2 Modelos de Programação Linear

Tamanho: px
Começar a partir da página:

Download "2 Modelos de Programação Linear"

Transcrição

1 Modelos de Programação Liear Coteúdos do Capítulo Problemas de Programação Liear Resolução pelo método gráfico O Problema do Pitor Miimização Restrições Redudates Solução Múltipla, Ilimitada e Iviável Casos Caso Alumilâmias S.A. Caso Esportes Radicais S.A Problema da Fazeda Problema da Mistura Problema da Dieta Problema do Estoqu Aálise de sesibilidade

2 Programação Matemática Um problema de programação matemática é um problema de otimização o qual o objetivo e as restrições são epressos como fuções matemáticas e relações fucioais. Variáveis de Decisão Otimizar Sujeito a : : z = f g g g ( ( ( (,, :,,,...,,...,,...,,..., ) ) b ) b = : ) b,,...,, são as chamadas Variáveis de Decisão. As variáveis de decisão são aqueles valores que represetam o cere do problema, e que podemos escolher (decidir) livremete. As variáveis de decisão represetam as opções que um admiistrador têm para atigir um objetivo. Quato produzir para maimizar o lucro? Quato comprar de uma ação para miimizar o risco da carteira?

3 3 Programação Liear Um problema de programação matemática é liear se a fução objetivo e cada uma das fuções que represetam as restrições forem lieares, isto é, a forma abaio: f =... (,,..., ) c c c g (,,..., ) = a a... a i i i i Quebrado a Liearidade A preseça de qualquer das epressões abaio toram o problema ão liear. Eemplos: para ( ) ( ) a log a para qualquer base Eemplos a para qualquer valor de a ma s.r. 80, mi s.r. 80, = 600

4 Programação Liear Áreas de Aplicação Admiistração da Produção Aálise de Ivestimetos Alocação de Recursos Limitados Plaejameto Regioal Logística Custo de trasporte Localização de rede de distribuição Alocação de Recursos em Marketig etre diversos meios de comuicação. Problema a Forma Padrão Eistem características para um problema a forma padrão: A fução objetivo é de Maimizar; As restrições têm sial de meor ou igual; As costates de todas as restrições são ão egativas; As variáveis podem assumir valores ão egativos. Maimizar Sujeito a : Z = c c... c a a a a a a b b Não egativos a m, a, 3 m, a m b m

5 5 Propriedades Hipótese de Aditividade Cosidera as atividades (variáveis de decisão) do modelo como etidades totalmete idepedetes, ão permitido que haja iterdepedêcia etre as mesmas, isto é, ão permitido a eistêcia de termos cruzados, tato a fução-objetivo como as restrições. Esta é a própria hipótese de liearidade do PPL Hipótese de Proporcioalidade O valor da fução-objetivo é proporcioal ao ível de atividade de cada variável de decisão, isto é, o valor da fução objetivo se altera de um valor costate dada uma variação costate da variável de decisão; Hipótese de Divisibilidade Assume que todas as uidades de atividade possam ser divididas em qualquer ível fracioal, isto é, qualquer variável de decisão pode assumir qualquer valor positivo fracioário. Esta hipótese pode ser quebrada, dado origem a um problema especial de programação liear, chamado de problema combiatório. Hipótese de Certeza Assume que todos os parâmetros do modelo são costates cohecidas. Em problemas reais, isto é quase uca satisfeito, em geral, costates são estimadas. Requer uma aálise de sesibilidade, sobre o que falaremos posteriormete.

6 Termiologia Solução: No campo de Programação Liear é qualquer especificação de valores para as variáveis de decisão, ão importado se esta especificação se trata de uma escolha desejável ou permissível. 6 ma s.r. 80, z = = 3 ; = S = (3, ) = 3 ; = S = (3, ) Solução Viável: É uma solução em que todas as restrições são satisfeitas; Solução Iviável: É uma solução em que alguma das restrições ou as codições de ão-egatividade ão são atedidas; Eemplos de Solução Viável e Iviável = 3 ; = S = (3, ) solução viável: todas as restrições ão são violadas = 3 ; = S = (3, ) solução iviável: as restrições são violadas

7 7 Valor de Fução-Objetivo: o cojuto de possíveis soluções viáveis correspode a um cojuto de valores de fução-objetivo. ma s.r. 80, z = S = (,) Z = S = (,) Z = 3 S = (3,) Z = 5 Solução ótima é aquela, detre todas as soluções viáveis, que produz o melhor (meor ou maior) valor da fução objetivo. Algoritmos (ou métodos algorítmicos) que buscam, detre todas as soluções viáveis, por uma solução em especial podem ser chamados de algoritmos de busca. Observação (): Em Iteligêcia artificial, costumase estudar algoritmos de busca em espaço de estados. Eistem algoritmos de busca em largura, em profudidade e heurísticos. Muitas vezes uma solução aproimada (segudo critérios subjetivos de qualidade) satisfaz requisitos operacioais e pode ser obtida com esforço computacioal meor. Neste caso, algoritmos heurísticos, também cohecidos como algoritmos aproimativos, são uma opção bastate iteressate. O cojuto de soluções viáveis forma o que é chamado de espaço de busca de um determiado problema. O espaço de busca pode ser etedido como uma discretização do espaço real de soluções do problema. A maioria dos métodos de otimização trabalham sobre o espaço de busca e ão sobre o espaço real.

8 8 Solução gráfica Quado o problema evolve apeas duas variáveis de decisão, a solução ótima de um problema de programação liear pode ser ecotrada graficamete. Com poucas variáveis, métodos eatos ou eumerativos produzem soluções ótimas em tempo computacioal razoável Com muitas variáveis, métodos aproimativos são idicados. Eemplo() Ma Z = 5 s. r. 3 (a) (b) 9 (c) 0, 0 (d) = 9 =9 9 9 = RetaLimite 9 Região Limitada 0 (0,) (0,0) 0 (,) 3 (3,) (3,3) (3,0) Z = = 5 (0,) Z = 0 = 5 (,) Solução Viável (3,3)= Solução Ótima (0,0) (3,0) Z = 0 = 5

9 9 Eemplo() Ma 3 s. t. 6, 3 0 X 7 (0,6) (0,3) (0,0) 0 6 (6,0) (,0) X X Z = 0 = Z = 6 = 3 Z = 3,5 = X Eemplo(3) Ma 3 s.t , 0 Solução Ótima

10 0 Eemplo() Maimizar 8 st 3 8 5, 0 Solução Eemplo (5)

11 O Problema do Pitor Um Pitor faz quadros artesaais para veder uma feira que acotece todo dia à oite. Ele faz quadros grades e desehos pequeos, e os vede por R$5,00 e R$3,00, respectivamete. Ele só cosegue veder 3 quadros grades e quadros pequeos por oite. O quadro grade é feito em uma hora (grosseiro) e o pequeo é feito em hora e 8 miutos (detalhado). O desehista deseha 8 horas por dia ates de ir para a feira. Quatos quadros de cada tipo ele deve pitar para maimizar a sua receita? A Decisão do Pitor O que o desehista precisa decidir? O que ele pode fazer para aumetar ou dimiuir a sua receita? A decisão dele é como usar as 8 horas diárias: quatos desehos pequeos e grades ele deve fazer? Fução Objetivo: maimizar a receita

12 Eemplo (7):

13 3 Restrições redudates Uma restrição é dita redudate quado a sua eclusão do cojuto de restrições de um problema ão altera o cojuto de soluções viáveis deste. É uma restrição que ão participa da determiação do cojuto de soluções viáveis. Eiste um outro problema sem essa restrição com a mesma solução ótima. Eemplo (8): Restrições redudates 5 X X Restrição Redudate Eemplo (9): Soluções múltiplas X Soluções Múltipla X

14 Eemplo (0): Solução ilimitada X Cresce idefiidamete X Solução Iviável Um problema de programação liear é dito iviável quado o cojuto de soluções viáveis é vazio. Eemplo (): X Cojuto de Soluções Viáveis é vazio X

15 5 Caso Alumilâmias S.A. A idústria Alumilâmias S/A iiciou suas operações em jaeiro de 00 e já vem coquistado espaço o mercado de lamiados brasileiro, tedo cotratos fechados de forecimeto para todos os 3 tipos diferetes de lâmias de alumíio que fabrica: espessura fia, média ou grossa. Toda a produção da compahia é realizada em duas fábricas, uma localizada em São Paulo e a outra o Rio de Jaeiro. Segudo os cotratos fechados, a empresa precisa etregar 6 toeladas de lâmias fias, 6 toeladas de lâmias médias e 8 toeladas de lâmias grossas. Devido à qualidade dos produtos da Alumilâmias S/A, há uma demada etra para cada tipo de lâmia. A fábrica de São Paulo tem um custo de produção de R$ ,00 para uma capacidade produtiva de 8 toeladas de lâmias fias, toelada de lâmias médias e toeladas de lâmias grossas por dia. O custo de produção diário da fábrica do Rio de Jaeiro é de R$ ,00 para uma produção de toeladas de lâmias fias, toelada de lâmias médias e 7 toeladas de lâmias grossas. Quatos dias cada uma das fábricas deverá operar para ateder os pedidos ao meor custo possível? (resolva pela aálise gráfica deslocameto da fução objetivo). Variáveis de Decisão X Quatos dias de fucioameto da Fábrica de São Paulo X Quatos dias de fucioameto da Fábrica do Rio de Jaeiro

16 6 Fução-Objetivo Miimizar Custo de Produção (mil R$) = Restrições de Demada Placas Fias Placas Médias Placas Grossas Restrições de Não Negatividade

17 7 Caso Esportes Radicais S.A. A Esportes Radicais S/A produz pára-quedas e asa-deltas em duas lihas de motagem. A primeira liha de motagem tem 00 horas semaais dispoíveis para a fabricação dos produtos, e a seguda liha tem um limite de horas semaais. Cada um dos produtos requer 0 horas de processameto a liha, equato que a liha o pára-quedas requer 3 horas e a asadelta requer 7 horas. Sabedo que o mercado está disposto a comprar toda a produção da empresa, bem como que o lucro pela veda de cada pára-quedas é de R$ 60,00 e o lucro para cada asa-delta vedida é R$ 0,00, ecotre a programação de produção que maimize o lucro da Esportes Radicais S/A. (resolva pela aálise gráfica deslocameto da fução objetivo). Variáveis de Decisão X Quatidade de Pára- Quedas a serem produzidos X Quatidade de Asa Deltas a serem produzidos Fução-objetivo Ma 60 0

18 8 Solução Aalítica Problemas de Programação Liear

19 9 Solução Aalítica Solução viável iicial Decisão de otimalidade A solução ão é ótima, já que o icremeto de uma das variáveis ão básicas fará com que o valor da fuçãoobjetiva seja aumetado. Equato detre essas variáveis eistir alguma que tiver coeficiete positivo, isso sigifica dizer que a solução atual pode ser melhorada.

20 0 Solução Aalítica Obteha uma solução viável melhor baseado em algum critério a) Eumerativo: ispecioar todas as soluções viáveis; b) Heurístico: verificar uma que teha grade chace de ser melhor baseado-se em algum cohecimeto acerca do problema. Caso simple: i. Determiação da variável que etra a base ii. Determiação da variável que sai da base Etra a base (passa a fazer parte da solução): a) Variável com maior coeficiete a fução objetivo b)? Sai da base (deia de fazer parte da solução): c) Variável que impõe maior restrição ao crescimeto da variável escolhida para etrar a base

21 Solução Aalítica É desejável que a variável que etre a base cresça o máimo possível. Para tato, a variável que sai terá que decrescer o máimo possível, isto é, se torar zero.

22 Eemplo

23 3

24 Problemas de Forma Não-Padrão Problemas de programação liear podem apresetar outras formas, tais como, igualdades e formas maior ou igual e/ou costates ão positivas as restrições, ou aida problemas de miimização. Estas formas de modelo apresetam problemas de se ecotrar a solução básica iicial. Por ão eistir esta solução básica iicial Por ão ser óbvia a solução iicial Problemas de Iicialização Miimização pode ser trasformada em uma maimização: mi Z = ma - Z No caso de alguma restrição, ser represetada por uma igualdade, ou por uma iequação do tipo maior ou igual, ao ivés de uma restrição de meor ou igual, quatro soluções possíveis podem ocorrer:. Substituição da restrição de igualdade por duas desigualdades.. Processo do M Grade 3. Método da Fução Objetivo Artificial. Método das Duas Fases

CAPÍTULO III ANÁLISE DOS DADOS. Para responder à primeira pergunta, observe os dois gráficos abaixo

CAPÍTULO III ANÁLISE DOS DADOS. Para responder à primeira pergunta, observe os dois gráficos abaixo CAPÍTULO III ANÁLISE DOS DADOS III.5 Idéias básicas sobre gráficos e modelos Modelos são regras matemáticas que permitem reproduzir um cojuto de valores uméricos a partir de outro ao qual correspodem.

Leia mais

O que é Estatística?

O que é Estatística? O que é Estatística? É um método de observação de feômeos coletivos. Ocupa-se da coleta, orgaização, resumo, apresetação e aálise de dados. Objetivo - Obter iformações que permitam uma descrição dos feômeos

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hipóteses Neste capítulo será estudado o segudo problema da iferêcia estatística: o teste de hipóteses. Um teste de hipóteses cosiste em verificar, a partir das observações de uma amostra,

Leia mais

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS 9//0 MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a desigação de úmeros a propriedades de objetos ou a evetos do mudo real de forma a descrevêlos quatitativamete. Outra forma

Leia mais

Desigualdades (por Iuri de Silvio ITA-T11)

Desigualdades (por Iuri de Silvio ITA-T11) Desigualdades (por Iuri de Silvio ITA-T) Apresetação O objetivo desse artigo é apresetar as desigualdades mais importates para quem vai prestar IME/ITA, e mostrar como elas podem ser utilizadas a resolução

Leia mais

Intervalo de Confiança para uma Média Populacional

Intervalo de Confiança para uma Média Populacional Estatística II Atoio Roque Aula 5 Itervalo de Cofiaça para uma Média Populacioal Um dos objetivos mais importates da estatística é obter iformação sobre a média de uma dada população. A média de uma amostra

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre os modelos de

Leia mais

Programação Linear (PL)

Programação Linear (PL) Programação Linear (PL) Prof. Paulo Cesar F. De Oliveira, BSc, PhD 07/08/15 P C F de Oliveira 2014 1 Características Técnicas mais utilizadas na abordagem de problemas em PO Técnica de solução programável

Leia mais

( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução.

( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução. 55 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Itrodução. No processo de resolução de um problema prático é reqüete a ecessidade de se obter a solução de um sistema de equações ão lieares. Dada

Leia mais

UNIPAC Araguari FACAE - Faculdade de Ciências Administrativas e Exatas SISTEMAS DE INFORMAÇÃO

UNIPAC Araguari FACAE - Faculdade de Ciências Administrativas e Exatas SISTEMAS DE INFORMAÇÃO UNIPAC Araguari FACAE - Faculdade de Ciências Administrativas e Exatas SISTEMAS DE INFORMAÇÃO SAD Sistemas de Apoio à Decisão 2011/02 Aula Cinco [email protected] Modelos de decisão Sistemas de

Leia mais

que não torne uma variável básica negativa. Se esse valor for infinito, o PL é ilimitado. Caso contrário, escolha uma variável

que não torne uma variável básica negativa. Se esse valor for infinito, o PL é ilimitado. Caso contrário, escolha uma variável Método Simple. Montar um dicionário inicial 2. Olhando a equação do z, escolha uma variável nãobásica in cujo aumento melhoraria a solução corrente do dicionário (coeficiente negativo se for minimização,

Leia mais

: 8. log 3 4 : 7 B 6 B C. B D. 1 x. t é o tempo, dado em horas, e

: 8. log 3 4 : 7 B 6 B C. B D. 1 x. t é o tempo, dado em horas, e Eame de Admissão de Matemática Págia de... Simpliicado a epressão. : : tem-se: Simpliicado a epressão p p p Sabedo que p p obtém-se: p p log a etão log será igual a: a a a a pp p p. Para diluir litro de

Leia mais

CAPÍTULO 4. 4 - O Método Simplex Pesquisa Operacional

CAPÍTULO 4. 4 - O Método Simplex Pesquisa Operacional CAPÍTULO 4 O MÉTODO SIMPLEX 4 O Método Simplex caminha pelos vértices da região viável até encontrar uma solução que não possua soluções vizinhas melhores que ela. Esta é a solução ótima. A solução ótima

Leia mais

5n 3. 1 nsen(n + 327) e)

5n 3. 1 nsen(n + 327) e) Exercícios 1 Mostre, utilizado a defiição, que as seguites sucessões são limitadas: 2 4 50 a) b) 3 +16 1 5 3 2 c) 1 4( 1) 8 5 d) 100 5 3 2 + 2( 1) 1 4( 1) 8 1 se( + 327) e) f) 5 3 2 4 4 2 2 Mostre, utilizado

Leia mais

O termo "linear" significa que todas as funções definidas no modelo matemático que descreve o problema devem ser lineares, isto é, se f( x1,x2

O termo linear significa que todas as funções definidas no modelo matemático que descreve o problema devem ser lineares, isto é, se f( x1,x2 MÓDULO 4 - PROBLEMAS DE TRANSPORTE Baseado em Novaes, Atôio Galvão, Métodos de Otimização: aplicações aos trasportes. Edgar Blücher, São Paulo, 978..CONCEITOS BÁSICOS DE PROGRAMAÇÃO LINEAR É uma técica

Leia mais

INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. III Método Simplex

INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. III Método Simplex INVESTIGAÇÃO OPERACIONAL Programação Linear Eercícios Cap. III Método Simple António Carlos Morais da Silva Professor de I.O. INVESTIGAÇÃO OPERACIONAL (MS edição de 006) i Cap. III - Método Simple - Eercícios

Leia mais

Análise Combinatória I

Análise Combinatória I Aálise Combiatória I O pricípio fudametal da cotagem ada mais é que a maeira mais simples possível de determiar de quatas maeiras diferetes que um eveto pode acotecer. Se eu, por exemplo, estiver pitado

Leia mais

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc.

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Capítulo 8 Estimativa do Itervalo de Cofiaça Statistics for Maagers Usig Microsoft Excel, 5e 2008 Pearso Pretice-Hall, Ic. Chap 8-1 Objetivos: Neste capítulo, você aprederá: Costruir e iterpretar estimativas

Leia mais

APLICAÇÃO DO PROBLEMA DO CAIXEIRO VIAJANTE NA OTIMIZAÇÃO DE ROTEIROS

APLICAÇÃO DO PROBLEMA DO CAIXEIRO VIAJANTE NA OTIMIZAÇÃO DE ROTEIROS APLICAÇÃO DO PROBLEMA DO CAIXEIRO VIAJANTE NA OTIMIZAÇÃO DE ROTEIROS Ferado Soares Gomes Taufer (FURG) [email protected] Elaie Correa Pereira (FURG) [email protected] Este artigo apreseta

Leia mais

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma: 07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS rof Me Arto Barboi SUMÁRIO INTRODUÇÃO EQUAÇÃO DIFERENCIAL ORDINÁRIA (EDO) Ordem de uma Equação Diferecial Ordiária Grau de uma Equação Diferecial Ordiária Solução geral e particular

Leia mais

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ 1 Escola de Egeharia de orea EE SP Departameto de Egeharia Química DEQI Disciplia: Normalização e Cotrole da Qualidade NCQ Capítulo : Amostragem por Variáveis (MI STD 1) SEÇÃO A.1 Objetivo Este capítulo

Leia mais

Análise de Projectos ESAPL / IPVC. Casos Particulares de VLA e TIR. Efeitos de Impostos, Inflação e Risco.

Análise de Projectos ESAPL / IPVC. Casos Particulares de VLA e TIR. Efeitos de Impostos, Inflação e Risco. Aálise de Projectos ESAPL / IPVC Casos Particulares de VLA e TIR. Efeitos de Impostos, Iflação e Risco. O Caso dos Fluxos de Caixa Costates uado um ivestimeto apreseta fluxos de caixa costates ao logo

Leia mais

Programação Linear. Problema de produção. Transparências de apoio à disciplina de Métodos de Apoio à Decisão. Matéria prima disponível diariamente

Programação Linear. Problema de produção. Transparências de apoio à disciplina de Métodos de Apoio à Decisão. Matéria prima disponível diariamente Programação Linear Transparências de apoio à disciplina de Métodos de Apoio à Decisão rupo de ontrolo e estão Problema de produção Matéria prima disponível diariamente 8 Legos pequenos 6 Legos grandes

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Teoria Básica e o Método Simplex. Prof. Ricardo Santos

Teoria Básica e o Método Simplex. Prof. Ricardo Santos Teoria Básica e o Método Simple Prof. Ricardo Santos Teoria Básica do Método Simple Por simplicidade, a teoria é desenvolvida para o problema de PL na forma padrão: Minimizar f()=c T s.a. A=b >= Considere

Leia mais

8/8/2012. Administração Financeira e Orçamentária. Conteúdo. Conteúdo. Tema 3 O valor do dinheiro no tempo. Tema 4 Risco e Retorno

8/8/2012. Administração Financeira e Orçamentária. Conteúdo. Conteúdo. Tema 3 O valor do dinheiro no tempo. Tema 4 Risco e Retorno Admiistração Fiaceira e Orçametária Tema 3 O valor do diheiro o tempo. Tema 4 Risco e Retoro Ivoete Melo de Carvalho, MSc Coteúdo As mutações do valor do diheiro o tempo. Os fatores que iterferem o valor

Leia mais

Programação Linear - Parte 4

Programação Linear - Parte 4 Mestrado em Modelagem e Otimização - CAC/UFG Programação Linear - Parte 4 Profs. Thiago Alves de Queiroz Muris Lage Júnior 1/2014 Thiago Queiroz (DM) Parte 4 1/2014 1 / 18 Solução Inicial O método simplex

Leia mais

Introdução em Engenharia. Problemas de Engenharia. Engenharia: Sérgio Haffner SÍNTESE. Conceitos Conceitos fundamentais 30.07.

Introdução em Engenharia. Problemas de Engenharia. Engenharia: Sérgio Haffner SÍNTESE. Conceitos Conceitos fundamentais 30.07. Introdução à Otimização em Engenharia Problemas de Engenharia ANÁLISE Definido o sistema, determinar o desempenho Sérgio Haffner Conceitos Conceitos fundamentais 30.07.008 SÍNTESE Projetar um sistema para

Leia mais

Método Simplex Revisado

Método Simplex Revisado Método Simplex Revisado Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP www.feg.unesp.br/~fmarins [email protected] Introdução Método

Leia mais

PROGRAMAÇÃO LINEAR. Formulação de problemas de programação linear e resolução gráfica

PROGRAMAÇÃO LINEAR. Formulação de problemas de programação linear e resolução gráfica PROGRAMAÇÃO LINEAR Formulação de problemas de programação linear e resolução gráfica A programação linear surge pela primeira vez, nos novos programas de Matemática A no 11º ano de escolaridade. Contudo

Leia mais

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial.

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial. DERIVADAS INTRODUÇÃO O Cálculo Diferecial e Itegral, criado por Leibiz e Newto o século XVII, torou-se logo de iício um istrumeto precioso e imprescidível para a solução de vários problemas relativos à

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quatitativos Aplicados Aula 3 http://www.iseg.ulisboa.pt/~vescaria/mqa/ Tópicos apresetação Itrodução aos packages estatísticos: SPSS Aálise Uivariada: Redução de dados e caracterização de distribuições

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Vamos estudar o conceito de variabilidade absoluta considerando o conjunto de notas obtidas por cinco alunos:

Vamos estudar o conceito de variabilidade absoluta considerando o conjunto de notas obtidas por cinco alunos: Medidas de Disperção Itrodução: - Observamos ateriormete que as medidas de tedêcia cetral são usadas para resumir, em um úico úmero, aquele parâmetro que será o represetate do cojuto de dados. Estas medidas

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO

O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO Sérgio Ferado Mayerle, Dr. UFSC / CTC / EPS - [email protected] - Floriaópolis - SC Thiago Dedavid de Almeida Bastos

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo

Leia mais

AULA EXTRA MATEMÁTICA BÁSICA 3ª SÉRIE PROF.

AULA EXTRA MATEMÁTICA BÁSICA 3ª SÉRIE PROF. AULA EXTRA MATEMÁTICA BÁSICA ª SÉRIE PROF. HELDINHO EXPRESSÕES NUMÉRICAS 0. (G - ifsc 0) Para echer um reservatório de água, estão coectadas a ele duas toreiras com vazões diferetes. A primeira toreira

Leia mais

ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS

ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS WWWCONVIBRAORG ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS ANDRÉA F RODRIGUES 1, WILTON P SILVA 2, JOSIVANDA P GOMES 3, CLEIDE M D P S SILVA 4, ÍCARO CARVALHO RAMOS

Leia mais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais Comparação de testes paramétricos e ão paramétricos aplicados em delieametos experimetais Gustavo Mello Reis (UFV) [email protected] José Ivo Ribeiro Júior (UFV) [email protected] RESUMO: Para comparar

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas. A obteção de uma

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

META Suprir algumas deficiências sobre álgebra ensinada em matemática no nível médio

META Suprir algumas deficiências sobre álgebra ensinada em matemática no nível médio ÁLGEBRA BÁSICA Aula 5 META Suprir algumas deficiêcias sobre álgebra esiada em matemática o ível médio OBJETIVOS Ao fi al desta aula, o aluo deverá: defi ir coceitos matemáticos de álgebra básica; iterpretar

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Coeficiente de Rendimento. Universidade Iguaçu

Coeficiente de Rendimento. Universidade Iguaçu Coeficiete de Redimeto Uiversidade Iguaçu 1. INTRODUÇÃO Para efocar o seu desempeho escolar, o Coeficiete de Redimeto CR ou Coeficiete de Redimeto Acumulado CRA devem ser expressos por uma média poderada,

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II MATEMÁTICA PARA CONCURSOS II Módulo III Neste Módulo apresetaremos um dos pricipais assutos tratados em cocursos públicos e um dos mais temíveis por parte dos aluos: Progressão Aritmética e Progressão

Leia mais

Estatística II Aula 3. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 3. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 3 Prof.: Patricia Maria Bortolo, D. Sc. Estimação por Itervalo Objetivos Nesta semaa, veremos: Como costruir e iterpretar estimativas por itervalos de cofiaça para a média e a proporção

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

Tipos de problemas de programação inteira (PI) Programação Inteira. Abordagem para solução de problemas de PI. Programação inteira

Tipos de problemas de programação inteira (PI) Programação Inteira. Abordagem para solução de problemas de PI. Programação inteira Tipos de problemas de programação inteira (PI) Programação Inteira Pesquisa Operacional I Flávio Fogliatto Puros - todas as variáveis de decisão são inteiras Mistos - algumas variáveis de decisão são inteiras

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

Parte 3: Gráfico de Gestão de Estoque. Gráficos e Cálculos Fundamentais

Parte 3: Gráfico de Gestão de Estoque. Gráficos e Cálculos Fundamentais Capítulo 3: Gestão de stoques Curso de Admiistração de mpresas 2º Semestre 09 Disciplia: Admiistração da Logística e Patrimôio Capítulo 03: Gestão de estoques (Partes 3 e 4) Parte : Itrodução Parte 2:

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO. Dr. Sivaldo Leite Correia

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO. Dr. Sivaldo Leite Correia PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO Dr. Sivaldo Leite Correia CONCEITOS, LIMITAÇÕES E APLICAÇÕES Nos tópicos ateriores vimos as estratégias geeralizadas para

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA Itrodução CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA A Ciética Química estuda a velocidade com a qual as reações acotecem e os fatores que são capazes de realizar ifluêcia sobre ela. A medida mais

Leia mais

Função do 2º Grau. 2 =, onde 2. b 4ac. , é um número REAL que pode ser: positivo, nulo ou negativo.

Função do 2º Grau. 2 =, onde 2. b 4ac. , é um número REAL que pode ser: positivo, nulo ou negativo. Função do º Grau Equação do segundo grau: Chama-se equação do º grau toda sentença da forma: a b c + + = 0, com abc,, R ea 0 Fórmula resolvente (BHÁSKARA): ± b b 4ac =, onde a b 4ac = Observe que b 4ac,

Leia mais

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou.

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou. , 6 ; 4, 86 ; (A); (D); 4 permite resolver o problema é 0 problema é ( ) SOLUÇÕES Fichas de Trabalho de Apoio FT Apoio 7 S 6 = 7, + ); [, [ Escola EB, de Ribeirão (Sede) ANO LETIVO 0/0 ; 4 ; [ 0, [ 9º

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 12.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 12.º Ano de Escolaridade Teste Intermédio de Matemática A Entrelinha,5 Teste Intermédio Matemática A Entrelinha,5 (Versão única igual à Versão ) Duração do Teste: 90 minutos 8.0.03.º Ano de Escolaridade Decreto-Lei n.º 74/004,

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS [email protected] O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

Regressão linear simples

Regressão linear simples Regressão liear simples Maria Virgiia P Dutra Eloae G Ramos Vaia Matos Foseca Pós Graduação em Saúde da Mulher e da Criaça IFF FIOCRUZ Baseado as aulas de M. Pagao e Gravreau e Geraldo Marcelo da Cuha

Leia mais

IMPORTÂNCIA DO CÁLCULO DA PROPAGAÇÃO DE ERROS EM UM EXPERIMENTO DE ATRITO ESTÁTICO + *

IMPORTÂNCIA DO CÁLCULO DA PROPAGAÇÃO DE ERROS EM UM EXPERIMENTO DE ATRITO ESTÁTICO + * IMPORTÂNCIA DO CÁLCULO DA PROPAGAÇÃO DE ERROS EM UM EXPERIMENTO DE ATRITO ESTÁTICO + * Celso Yuji Matuo J. R. Marielli Departameto de Física Floriaópolis - SC UFSC Resumo Mostra-se que, mesmo em um experimeto

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL SISTEMA MÉTRICO DECIMAL UNIDADES DE COMPRIMENTO A uidade fudametal chama-se metro (m). Múltiplos: quilômetro (km), hectômetro (hm) e decâmetro (dam) Submúltiplos: decímetro (dm), cetímetro (cm) e milímetro

Leia mais

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental.

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental. Exercícios de DSP: 1) Determie se os siais abaixo são periódicos ou ão e para cada sial periódico, determie o período fudametal a x[ ] = cos( 0,15 π ) 1 18 b x [ ] = Re{ e } Im{ } jπ + e jπ c x[ ] = se(

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

Método Simplex das Duas Fases

Método Simplex das Duas Fases Notas de aula da disciplina Pesquisa Operacional 1. 2003/1 c DECOM/ICEB/UFOP. Método Simplex das Duas Fases 1 Descrição do método Suponhamos inicialmente que tenham sido efetuadas transformações no PPL,

Leia mais

Medição de Coeficientes de Amortecimento de Amortecedores de Automóveis e Motocicletas

Medição de Coeficientes de Amortecimento de Amortecedores de Automóveis e Motocicletas Medição de Coeficietes de Amortecimeto de Amortecedores de Automóveis e Motocicletas Measuremet of Coefficiets of Dampig of Shock absorbers of Automobiles ad Motorcycles POGORELSKY JUNIOR, JACK SUSLIK

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO. Nome: DATA: 05/12/2016. d) 4 3 a) 44 b) 22 c) 20 d) 15 e) 10. Se um saco

INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO. Nome: DATA: 05/12/2016. d) 4 3 a) 44 b) 22 c) 20 d) 15 e) 10. Se um saco INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO FUNDAMENTOS DE MATEMÁTICA Nome: DATA: 0//06 ) Se x+ y e x y, etão x + y é a) 66. b) 67. c) 68. d) 69. e) 70. ) Cosiderado-se que x 97, y 907 e z xy, o valor

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

Critérios de correção e orientações de resposta p-fólio

Critérios de correção e orientações de resposta p-fólio Miistério da Ciêcia, Tecologia e Esio Superior U.C. 037 Elemetos de Probabilidade e Estatística de Juho de 0 Critérios de correção e orietações de resposta p-fólio Neste relatório apresetam-se os critérios

Leia mais

étodos uméricos MÉTODO DOS MOMENTOS - MOM Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos MÉTODO DOS MOMENTOS - MOM Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos MÉTODO DOS MOMETOS - MOM Prof. Erivelto Geraldo epomuceo PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA ELÉTRICA UIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CETRO FEDERAL DE EDUCAÇÃO TECOLÓGICA

Leia mais

9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros

9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros INE 7 - Iferêcia Estatística Estimação de Parâmetros 1 9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros 9.1 - Itrodução Estatística é a ciêcia que se ocupa de orgaizar, descrever, aalisar e iterpretar

Leia mais

PRO 528 - Pesquisa Operacional II

PRO 528 - Pesquisa Operacional II Pesquisa Operacional II 3. Software LINDO Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção Problemas em forma não padrão São 4 características de um problema na forma padrão, lembram-se?

Leia mais