CONJUNTOS FUZZY CONTEÚDO. CONJUNTOS CRISP x FUZZY. Conjuntos Crisp x Fuzzy Definição Representação Propriedades Formatos Operações Hedges

Tamanho: px
Começar a partir da página:

Download "CONJUNTOS FUZZY CONTEÚDO. CONJUNTOS CRISP x FUZZY. Conjuntos Crisp x Fuzzy Definição Representação Propriedades Formatos Operações Hedges"

Transcrição

1 CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos Básicos Definição, Características e Formas de Imprecisão Conjuntos Fuzzy Propriedades, Formas de Representação e Operações Lógica Fuzzy Relações, Composições, Modus Ponens Generalizado Aplicações CONJUNTOS FUZZY Conjuntos Crisp x Fuzzy Definição Representação Propriedades Formatos Operações Hedges CONJUNTOS CRISP x FUZZY Conjuntos Ordinários (ou Crisp ) A noção de pertinência é bem definida: elementos pertencem ou não pertencem a um dado conjunto A (em um universo X) f A 1 se e somente se ( x) = 0 se e somente se f : função característica x A x A Conjuntos Crisp x Fuzzy Entretanto: Exemplos: Existem conjuntos cujo limite entre pertinência e não-pertinência é vago, com transição gradual entre esses dois grupos conjunto de pessoas altas conjunto de carros caros números muito maiores que 1 1

2 CONJUNTOS FUZZY Conjuntos Crisp x Fuzzy Definição Representação Propriedades Formatos Operações Hedges CONJUNTOS FUZZY Conjuntos Fuzzy A função característica é generalizada, podendo assumir um número infinito de valores no intervalo [0,1] função de pertinência Um conjunto fuzzy A em um universo X é definido por uma função de pertinência µ A (x): X [0,1] Conjuntos Crisp x Fuzzy Conjuntos Crisp x Fuzzy Exemplos: Pessoas Altas Exemplos: Carros Caros f (x) Função Característica µ (x) Função de Pertinência f (x) Função Característica µ (x) Função de Pertinência Altura (m) Altura (m) Preço (R$) Preço (R$) CRISP FUZZY CRISP FUZZY 2

3 Conjuntos Crisp x Fuzzy Exemplos: Números muito maiores que 1 f (x) Função Característica µ (x) Função de Pertinência Exemplos: Conjuntos Crisp U = todos os automóveis do Rio de Janeiro Sub-Conjuntos de U: CRISP FUZZY azul azul cinza marrom marrom vermelho verde outra Nacional Nacional Importado 4 cilindros 6 cilindros 8 cilindros outros Conjuntos Fuzzy Conjunto A no Universo de Discurso U com µ A (x) [0,1] µ (x) medida do grau de compatibilidade de um elemento x em U com o subconjunto F importado nacional % de peças nacionais CONJUNTOS FUZZY Conjuntos Crisp x Fuzzy Definição Representação Propriedades Formatos Operações Hedges 3

4 Conjuntos Fuzzy Representação: Um conjunto fuzzy A em X pode ser representado como um conjunto de pares ordenados de um elemento genérico x e seu grau de pertinência CONJUNTOS FUZZY Outra Representação: X contínuo: µ A( x) / x X denota a coleção de todos os pontos x X com função de pertinência µ (x) { µ ( x /x} x X A = A ) X discreto: n i= 1 µ ( x ) / x A i i denota a união de todos os pontos x i X com graus de pertinência µ (x i ) Conjuntos Fuzzy Exemplo: seja A = inteiros próximos de 10 X = {n inteiros de 1 a 20} A = 0.1/ / /9 + 1/ / / /13 Observações: Os inteiros não especificados possuem µ A (x) = 0 Os valores de µ A (x) são escolhidos exceto para µ A (x)=1.0, todos os outros valores podem ser modificados. A Função de Pertinência, neste caso específico, deve ser simétrica trica. CONJUNTOS FUZZY Conjuntos Crisp x Fuzzy Definição Representação Propriedades Formatos Operações Hedges 4

5 Altura: PROPRIEDADES É o maior grau de pertinência permitido pela função de pertinência PROPRIEDADES Normalização: Um certo conjunto fuzzy é normal se a sua altura for igual a 1 Forma normal mínima Forma normal máxima pelo menos um pelo menos um elemento elemento tem µ (x) =1 tem µ(x) = 1 e outro elemento tem µ(x) = 0 Para um bom desempenho, os conjunto fuzzy devem ser normalizados PROPRIEDADES Domínio do Conjunto Fuzzy: É o universo total de valores possíveis para os elementos de um conjunto depende do contexto Altas Meia-Idade PROPRIEDADES Suporte do Conjunto: É a área efetiva do domínio de um conjunto fuzzy que apresenta valores de µ (x) > 0 µ (x) Pesado Domínio Aberto 1.80m 45 Domínio Fechado Suporte Domínio kg 5

6 PROPRIEDADES Observação: O conjunto Fuzzy cujo suporte é um único ponto em X, com valor de µ (x) = 1, é chamado de Conjunto Singleton µ (x) Igual a PROPRIEDADES Conjunto α-cut: É uma restrição (limite) imposta ao domínio, baseada no valor de α Contém todos os elementos do domínio que possuam µ(x) acima de um certo valor de α µ(x) α α-cut fraco µ(x) > α α-cut forte PROPRIEDADES Conjunto α-cut: útil para as funções com longos tails, que tendem a possuir valores muito baixos de µ(x) por um domínio extenso ajuda a reduzir ruído µ (x) α-cut = 0.2 pesado 0.2-cut do conjunto pesado é, então, de 100 a 140 kg kg PROPRIEDADES Conjunto α-cut: Idade Criança Jovem Adulto Velho Conjuntos α-cut do conjunto VELHO: velho.2 = {30,40,50,60,70,80} velho.8 = {60,70,80} velho 1.0 = {70,80} 6

7 PROPRIEDADES Universo de Discurso: É o espaço fuzzy completo de variação de uma variável do modelo. Temperatura Frio Média Quente Muito Quente Universo de Discurso para a variável do modelo TEMPERATURA é de 100 a 360 X Entradas precisas SISTEMA FUZZY Fornecidas por especialistas ou extraídas de dados numéricos Para ativar as regras FUZZIFICADOR Conjuntos nebulosos de entrada REGRAS INFERÊNCIA Para fornecer a saída precisa DEFUZZIFICADOR Conjunto nebuloso de saída Mapeia fuzzy sets em fuzzy sets Determina como as regras são ativadas e combinadas y Saída precisa Exemplo do Guindaste Conjuntos Nebulosos Variáveis de Entrada: distância ângulo Variável de Saída: Variável de Saída: Potência 7

8 Ângulo Variáveis de Entrada FUZZIFICADOR Distância Ângulo Variáveis de Entrada Potência Variável de Saída 8

9 REGRAS FUZZY MÓDULO DE REGRAS Exemplos: Se DISTÂNCIA = Far e ÂNGULO = Zero Então POTÊNCIA = Pos_Medium Se DISTÂNCIA = Far e ÂNGULO = Neg_Small Se DISTÂNCIA = Medium e ÂNGULO = Neg_Small INFERÊNCIA INFERÊNCIA Dados de Entrada: distância 12 jardas ângulo -4 9

10 REGRA NÚMERO 1 Se DISTÂNCIA = Far e ÂNGULO = Zero Então POTÊNCIA = Pos_Medium REGRA NÚMERO 1 Se DISTÂNCIA = Far e ÂNGULO = Zero Então POTÊNCIA = Pos_Medium INFERÊNCIA - Antecedente Portanto: Cálculo do antecendente da regra 1: Se DISTÂNCIA = Far e ÂNGULO = Zero Então POTÊNCIA = Pos_Medium µ FAR (x) = 0.15 µ ZERO (x) = 0.7 INFERÊNCIA - Consequente Como o antecedente é verdadeiro com grau de pertinência 0.15, o consequente deve ter no máximo um grau de veracidade de µ Far zero zero =

11 INFERÊNCIA - Consequente Se DISTÂNCIA = Far e ÂNGULO = Zero Então POTÊNCIA = Pos_Medium REGRA NÚMERO 2 Se DISTÂNCIA = Far e ÂNGULO = Neg_Small REGRA NÚMERO 2 Se DISTÂNCIA = Far e ÂNGULO = Neg_Small INFERÊNCIA - Antecedente Portanto: Cálculo do antecendente da regra 2: Se DISTÂNCIA = Far e ÂNGULO = Neg_Small µ FAR (x) = 0.15 µ NEG_SMALL (x) = -4 NEG_small = 0.15 µ FAR NEG_small 11

12 INFERÊNCIA - Consequente Se DISTÂNCIA = Far e ÂNGULO = Neg_Small REGRA NÚMERO 3 Se DISTÂNCIA = Medium e ÂNGULO = Neg_Small REGRA NÚMERO 3 Se DISTÂNCIA = Medium e ÂNGULO = Neg_Small INFERÊNCIA - Antecedente Portanto: Cálculo do antecendente da regra 3: Se DISTÂNCIA = Medium e ÂNGULO = Neg_Small µ MEDIUM (x) = 0.85 µ NEG_SMALL (x) = -4 NEG_small = µ medium NEG_small 12

13 INFERÊNCIA - Consequente Se DISTÂNCIA = Medium e ÂNGULO = Neg_Small INFERÊNCIA Composição União de TODAS as regras com Grau de ativação diferente de ZERO 0.15 INFERÊNCIA Como é a UNIÃO,, utiliza-se, geralmente o MÁXIMO DEFUZZIFICADOR

14 DEFUZZIFICADOR DEFFUZIFICADOR Um Método M possível: Avalia-se os valores TÍPICOS de cada conjunto Transforma o conjunto nebuloso obtido pela Inferência e transforma em um valor preciso INFERÊNCIA Pondera-se o valor típicot com o seu grau de pertinência INFERÊNCIA Pondera-se o valor típicot com o seu grau de pertinência MM = (.15x x24) = 18.1 ( ) 10 Média dos Máximos 24 14

SISTEMAS FUZZY CONTEÚDO CONJUNTOS FUZZY. CONJUNTOS CRISP x FUZZY

SISTEMAS FUZZY CONTEÚDO CONJUNTOS FUZZY. CONJUNTOS CRISP x FUZZY SISTEMAS FUZZY A maioria dos fenômenos com os quais nos deparamos são imprecisos Exemplo: dia QUENTE (40, 35, 30, 29,5?) Imprecisão Intrínseca ajuda na compreensão do problema. Fuzziness é independente

Leia mais

A maioria dos fenômenos com os quais nos deparamos são imprecisos. compreensão do problema. capacidade de medição.

A maioria dos fenômenos com os quais nos deparamos são imprecisos. compreensão do problema. capacidade de medição. SISTEMAS NEBULOSOS A maioria dos fenômenos com os quais nos deparamos são imprecisos Exemplo: dia QUENTE (40, 35, 30, 29,5?) Imprecisão Intrínseca ajuda na compreensão do problema. Fuzziness é independente

Leia mais

Conteúdo: Conjuntos crisp x Conjuntos fuzzy Representação Propriedades Formatos

Conteúdo: Conjuntos crisp x Conjuntos fuzzy Representação Propriedades Formatos Conteúdo: Conjuntos crisp x Conjuntos fuzzy Representação Propriedades Formatos Conjuntos Crisp x Fuzzy Conjuntos crisp ou Conjuntos clássicos: cada entidade ou objeto de um dado universo pode pertencer

Leia mais

Conteúdo: Sistemas Fuzzy Fuzzifier Inferência Regras Máquina de Inferência Defuzzifier

Conteúdo: Sistemas Fuzzy Fuzzifier Inferência Regras Máquina de Inferência Defuzzifier Conteúdo: Sistemas Fuzzy Fuzzifier Inferência Regras Máquina de Inferência Defuzzifier Sistemas fuzzy A inferência fuzzy é um paradigma computacional baseado na Teoria de conjuntos fuzzy, regras de inferência

Leia mais

CONTEÚDO LÓGICA NEBULOSA INTRODUÇÃO INTRODUÇÃO. Lógica Procura modelar o raciocínio. Lógica. Marley Maria B.R. Vellasco

CONTEÚDO LÓGICA NEBULOSA INTRODUÇÃO INTRODUÇÃO. Lógica Procura modelar o raciocínio. Lógica. Marley Maria B.R. Vellasco LÓGICA NEBULOSA Marley Maria B.R. Vellasco ICA: Núcleo de Pesquisa em Inteligência Computacional Aplicada PUC-Rio CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos Básicos Definição, Características

Leia mais

Modelos Evolucionários e Tratamento de Incertezas

Modelos Evolucionários e Tratamento de Incertezas Ciência da Computação Modelos Evolucionários e Tratamento de Incertezas Aula 05 Teoria dos Conjuntos Difusos Max Pereira CONJUNTOS CLÁSSICOS Teoria dos Conjuntos é o estudo da associação entre objetos

Leia mais

LÓGICA NEBULOSA CONTEÚDO

LÓGICA NEBULOSA CONTEÚDO LÓGICA NEBULOSA Marley Maria B.R. Vellasco ICA: Núcleo de Pesquisa em Inteligência Computacional Aplicada PUC-Rio CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos Básicos Definição, Características

Leia mais

LÓGICA FUZZY (difusa ou nebulosa) Adão de Melo Neto

LÓGICA FUZZY (difusa ou nebulosa) Adão de Melo Neto LÓGICA FUZZY (difusa ou nebulosa) Adão de Melo Neto SUMÁRIO INTRODUÇÃO CONCEITO OBJETIVO PRINCÍPIO LÓGICAS: CLÁSSICA x DIFUSA CONJUNTO FUZZY GRAU DE PERTINÊNCIA FUNÇÃO DE PERTINÊNCIA MODIFICADORES TERMINOLOGIA

Leia mais

lnteligência Artificial Introdução a Lógica Nebulosa (Fuzzy)

lnteligência Artificial Introdução a Lógica Nebulosa (Fuzzy) lnteligência Artificial Introdução a Lógica Nebulosa (Fuzzy) Sumário Introdução Fundamentos Operações básicas Representação do Conhecimento Modelo de Inferência Passos de Projeto de um Sistema Nebuloso

Leia mais

Sistemas especialistas Fuzzy

Sistemas especialistas Fuzzy Sistemas Fuzzy Sistemas especialistas Fuzzy Especialistas Senso comum para resolver problemas Impreciso, inconsistente, incompleto, vago Embora o transformador esteja um pouco carregado, pode-se usá-lo

Leia mais

lnteligência Artificial Introdução a Lógica Nebulosa (Fuzzy)

lnteligência Artificial Introdução a Lógica Nebulosa (Fuzzy) lnteligência Artificial Introdução a Lógica Nebulosa (Fuzzy) Sumário Introdução Fundamentos Operações básicas Representação do Conhecimento Modelo de Inferência Passos de Projeto de um Sistema Nebuloso

Leia mais

Sistema de Inferência Fuzzy. Prof. Juan Mauricio Villanueva

Sistema de Inferência Fuzzy. Prof. Juan Mauricio Villanueva Sistema de Inferência Fuzzy Prof. Juan Mauricio Villanueva jmauricio@cear.ufpb.br http://app.cear.ufpb.br/~juan/ 1 Introdução Lógica Fuzzy É uma ferramenta que permite capturar informações imprecisas,

Leia mais

Reconhecimento das cores do MSX por Lógica Fuzzy

Reconhecimento das cores do MSX por Lógica Fuzzy Reconhecimento das cores do MSX por Lógica Fuzzy Resumo O objetivo deste artigo é demonstrar como é possível reconhecer as cores nativas do MSX 1 a partir de imagens de 24 bits do PC. 1- Introdução A redução

Leia mais

Variáveis Linguísticas CONTEÚDO. Variáveis Linguísticas. Variáveis Linguísticas. Formalismo: caracterizada por uma

Variáveis Linguísticas CONTEÚDO. Variáveis Linguísticas. Variáveis Linguísticas. Formalismo: caracterizada por uma CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos Básicos Definição, Características e Formas de Imprecisão Conjuntos Fuzzy Propriedades, Formas de Representação e Operações Lógica Fuzzy Relações,

Leia mais

Inteligência Artificial Escola de Verão Laboratório Associado de Computação e Matemática Aplicada LAC.

Inteligência Artificial Escola de Verão Laboratório Associado de Computação e Matemática Aplicada LAC. Inteligência Artificial Escola de Verão 28 Laboratório Associado de Computação e Matemática Aplicada LAC www.lac.inpe.br/~demisio/ia_lac.html Lógica Nebulosa A Lógica Nebulosa (ou Lógica Difusa Fuzzy Logic

Leia mais

Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação. Inteligência Artificial. Lógica Fuzzy Aula II

Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação. Inteligência Artificial. Lógica Fuzzy Aula II Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Lógica Fuzzy Aula II Introdução a Lógica Fuzzy Retomada Função de pertinência Variáveis linguísticas

Leia mais

LÓGICA FUZZY. Adão de Melo Neto

LÓGICA FUZZY. Adão de Melo Neto LÓGICA FUZZY Adão de Melo Neto INTRODUÇÃO CONCEITO OBJETIVO PRINCÍPIO LÓGICAS: CLÁSSICA x DIFUSA CONJUNTO FUZZY GRAU DE PERTINÊNCIA FUNÇÃO DE PERTINÊNCIA MODIFICADORES TERMINOLOGIA OPERAÇÕES SOBRE CONJUNTOS

Leia mais

INTELIGÊNCIA ARTIFICIAL

INTELIGÊNCIA ARTIFICIAL INTELIGÊNCIA ARTIFICIAL LÓGICA FUZZY (ou NEBULOSA) Prof. Ronaldo R. Goldschmidt ronaldo.rgold@gmail.com O que é? Técnica inteligente que tem como objetivo modelar o modo aproimado de raciocínio, imitando

Leia mais

CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY LÓGICA FUZZY. Um dos componentes mais importantes de um sistema fuzzy é o Módulo de Regras.

CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY LÓGICA FUZZY. Um dos componentes mais importantes de um sistema fuzzy é o Módulo de Regras. CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos ásicos Definição, Características e Formas de Imprecisão Conjuntos Fuzzy Propriedades, Formas de Representação e Operações Lógica Fuzzy Relações,

Leia mais

Laboratório 4 - Controle nebuloso

Laboratório 4 - Controle nebuloso Laboratório 4 - Controle nebuloso PTC 2619 / PTC 3418 Laboratório de Automação 1º semestre de 2017 Bruno A. Angélico Laboratório de Automação e Controle Departamento de Engenharia de Telecomunicações e

Leia mais

Introdução aos Conjuntos

Introdução aos Conjuntos Introdução aos Conjuntos Nebuloso (Fuzzy) Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B niversidade Estadual de Feira de Santana Informações imprecisas Termos imprecisos

Leia mais

Modelos Evolucionários e Tratamento de Incertezas

Modelos Evolucionários e Tratamento de Incertezas Ciência da Computação Modelos Evolucionários e Tratamento de Incertezas Aula 07 Inferência Difusa Sistemas de Controle Difuso Max Pereira Regras difusas SE ENTÃO Antecedente:

Leia mais

CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY. Proposições Fuzzy. Regras são implicações lógicas. Introdução Introdução, Objetivo e Histórico

CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY. Proposições Fuzzy. Regras são implicações lógicas. Introdução Introdução, Objetivo e Histórico CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos ásicos Definição, Características e Formas de Imprecisão Conjuntos Fuzz Propriedades, Formas de Representação e Operações Relações, Composições,

Leia mais

Introdução. Sistemas Nebulosos (Fuzzy) Benefícios da Lógica Nebulosa. Introdução. Probabilidade e Possibilidade. Complexidade e Compreensão

Introdução. Sistemas Nebulosos (Fuzzy) Benefícios da Lógica Nebulosa. Introdução. Probabilidade e Possibilidade. Complexidade e Compreensão (Fuzzy) Introdução Benefícios da Lógica Nebulosa Conjuntos Nebulosos Variáveis Lingüísticas Operadores (Fuzzy) Raciocínio Etapas Conclusão Introdução Surgiu com Lofti Zadeh em 965. O boom foi nos anos

Leia mais

Teoria dos conjuntos difusos

Teoria dos conjuntos difusos Teoria dos conjuntos difusos Documento complementar à dissertação José Iria ee06210@fe.up.pt - 10-03-2011. A teoria dos conjuntos difusos foi proposta por Lotfi Zadeh num artigo publicado em 1965 na revista

Leia mais

LOGICA FUZZY. Adão de Melo Neto

LOGICA FUZZY. Adão de Melo Neto LOGICA FUZZY Adão de Melo Neto SUMÁRIO INTRODUÇÃO PRINCÍPIOS CLÁSSICA x DIFUSA CONJUNTOS FUZZY OPERAÇÕES EM CONJUNTO FUZZY MODIFICADORES Introdução "A logica difusa (fuzzy) tem por objetivo modelar modos

Leia mais

Variáveis Linguísticas CONTEÚDO. Variáveis Linguísticas. Variáveis Linguísticas. Formalismo: caracterizada por uma

Variáveis Linguísticas CONTEÚDO. Variáveis Linguísticas. Variáveis Linguísticas. Formalismo: caracterizada por uma ONTEÚDO Introdução Introdução, Objetivo e Histórico onceitos ásicos Definição, aracterísticas e Formas de Imprecisão onjuntos Fuzzy, Formas de Representação e Operações Lógica Fuzzy Relações, omposições,

Leia mais

Inteligência Computacional

Inteligência Computacional Inteligência Computacional CP78D Lógica Fuzzy Aula 4 Prof. Daniel Cavalcanti Jeronymo Universidade Tecnológica Federal do Paraná (UTFPR) Engenharia Eletrônica 9º Período 1/37 Lógica Clássica Plano de Aula

Leia mais

CONJUNTOS NEBULOSOS. Formatos dos Conjuntos

CONJUNTOS NEBULOSOS. Formatos dos Conjuntos CONJUNTOS NEBULOSOS Conjuntos Crisp x Nebulosos Definição Representação Propriedades Formatos Operações Hedges Formatos dos Conjuntos A função verdade de um conjunto fuzzy representa as propriedades semânticas

Leia mais

Inteligência Artificial

Inteligência Artificial DSC/CCT/UFC Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial Representação do Conhecimento (Lógica Fuzzy) Prof.

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 09 Lógica Fuzzy Edirlei Soares de Lima Introdução A Lógica Fuzzy é baseada na teoria dos conjuntos fuzzy. Tradicionalmente, uma proposição lógica

Leia mais

FUZZYCOM COMPONENTE DE LÓGICA FUZZY

FUZZYCOM COMPONENTE DE LÓGICA FUZZY FUZZYCOM COMPONENTE DE LÓGICA FUZZY Aluno: Cláudio Magno Martins Moraes Orientador: Marley Vellasco Sumário 1. Introdução... 3 2. Uma Introdução à Lógica Fuzzy... 3 2.1. Sistemas Fuzzy... 3 2.2. Características

Leia mais

Lógica Fuzzy. Plano de aula. Motivação Fundamentação Teórica Sistemas Difusos (aplicações) Estudo de Caso Considerações Finais

Lógica Fuzzy. Plano de aula. Motivação Fundamentação Teórica Sistemas Difusos (aplicações) Estudo de Caso Considerações Finais LÓGICA FUZZY 1 Plano de aula Motivação Fundamentação Teórica Sistemas Difusos (aplicações) Estudo de Caso Considerações Finais 2 Motivação: Grau de Crença vs. Grau de Verdade Grau de crença: População

Leia mais

Conjuntos Fuzzy. Prof. Paulo Cesar F. De Oliveira, BSc, PhD. 10/10/14 Paulo C F de Oliveira

Conjuntos Fuzzy. Prof. Paulo Cesar F. De Oliveira, BSc, PhD. 10/10/14 Paulo C F de Oliveira Prof. Paulo Cesar F. De Oliveira, BSc, PhD 10/10/14 Paulo C F de Oliveira 2007 1 Seção 1.1 Características dos Conjuntos Fuzzy 10/10/14 Paulo C F de Oliveira 2007 2 Teoria clássica dos conjuntos desenvolvida

Leia mais

Conteúdo: Operações Conjuntos Crisp Operações Conjuntos fuzzy. Operadores de Zadeh Operadores Compensatórios Operadores T-norm e T-conorm

Conteúdo: Operações Conjuntos Crisp Operações Conjuntos fuzzy. Operadores de Zadeh Operadores Compensatórios Operadores T-norm e T-conorm Conteúdo: Operações Conjuntos Crisp Operações Conjuntos fuzzy Operadores de Zadeh Operadores Compensatórios Operadores T-norm e T-conorm Operações com Conjuntos Crisp Função característica: determina se

Leia mais

SISTEMA ESPECIALISTA NEBULOSO (MINICURSO) Luiz Biondi Neto Pedro Henrique Gouvêa Coelho Jorge Luís Machado do Amaral Maria Helena C.

SISTEMA ESPECIALISTA NEBULOSO (MINICURSO) Luiz Biondi Neto Pedro Henrique Gouvêa Coelho Jorge Luís Machado do Amaral Maria Helena C. Luiz Biondi Neto Pedro Henrique Gouvêa Coelho Jorge Luís Machado do Amaral Maria Helena C. Soares de Mello Inteligência Computacional A Inteligência Computacional (IC) é uma área de pesquisa que visa investigar

Leia mais

Lógica Nebulosa (Fuzzy)

Lógica Nebulosa (Fuzzy) Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Lógica Nebulosa (Fuzzy) Inteligência Artificial Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Sistema de Inferência Fuzzy baseado em Redes Adaptativas (ANFIS) Sistema de Inferência Fuzzy

Sistema de Inferência Fuzzy baseado em Redes Adaptativas (ANFIS) Sistema de Inferência Fuzzy Redes Neurais Sistema de Inferência Fuzzy baseado em Redes Adaptativas (ANFIS) Sistema de Inferência Fuzzy Um Sistema de Inferência Fuzzy (SIF) é um tipo especial de Sistema Baseado em Conhecimento (SBC).

Leia mais

Lógica Difusa (Fuzzy)

Lógica Difusa (Fuzzy) Lógica Difusa (Fuzzy) Prof. Josiane M. Pinheiro Ferreira Outubro/2007 Lógica tradicional x Lógica difusa Lógica tradicional (Aristóteles) Uma proposição = dois estados possíveis (V ou F) Pode ser insuficiente

Leia mais

Sexta Feira. Cálculo Diferencial

Sexta Feira. Cálculo Diferencial Sexta Feira Cálculo Diferencial 15/0/013 Funções Reais Domínio, imagem e gráficos Código: EXA37 A Turmas: ELE1AN, MEC1AN Prof. HANS-ULRICH PILCHOWSKI Prof. Hans-Ulrich Pilchowski Notas de aula Cálculo

Leia mais

Conjuntos Difusos. Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 7)

Conjuntos Difusos. Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 7) Conjuntos Difusos Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 7) Conjuntos Difusos 2 Conjuntos Difusos Quais das seguintes pessoas são altas? Paulo:

Leia mais

Métodos de Inferência Fuzzy

Métodos de Inferência Fuzzy Métodos de Inferência Fuzzy Prof. Paulo Cesar F. De Oliveira, BSc, PhD 16/10/14 Paulo C F de Oliveira 2007 1 Seção 1.1 Método de Mamdani 16/10/14 Paulo C F de Oliveira 2007 2 Professor Ebrahim Mamdani

Leia mais

Lógica Nebulosa. Lógica Fuzzy

Lógica Nebulosa. Lógica Fuzzy Lógica Nebulosa Ou Lógica Fuzzy Lógicas Bivalente e Polivalente Na logica clássica ou aristotélica: Dois valores verdade possíveis: Proposições verdadeiras;ou Proposições falsas. São sistemas chamados

Leia mais

Pós-Graduação em Engenharia de Automação Industrial SISTEMAS INTELIGENTES PARA AUTOMAÇÃO

Pós-Graduação em Engenharia de Automação Industrial SISTEMAS INTELIGENTES PARA AUTOMAÇÃO Pós-Graduação em Engenharia de Automação Industrial SISTEMAS INTELIGENTES PARA AUTOMAÇÃO AULA 07 Lógica Fuzzy Introdução A lógica FUZZY uma extensão da lógica booleana. Ela permite que estados imprecisos

Leia mais

Conteúdo: Hedges Relações e Composições

Conteúdo: Hedges Relações e Composições Conteúdo: Hedges Relações e Composições Hedges: Operadores semânticos Atuam na modelagem de um sistema fuzzy da mesma forma que advérbios atuam em uma sentença. Modificam a natureza de um conjunto fuzzy.

Leia mais

Lógica Fuzzy. Profs. João Alberto Fabro André Schneider de Oliveira. Sistemas Autônomos Inteligentes

Lógica Fuzzy. Profs. João Alberto Fabro André Schneider de Oliveira. Sistemas Autônomos Inteligentes Sistemas Autônomos Inteligentes Lógica Fuzzy Profs. João Alberto Fabro André Schneider de Oliveira Adaptado de material dos profs. Mauro Roisenberg e Luciana Rech - UFSC Introdução A Lógica Fuzzy é baseada

Leia mais

Lógica Difusa (Fuzzy)

Lógica Difusa (Fuzzy) Lógica Difusa (Fuzzy) Prof. Josiane M. Pinheiro Ferreira Outubro/2007 Lógica tradicional x Lógica difusa Lógica tradicional (Aristóteles) Uma proposição = dois estados possíveis (V ou F) Pode ser insuficiente

Leia mais

Aula 15 Introdução à lógica fuzzy

Aula 15 Introdução à lógica fuzzy Organização Aula 5 Introdução à lógica fuzzy Prof. Dr. Alexandre da Silva Simões Introdução à teoria de conjuntos nebulosos Bivalência x multivalência Números fuzzy Conjuntos fuzzy Probabilidade e possibilidade

Leia mais

Modelagem para previsão/estimação: uma aplicação Neuro-Fuzzy

Modelagem para previsão/estimação: uma aplicação Neuro-Fuzzy Proceeding Series of the Brazilian Society of pplied and Computational Mathematics, Vol., N., 0. Trabalho apresentado no XXXV CNMC, Natal-RN, 0. Modelagem para previsão/estimação: uma aplicação Neuro-Fuzzy

Leia mais

Conhecimento e Raciocínio Incertos

Conhecimento e Raciocínio Incertos Conhecimento e Raciocínio Incertos Aula #6.1 EBS 564 IA Prof. Luiz Fernando S. Coletta luizfsc@tupa.unesp.br Campus de Tupã Seres humanos são capazes de lidar com processos bem complexos 2 Seres humanos

Leia mais

Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.

Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo

Leia mais

Histórico da Lógica Fuzzy

Histórico da Lógica Fuzzy Histórico da Lógica Fuzzy Lógica Fuzzy Huei Diana Lee e Newton Spolaôr Artigo de Lofti A. Zadeh Universidade da Califórnia em Berkley, EUA, 1965 Ruptura com a Lógica Aristotélica Universidade Estadual

Leia mais

1. Conjuntos Fuzzy - Fundamentos. Sistemas Nebulosos

1. Conjuntos Fuzzy - Fundamentos. Sistemas Nebulosos Sistemas Nebulosos Heloisa de Arruda Camargo. Conjuntos Fuzzy - Fundamentos. Conceitos básicos de conjuntos fuzzy.2 Operações em conjuntos fuzzy.3 Relações fuzzy.4 Aritmética fuzzy.5 Variáveis linguísticas

Leia mais

Definição: Todo objeto parte de um conjunto é denominado elemento.

Definição: Todo objeto parte de um conjunto é denominado elemento. 1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção

Leia mais

Lógica Fuzzy. Angelo Batista Neves Júnior Bruno Luan de Sousa Kelly de Paiva Soares

Lógica Fuzzy. Angelo Batista Neves Júnior Bruno Luan de Sousa Kelly de Paiva Soares Lógica Fuzzy Angelo Batista Neves Júnior Bruno Luan de Sousa Kelly de Paiva Soares INTRODUÇÃO Introduzida em 1965 por Lofti Zadeh. Surgimento em 1930. Influência o Jan Lukasiewicz; o Max Black; o Lofti

Leia mais

Introdução. Lógica Fuzzy (Lógica Nebulosa) Introdução. Conceito

Introdução. Lógica Fuzzy (Lógica Nebulosa) Introdução. Conceito Lógica Nebulosa Introdução Lógica Fuzzy (Lógica Nebulosa) Adaptado de material da profa. Luciana Rech Lógica Difusa ou Lógica Fuzzy extensão da lógica boolena um valor lógico difuso é um valor qualquer

Leia mais

3 Sistemas Neuro-Fuzzy Hierárquicos

3 Sistemas Neuro-Fuzzy Hierárquicos 3 Sistemas Neuro-Fuzzy Hierárquicos 3. Introdução Sistemas neuro-fuzzy (SNF) são sistemas híbridos que combinam as vantagens das redes neurais, no que se refere ao aprendizado, com o poder de interpretação

Leia mais

Introdução à Lógica Nebulosa

Introdução à Lógica Nebulosa Distancia Angulo Gerador de Sinal Controlador Nebuloso Osciloscópio 2.141e-016 Display Introdução à Lógica Nebulosa Álvaro Guarda Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade

Leia mais

TEORIA DOS CONJUNTOS FUZZY

TEORIA DOS CONJUNTOS FUZZY TEORIA DOS CONJUNTOS FUZZY TEORIA DOS CONJUNTOS FUZZY A Lógica Fuzzy ébaseada na teoria dos Conjuntos Fuzzy. A teoria dos Conjuntos Fuzzy diz que dado um determinado elemento que pertence a um domínio,

Leia mais

Lógica Fuzzy: Introdução a Lógica Fuzzy, exemplo da Gorjeta e ANFIS

Lógica Fuzzy: Introdução a Lógica Fuzzy, exemplo da Gorjeta e ANFIS Lógica Fuzzy: Introdução a Lógica Fuzzy, exemplo da Gorjeta e ANFIS 24 de outubro de 2013 Sumário I 1 Introdução 2 Propriedades 3 Variáveis linguísticas 4 Regras Fuzzy 5 Arquitetura 6 Exemplo Exemplo 1

Leia mais

2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem

2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem 2 Lógica Fuzzy 2.1 Cálculo proposicional (lógica proposicional) 2.2 Lógica de Predicados 2.3 Lógica de múltiplos valores 2.4 Lógica Fuzzy Proposições fuzzy Inferência a partir de proposições fuzzy condicionais

Leia mais

Lógica Fuzzy 7.1 INTRODUÇÃO

Lógica Fuzzy 7.1 INTRODUÇÃO 7 Lógica Fuzzy Ser ou não ser: esta é a questão. (William Shakespeare, Hamlet) 7.1 INTRODUÇÃO Usamos, no cotidiano, conceitos subjetivos para classificar ou considerar certas situações tais como : - Siga

Leia mais

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades

Leia mais

Inteligência Artificial. Lógica Fuzzy

Inteligência Artificial. Lógica Fuzzy Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Lógica Fuzzy Aula I Introdução a Lógica Fuzzy Conceitos básicos Lógica clássica e lógica fuzzy

Leia mais

Aulas 10 e 11 / 18 e 20 de abril

Aulas 10 e 11 / 18 e 20 de abril 1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar

Leia mais

Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue

Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento

Leia mais

Lógicas Difusas e Sistemas Difusos

Lógicas Difusas e Sistemas Difusos Lógicas Difusas e Sistemas Difusos 1 Semestre de 2015 Cleber Zanchettin UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática 1 Introdução (1/2) O conhecimento humano é muitas vezes incompleto,

Leia mais

CONJUNTOS, LÓGICA E SISTEMAS FUZZY

CONJUNTOS, LÓGICA E SISTEMAS FUZZY COE 765 TÉCNICAS INTELIGENTES APLICADAS A SISTEMAS DE POTÊNCIA CONJUNTOS, LÓGICA E SISTEMAS FUZZY Djalma M. Falcão COPPE/UFRJ Agosto de 2002 INTRODUÇÃO Modelos matemáticos convencionais são: Crisp, isto

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS1

INTRODUÇÃO À TEORIA DOS CONJUNTOS1 INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto

Leia mais

3 FERRAMENTAS UTILIZADAS: REDES NEURAIS E LÓGICA FUZZY

3 FERRAMENTAS UTILIZADAS: REDES NEURAIS E LÓGICA FUZZY 3 FERRAMENTAS UTILIZADAS: REDES NEURAIS E LÓGICA FUZZY 3.1 REDES NEURAIS As redes neurais representam uma tecnologia que têm raízes em muitas disciplinas: neurociência, matemática, estatística, física,

Leia mais

27/8/2011. Princípios, Conceitos e Metodologia de Gestão 2o semestre de 2011 Professores: Alexandre Mota / Lia Mota Agosto/2011

27/8/2011. Princípios, Conceitos e Metodologia de Gestão 2o semestre de 2011 Professores: Alexandre Mota / Lia Mota Agosto/2011 Tomada de Decisão e Regras Nebulosas Princípios, Conceitos e Metodologia de Gestão 2o semestre de 2011 Professores: Alexandre Mota / Lia Mota Agosto/2011 Representação Matemática de Incertezas Padrões

Leia mais

1.4 Números Fuzzy. Números fuzzy formato. Outras formas. Casos especiais. Conjuntos fuzzy definidos no conjunto dos números reais A: R [0,1]

1.4 Números Fuzzy. Números fuzzy formato. Outras formas. Casos especiais. Conjuntos fuzzy definidos no conjunto dos números reais A: R [0,1] .4 Números Fuzzy Conjuntos fuzzy definidos no conjunto dos números reais : R [0,] Conceitos intuitivos: Números próximos de um dado número real Números em torno de um dado intervalo de números reais Números

Leia mais

Objetivos da aula. Introdução. Teoria da Probabilidade Lógica Nebulosa. Introdução 21/02/17. PCS 5869 lnteligência Ar9ficial

Objetivos da aula. Introdução. Teoria da Probabilidade Lógica Nebulosa. Introdução 21/02/17. PCS 5869 lnteligência Ar9ficial 2/2/7 PCS 5869 lnteligência Ar9ficial Prof. Dr. Jaime Simão Sichman Prof. Dra. Anna Helena Reali Costa Material com contribuições de: Prof. Marco Tulio C. Andrade, PCS/EPUSP Objetivos da aula Fornecer

Leia mais

Programa. 3. Características da lógica Fuzzy. 3.a Características gerais. 3.a Características gerais. 3.a Características gerais

Programa. 3. Características da lógica Fuzzy. 3.a Características gerais. 3.a Características gerais. 3.a Características gerais Computação Fuzzy - PCS 5711 (capítulo 3 - Parte a) Pós-Graduação: área de Sistemas Digitais (341) Professor Marco Túlio Carvalho de Andrade PCS - Depto. de Enga. de Computação e Sistemas Digitais - EPUSP

Leia mais

RETA NUMÉRICA DOS NÚMEROS INTEIROS

RETA NUMÉRICA DOS NÚMEROS INTEIROS RETA NUMÉRICA DOS NÚMEROS INTEIROS Prof. a : Patrícia Caldana O conjunto dos números inteiros é representado por (Z). Um número é considerado inteiro quando não apresenta casas decimais, ou seja, números

Leia mais

Conjuntos Fuzzy e Lógica Fuzzy

Conjuntos Fuzzy e Lógica Fuzzy 1 Introdução Conjuntos Fuzzy e Lógica Fuzzy users.femanet.com.br/~fabri/fuzzy.htm Os Conjuntos Fuzzy e a Lógica Fuzzy provêm a base para geração de técnicas poderosas para a solução de problemas, com uma

Leia mais

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não

Leia mais

Metodologia Aplicada a Computação.

Metodologia Aplicada a Computação. Metodologia Aplicada a Computação gaudenciothais@gmail.com Pré-processamento de dados Técnicas utilizadas para melhorar a qualidade dos dados; Eliminam ou minimizam os problemas como ruídos, valores incorretos,

Leia mais

Redes Neurais e Sistemas Fuzzy

Redes Neurais e Sistemas Fuzzy Redes Neurais e Sistemas Fuzzy Conceitos Básicos da Lógica Fuzzy. Raciocínio aproximado Raciocínio aproximado é a forma mais conhecida de lógica fuzzy, cobrindo várias regras de inferência cujas premissas

Leia mais

Teoria dos Conjuntos Fuzzy

Teoria dos Conjuntos Fuzzy Teoria dos Conjuntos Fuzzy Francisco Carpegiani Medeiros Borges Universidade Federal do Piauí Campus Parnaíba 27 de setembro de 2011 1 / 34 Sumário Como tudo começou! 1 Como tudo começou! 2 3 4 5 6 2 /

Leia mais

Introdução. Quem nunca ouviu a palavra estatística referindo-se a um número ou conjunto de números?

Introdução. Quem nunca ouviu a palavra estatística referindo-se a um número ou conjunto de números? Estatística Disciplina de Estatística 2012/2 Curso de Administração em Gestão Pública Profª. Me. Valéria Espíndola Lessa E-mail: lessavaleria@gmail.com 1 Introdução Quem nunca ouviu a palavra estatística

Leia mais

Logica Difusa (Fuzzy( Fuzzy)

Logica Difusa (Fuzzy( Fuzzy) Logica Difusa (Fuzzy( Fuzzy) Patricia Tedesco e Germano Vasconcelos {pcart, gcv}@cin.ufpe.br Horários: 2 as e 4 as 14 às 16 Sala: D001 e D226 Página da Disciplina: www.cin.ufpe.br/~îf684/ec/2010-1/ 1 Introdução

Leia mais

SIMULADO III AMPULHETA DO SABER OLIMPÍADA BRASILEIRA DE FÍSICA ª FASE LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

SIMULADO III AMPULHETA DO SABER OLIMPÍADA BRASILEIRA DE FÍSICA ª FASE LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: SIMULADO III AMPULHETA DO SABER OLIMPÍADA BRASILEIRA DE FÍSICA - 2018 2ª FASE NÍVEL I Ensino Fundamental 8 o e 9 o anos LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 1- Esta prova destina-se exclusivamente aos

Leia mais

CLASSIFICAÇÃO DE PROBLEMAS SEQÜENCIAIS DE MÚLTIPLOS ESTÁGIOS

CLASSIFICAÇÃO DE PROBLEMAS SEQÜENCIAIS DE MÚLTIPLOS ESTÁGIOS Encontro Internacional de Produção Científica Cesumar 23 a 26 de outubro de 2007 CLASSIFICAÇÃO DE PROBLEMAS SEQÜENCIAIS DE MÚLTIPLOS ESTÁGIOS João Candido Bracarense 1, Juliano Rodrigo Lamb 2 RESUMO: A

Leia mais

Sistemas Fuzzy Lógica Fuzzy e Sistemas Baseados em Regras Fuzzy

Sistemas Fuzzy Lógica Fuzzy e Sistemas Baseados em Regras Fuzzy Sistemas Fuzzy Lógica Fuzzy e Sistemas Baseados em Regras Fuzzy Profa. Dra. Sarajane M. Peres e Prof. Dr. Clodoaldo A. M. Lima EACH USP http://each.uspnet.usp.br/sarajane/ } Baseado em: Dimensão Topológica

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS

INTRODUÇÃO À TEORIA DOS CONJUNTOS 1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 09/2014 Probabilidade Espaços Amostrais e Eventos Probabilidade e Estatística 3/41 Experimentos Aleatórios Experimento

Leia mais

TP034-Tópicos Especiais de Pesquisa Operacional I

TP034-Tópicos Especiais de Pesquisa Operacional I TP034-Tópicos Especiais de Pesquisa Operacional I (Conjuntos Difusos Variáveis Linguísticas) Prof. Volmir Wilhelm Curitiba, Paraná, Brasil Introdução Técnicas convencionais de análise de sistemas são inadequadas

Leia mais

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013. TEORIA DOS CONJUNTOS Professor: Marcelo Silva marcelo.silva@ifrn.edu.br Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando

Leia mais

ESTATÍSTICA. Aula 1 Introdução, Tipos de Variáveis, Tipos de Dados e Tabela de Frequência. Fernando Arbache

ESTATÍSTICA. Aula 1 Introdução, Tipos de Variáveis, Tipos de Dados e Tabela de Frequência. Fernando Arbache ESTATÍSTICA Aula 1 Introdução, Tipos de Variáveis, Tipos de Dados e Tabela de Frequência Fernando Arbache 2 INTRODUÇÃO A Estatística engloba os conceitos de organização, descrição, análise e interpretação

Leia mais

Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva

Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Conceitos Estatística É uma parte da Matemática Aplicada que fornece métodos para a coleta, organização,

Leia mais

PROCESSO SELETIVO N 42/2019 PROVA 2 - CONHECIMENTOS ESPECÍFICOS

PROCESSO SELETIVO N 42/2019 PROVA 2 - CONHECIMENTOS ESPECÍFICOS PROCESSO SELETIVO N 42/2019 PROVA 2 - CONHECIMENTOS ESPECÍFICOS LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO 1. Você recebeu do fiscal o seguinte material: (a) Este caderno, com o enunciado das 20 (vinte) questões

Leia mais

Conjuntos e Relações Nebulosas (Fuzzy)

Conjuntos e Relações Nebulosas (Fuzzy) Conjuntos e Relações Nebulosas (Fuzzy) Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Operações Básicas Para sistemas que usam

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais