórmulas são construídas a partir de símbolos: De verdade: true (verdadeiro),
Aula 6: Dedução Natural
Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado
LÓGICA APLICADA A COMPUTAÇÃO
LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Conteúdo Programático Unidade I Linguagens Formais Linguagens Formais Sigma Álgebras Relação entre Linguagens Formais e Sigma Álgebras Sigma Domínios
2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem
2 Lógica Fuzzy 2.1 Cálculo proposicional (lógica proposicional) 2.2 Lógica de Predicados 2.3 Lógica de múltiplos valores 2.4 Lógica Fuzzy Proposições fuzzy Inferência a partir de proposições fuzzy condicionais
Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo
Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento
Prof. João Giardulli. Unidade III LÓGICA
Prof. João Giardulli Unidade III LÓGICA Objetivo Apresentar os seguintes conceitos: argumento; verificação da validade. Argumento: Algumas definições (dicionário): 1. Raciocínio através do qual se tira
Lógica e Matemática Discreta
Lógica e Matemática Discreta Proposições Prof clezio 26 de Abril de 2017 Curso de Ciência da Computação Inferência Lógica Uma inferência lógica, ou, simplesmente uma inferência, é uma tautologia da forma
Lógica e Matemática Discreta
Lógica e Matemática Discreta Proposições Prof clezio 20 de Março de 2018 Curso de Ciência da Computação Proposições e Conectivos Conceito de proposição Definição: Chama-se proposição a todo conjunto de
01/09/2014. Capítulo 1. A linguagem da Lógica Proposicional
Capítulo 1 A linguagem da Lógica Proposicional 1 Introdução O estudo da Lógica é fundamentado em: Especificação de uma linguagem Estudo de métodos que produzam ou verifiquem as fórmulas ou argumentos válidos.
Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur
Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo
CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY LÓGICA FUZZY. Um dos componentes mais importantes de um sistema fuzzy é o Módulo de Regras.
CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos ásicos Definição, Características e Formas de Imprecisão Conjuntos Fuzzy Propriedades, Formas de Representação e Operações Lógica Fuzzy Relações,
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL Proposições frases AFIRMATIVAS que aceitam julgamento: Verdadeiro - Acontece Falso - Não acontece Há frases que não aceitam valorações lógicas Verdadeiro/Falso Exemplos: 1) Interrogativas:
Lógica Computacional
Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos
Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO
Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema
Conhecimento e Raciocínio Lógica Proposicional
Conhecimento e Raciocínio Lógica Proposicional Agente Baseado em Conhecimento ou Sistema Baseado em Conhecimento Representa conhecimento sobre o mundo em uma linguagem formal (KB) Raciocina sobre o mundo
Lógica Matemática. Prof. Gerson Pastre de Oliveira
Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;
Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo
Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo Motivação IA estuda como simular comportamento inteligente comportamento
Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática
Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: [email protected] ou [email protected] versão 1.0
Lógica Proposicional (cont.)
Lógica Proposicional (cont.) Conectivos lógicos Conjunção (e: ^) Disjunção (ou: v) Negação (não : ~) Condicional (se...então: ) Bicondicional (se somente se: ) 1 Negação de um proposição composta Negar
Aula 4: Consequência Lógica e Equivalência Lógica
Lógica para Computação Segundo Semestre, 2014 Aula 4: Consequência Lógica e Equivalência Lógica DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 4.1. Em lógica proposicional dizemos que uma fórmula B
Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes
Aula 04 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Tabela da Verdade; Operações Lógicas sobre Proposições; Revisando As proposições
Lógica Computacional DCC/FCUP 2017/18
2017/18 Raciocínios 1 Se o André adormecer e alguém o acordar, ele diz palavrões 2 O André adormeceu 3 Não disse palavrões 4 Ninguém o acordou Será um raciocínio válido? Raciocínios Forma geral do raciocínio
Lógica para Computação. Álgebra de Boole
Lógica para Computação Álgebra de Boole Formas Normais Definição: diz-se que uma proposição está na forma normal (FN) se e somente se, quando muito, contém os conectivos ~, ^ e v. - Toda proposição pode
Lógica para Computação
Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos,
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/53 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Lógica Proposicional Métodos de Validação de Fórmulas. José Gustavo de Souza Paiva. Introdução
Lógica Proposicional Métodos de Validação de Fórmulas José Gustavo de Souza Paiva Introdução Análise dos mecanismos que produzem e verificam os argumentos válidos apresentados na linguagem da lógica Três
Lógica Proposicional e Dedução Natural 1/48. Douglas O. Cardoso docardoso.github.io
Lógica Proposicional e Dedução Natural [email protected] docardoso.github.io Lógica Proposicional e Dedução Natural 1/48 Roteiro 1 Uma Introdução Intuitiva 2 Proposições 3 DN: regras básicas
Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65
Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados
Lógica Computacional
Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
Lógica Computacional
Aula Teórica 2: da Lógica Proposicional Departamento de Informática 17 de Fevereiro de 2011 Descrição informal Lógica proposicional Objecto Ocupa-se do estudo do comportamento dos conectivos lógicos (negação,
UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira
Aula 6 Lógica Matemática Álgebra das proposições e método dedutivo As operações lógicas sobre as proposições possuem uma série de propriedades que podem ser aplicadas, considerando os conectivos inseridos
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Lista Um dos objetivos principais da lógica é o estudo de estruturas
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar
Agentes Lógicos. Os agentes baseados no conhecimento:
Agentes Lógicos A inteligência dos seres humanos é alcançada, não somente por mecanismos puramente reflexos, mas, por processos de raciocínio que operam em representações internas do conhecimento. Em IA,
Lógica Proposicional Dedução Natural
Lógica Matemática Lógica Proposicional Dedução Natural Tiago Massoni "testando" argumentos dado que d c como fazer? e t d então c t 2 Assim... Testar argumentos com tabela verdade é proibitivo não escalável
Afirmações Matemáticas
Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,
MATEMÁTICA Questões comentadas Daniela Arboite
MATEMÁTICA Questões comentadas Daniela Arboite TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A violação de direitos autorais é punível
Lógica Computacional
Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Lógica Proposicional Parte 2
Lógica Proposicional Parte 2 Como vimos na aula passada, podemos usar os operadores lógicos para combinar afirmações criando, assim, novas afirmações. Com o que vimos, já podemos combinar afirmações conhecidas
Aula 1 Aula 2. Ana Carolina Boero. Página:
Elementos de lógica e linguagem matemática E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática
Lógica Computacional. Nelma Moreira. Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto
Lógica Computacional Nelma Moreira Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: nam@nccuppt Versão: 2010 Conteúdo 1 Lógica proposicional 5 11 Linguagens
Alfabeto da Lógica Proposicional
Ciência da Computação Alfabeto da Lógica Sintaxe e Semântica da Lógica Parte I Prof. Sergio Ribeiro Definição 1.1 (alfabeto) - O alfabeto da é constituído por: símbolos de pontuação: (, ;, ) símbolos de
Introdução à Programação I
Introdução à Programação I Programação Estruturada Álgebra Booleana e Expressões Compostas Material da Prof. Ana Eliza Definição: Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem
Lógica Matemática - LMA 0001
Lógica Matemática - LMA 0001 Rogério Eduardo da Silva - [email protected] Claudio Cesar de Sá - [email protected] Universidade do Estado de Santa Catarina Departamento de Ciência da Computação 5
2016 / Nome do aluno: N.º: Turma:
Teste de Matemática A 2016 / 2017 Teste N.º 1 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em
Lógica Fuzzy. Conectivos e Inferência. Professor: Mário Benevides. Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias
Lógica Fuzzy Conectivos e Inferência Professor: Mário Benevides Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias Conectivos O que são conectivos? São operadores que conectam
Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.
NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes [email protected] DCC-FCUP Complexidade 2002/03 1 Fundamentos de Lógica No nosso dia a dia, usamos todo o tipo de frases: Cinco é menor
Operações Lógicas sobre Proposições
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Operações Lógicas sobre Proposições Lógica Computacional 1 Site: http://jeiks.net E-mail: [email protected]
Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues
Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma
Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 10: Resolução Prof. Ricardo Dutra da Silva A resolução é um método de inferência em que: as fórmulas devem estar na Forma Clausal; deduções
Matemática discreta e Lógica Matemática
AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Lógica proposicional: introdução,
TABELA VERDADE. por: André Aparecido da Silva. Disponível em:
TABELA VERDADE por: André Aparecido da Silva Disponível em: http://www.oxnar.com.br/aulas/logica Normalmente, as proposições são representadas por letras minúsculas (p, q, r, s, etc). São outros exemplos
Aula 7: Dedução Natural 2
Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 7: Dedução Natural 2 Prof. Ricardo Dutra da Silva -introdução Dada uma premissa A, nós podemos concluir A B para qualquer fórmula B. A justificativa
