Dinâmica do movimento Equações completas do movimento. Dinâmica Movimento da Aeronave, aproximação de Corpo Rígido (6DoF)

Tamanho: px
Começar a partir da página:

Download "Dinâmica do movimento Equações completas do movimento. Dinâmica Movimento da Aeronave, aproximação de Corpo Rígido (6DoF)"

Transcrição

1 Revisão I Dinâmica Movimento da Aeronave, aproximação de Corpo Rígido (6DoF)

2 Aplicação da 2a. Lei: resumo Sistemas de referência q y b p x b CG z b r

3 Aplicação da 2a. Lei: resumo Sistemas de referência Aplicação da 2a. Lei: resumo Como já foi visto: Considerando a aeronave como corpo rígido, a Terra como referencial inercial, a diádica de inércia constante, a atmosfera parada (sem vento), e desconsiderando a variação de massa, a aplicação da 2a. Lei de Newton resume-se portanto a: sistema de referência do corpo (não inercial) CM x B R z B 0 r R elemento de massa e δv 0 δt = Fext m ω V 0 x I yi z I Terra sistema de referência da Terra (considerado inercial) δω δt = J 1 ( M ext CM ω (Jω) )

4 Aplicação da 2a. Lei: resumo Sistemas de referência Sistemas de referência As forças e momentos, bem como velocidades e acelerações da aeronave estão escritos em diferentes sistemas de referência, em especial: sistema de referência terrestre (considerado inercial) sistema de referência do corpo sistema de referência aerodinâmico sistema de referência propulsivo Faça uma revisão das definições e das matrizes de transformação! x b a x a b V z b plano de simetria xb zb plano formado por xa e yb CM z a y b y a

5 Comecemos com a 2a. Lei aplicada à dinâmica de translação: δv 0 δt = Fext m ω V 0 soma das forças externas, no referencial do corpo: F ext = L ba D Y L + L bp T 0 0 }{{} F x F y F z +L bt 0 0 mg

6 vetor velocidade do CG, no referencial do corpo: Não se esqueça que: V 0 = V 0 = L ba V 0 0 u v w = Daí saem as relações entre as componentes u, v, w com V, α e β que veremos adiante. u v w

7 vetor velocidade de rotação da aeronave em relação ao referencial da Terra, escrito no referencial do corpo: ω = NOTA: o produto vetorial ω V 0 pode ser calculado pela produto matricial: 0 r q u qw rv ω V 0 = r 0 p v = pw + ru q p 0 w pv qu p q r

8 A aplicação de: resume-se portanto a: u v ẇ = F x /m F y /m F z /m δv 0 δt } {{ } aero + prop + = Fext m ω V 0 g sin θ g cos θ sin φ g cos θ cos φ } {{ } gravidade + qw + rv pw ru pv + qu } {{ } rotação

9 Passemos à aplicação da 2a. Lei à dinâmica de rotação: δω δt = J 1 ( M ext CM ω (Jω) ) soma dos momentos externos, no referencial do corpo: M ext = M A }{{} aero + M }{{} F = prop L M N

10 Considerando simetria com relação ao plano que corta a aeronave verticalmente na linha de referência da fuselagem: Jxx 0 Jxz J = 0 J yy 0, J xz 0 J zz a solução algébrica leva a (veja próximo slide a obtenção usando MATLAB simbólico): J ṗ zz L J xz N +J xz ( J xx +J yy J zz )pq+(jxz 2 +J zz 2 Jyy Jzz )qr q = ṙ Jxz 2 Jxx Jzz M +(J zz J xx )pr+j xz (r 2 p 2 ) J yy J xz L J xx N +(J xx J yy Jxx 2 J xz 2 )pq+j xz (J xx J yy +J zz )qr Jxz 2 Jxx Jzz

11 Usando MATLAB simbólico para calcular J 1 (M ext CM ω (Jω)): syms p q r Jxx Jyy Jzz Jxz L M N % angular velocity om=[p;q;r]; % inertia diadic J=[Jxx,0,-Jxz;0,Jyy,0;-Jxz,0,Jzz]; % total external moment Mext=[L;M;N]; simplify((j^(-1))*(mext-cross(om,j*om))) Obtém-se como resposta: ans = - (Jxz*(N + q*(jxx*p - Jxz*r) - Jyy*p*q))/(Jxz^2 - Jxx*Jzz) - (Jzz*(L + q*(jxz*p - Jzz*r) + Jyy*q*r))/(Jxz^2 - Jxx*Jzz) -(p*(jxz*p - Jzz*r) - M + r*(jxx*p - Jxz*r))/Jyy - (Jxx*(N + q*(jxx*p - Jxz*r) - Jyy*p*q))/(Jxz^2 - Jxx*Jzz) - (Jxz*(L + q*(jxz*p - Jzz*r) + Jyy*q*r))/(Jxz^2 - Jxx*Jzz)

12 Chegamos ao seguinte sistema de equações diferenciais: u = F x /m g sin θ qw + rv v = F y /m + g cos θ sin φ + pw ru ẇ = F z /m + g cos θ cos φ pv + qu ṗ = J zz L J xz N + J xz ( J xx + J yy J zz ) pq + ( ) Jxz 2 + Jzz 2 J yy J zz qr Jxz 2 J xx J zz q = M + (J ( zz J xx ) pr + J xz r 2 p 2) J yy ṙ = J xz L J xx N + ( ) J xx J yy Jxx 2 Jxz 2 pq + Jxz (J xx J yy + J zz ) qr Jxz 2 J xx J zz

13 Para resolver esse sistema de equações diferencias é necessário conhecer ainda: α, β e V : modelo aerodinâmico / modelo propulsivo altitude H : modelo aerodinâmico / modelo propulsivo θ e φ: entram diretamente nas equações

14 Da cinemática de translação temos que: d R 0 = V 0 d t Escrevendo-se os vetores no sistema terrestre: ẋ ẏ = L T u bt v Ḣ w onde, lembrando: L bt é a matriz de transformação u, v e w são as componentes de V 0 no sistema do corpo x I sistema de referência do corpo (não inercial) x B R z B 0 yi z I Terra CM r sistema de referência da Terra (considerado inercial) R elemento de massa

15 No MATLAB simbólico: syms psi theta phi u v w real % IRF to BRF Lpsi=[cos(psi) sin(psi) 0;-sin(psi) cos(psi) 0;0 0 1]; sistema de referência do corpo (não inercial) elemento de massa Ltheta=[cos(theta) 0 -sin(theta);0 1 0;sin(theta) 0 cos(theta)]; CM r Lphi=[1 0 0;0 cos(phi) sin(phi);0 -sin(phi) cos(phi)]; x B % transformation matrix Lbt=Lphi*Ltheta*Lpsi; R 0 z B R % vector velocity, written on IRF simplify(lbt *[u;v;w]) Em regime sem a presença de vento, x e y são ignoráveis. A equação de Ḣ é: x I yi z I Terra sistema de referência da Terra (considerado inercial) Ḣ = u sin θ v cos θ sin φ w cos φ cos θ

16 Da cinemática de rotação, temos no sistema do corpo (lembre-se que os ângulos de Euler não estão definidos no sistema do corpo!): φ 0 0 +L φ 0 θ 0 +L φ L θ 0 0 ψ = ω = p q r q Logo (use o MATLAB simbólico por exemplo): φ = p + tan θ(q sin φ + r cos φ) p x b CG y b θ = q cos φ r sin φ ψ = q sin φ + r cos φ cos θ z b r

17 Da relação geométrica entre os sistemas aerodinâmico e do corpo: V = u 2 + v 2 + w 2 α = arctan w u β = arcsin v V Porém, por vezes é conveniente usar as equações com as variáveis do segundo conjunto. Logo: x b a x a b V z b plano de simetria xb zb plano formado por xa e yb CM z a y b y a V = (u u + v v + wẇ) /V α = (uẇ w u) / ( u 2 + w 2) β = ( V v v V ) / (V ) u 2 + w 2 u = V cos β cos α v = V sin β w = V cos β sin α

18 Determinação do equiĺıbrio V = (u u + v v + wẇ) /V θ = q cos φ r sin φ q = M + (Jzz Jxx ) pr + Jxz ( r 2 p 2) J yy α = (uẇ w u) / ( u 2 + w 2) Ḣ = u sin θ v cos θ sin φ w cos φ cos θ β = ( V v v V ) / (V ) u 2 + w 2 ṙ = Jxz L Jxx N + ( J xx J yy Jxx 2 Jxz 2 ) pq + Jxz (J xx J yy + J zz ) qr Jxz 2 J xx J zz φ = p + tan θ(q sin φ + r cos φ) ṗ = Jzz L Jxz N + Jxz ( Jxx + Jyy Jzz ) pq + ( J 2 xz + J 2 zz J yy J zz ) qr J 2 xz J xx J zz

19 Determinação do equiĺıbrio O sistema de equações diferenciais assim obtido pode ser integrado numericamente, dados: condição inicial comandos Vetor de estado, no sistema completo: X = [ V θ q α Ḣ β ṙ φ ṗ ] T 5 variáveis longitudinais 4 variáveis látero-direcionais

20 Determinação do equiĺıbrio Determinação do equiĺıbrio Considerando-se apenas os controles primários: 9 estados 4 controles No equiĺıbrio: taxas de variação nulas: p = q = r = 0 equações de θ e φ anulam-se identicamente, veja: θ = q cos φ r sin φ Logo: φ = p + tan θ(q sin φ + r cos φ) restam 7 equações 6 estados + 4 controles a serem determinados Portanto, 3 grandezas precisam ser estipuladas a priori: velocidade de voo (V ), altitude de voo (H ),ângulo de derrapagem (β, normalmente nulo)

21 Determinação do equiĺıbrio Determinação do equiĺıbrio Casos de exceção: voo de subida permanente neste caso, Ḣ /V é igual ao gradiente de subida como a densidade varia, é válido somente nas redondezas da condição de operação informada retirado de news.delta.com

22 Determinação do equiĺıbrio Determinação do equiĺıbrio Casos de exceção: curva permanente neste caso, ψ = Ω é o gradiente de curva, e φ = θ = 0 da relação entre as componentes da velocidade angular, 3 estados ficam estipulados: p E = Ω sin θ E q E = Ω sin φ E cos θ E r E = Ω cos φ E cos θ E 7 equações: 4 controles + 3 estados podem ser determinados 3 estados estipulados (V, H, e β = 0 para curva coordenada) NOTE: os comandos obtidos são para manter a condição de voo, e não para se chegar a ela!

Revisão II: Sistemas de Referência

Revisão II: Sistemas de Referência Revisão II: Sistemas de Referência sistema terrestre fixo (ex.: NED) origem: ponto fixo sobre a superfície da Terra zi : vertical, apontando para o centro da Terra xi e y I : repousam sobre o plano horizontal

Leia mais

Equações do Movimento

Equações do Movimento Equações do Movimento João Oliveira Estabilidade de Voo, Eng. Aeroespacial 1 Ângulos de Euler 1.1 Referenciais Referenciais: fixo na Terra e do avião (Ox E y E z E ) : referencial «inercial», fixo na Terra;

Leia mais

Equações do Movimento

Equações do Movimento Equações do Movimento João Oliveira Departamento de Engenharia Mecânica Área Científica de Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial João Oliveira

Leia mais

Teoria para Pequenas Perturbações

Teoria para Pequenas Perturbações Teoria para Pequenas Perturbações João Oliveira Departamento de Engenharia Mecânica, Secção de Mecânica Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial João Oliveira (SMA,

Leia mais

Movimento Longitudinal da Aeronave

Movimento Longitudinal da Aeronave Movimento Longitudinal da eronave B-722 Flávio Luiz Cardoso Ribeiro http://flavioluiz.github.io flaviocr@ita.br Departamento de Mecânica do Voo Divisão de Engenharia eronáutica e eroespacial Instituto

Leia mais

Equações do movimento completo

Equações do movimento completo Equações do movimento completo AB-722 Flávio Luiz Cardoso Ribeiro http://flavioluiz.github.io flaviocr@ita.br Departamento de Mecânica do Voo Divisão de Engenharia Aeronáutica e Aeroespacial Instituto

Leia mais

MVO-10 Desempenho de Aeronaves

MVO-10 Desempenho de Aeronaves MVO-10 Desempenho de Aeronaves (carga horária: 64 horas) Flávio Silvestre / Maurício Morales Departamento de Mecânica do Vôo Divisão de Engenharia Aeronáutica Instituto Tecnológico de Aeronáutica 2012

Leia mais

Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal.

Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal. Introdução ao Controle Automático de Aeronaves Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal. Leonardo Tôrres torres@cpdee.ufmg.br Escola de Engenharia Universidade

Leia mais

Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal.

Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal. Introdução ao Controle Automático de Aeronaves Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal. Leonardo Tôrres torres@cpdee.ufmg.br Escola de Engenharia Universidade

Leia mais

Linearização das equações do movimento completo

Linearização das equações do movimento completo Linearização das equações do movimento completo AB-722 Flávio Luiz Cardoso Ribeiro http://flavioluiz.github.io flaviocr@ita.br Departamento de Mecânica do Voo Divisão de Engenharia Aeronáutica e Aeroespacial

Leia mais

Equações do Movimento

Equações do Movimento Capítulo 12 Equações do Movimento 12.1 Ângulos de Euler 12.1.1 Referenciais Para os nossos propósitos podemos considerar como inercial um referencial fixo na Terra, designado por F E, (Ox E y E z E ).

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 DINÂMICA Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 1 de março de 013 Roteiro 1 Roteiro 1 : caso geral Componente do momento angular ao longo do eixo de rotação é L = I ω Mas o momento

Leia mais

Estabilidade Dinâmica: Modos Laterais

Estabilidade Dinâmica: Modos Laterais Estabilidade Dinâmica: Modos Laterais João Oliveira Departamento de Engenharia Mecânica, Área Científica de Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2015/2016

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2015/2016 MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 015/016 EIC0010 FÍSICA I 1o ANO, o SEMESTRE 1 de junho de 016 Nome: Duração horas. Prova com consulta de formulário e uso de computador. O formulário

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

SEM Controle de Sistemas Robóticos

SEM Controle de Sistemas Robóticos SEM5875 - Controle de Sistemas Robóticos Adriano A. G. Siqueira Aula 1 - Revisão de Cinemática, Dinâmica e Propriedades das Matrizes Dinâmicas SEM5875 - Controle de Sistemas Robóticos p. 1/61 Matrizes

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012 EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE Prova com consulta de formulário e uso de computador. Duração 2 horas. Nome do estudante: Pode consultar

Leia mais

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá MOMENTO ANGULAR Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 Roteiro 1 Quando todas as partículas de um corpo rígido se movem ao longo de trajetórias que

Leia mais

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO INTRODUÇÃO ESTUDO DE CASO Um motor de dois cilindros roda em vazio a 1000 rpm quando a válvula borboleta é aberta. Como a forma assimétrica da árvore de manivelas e

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA DA USP ANDRÉ DE SOUZA MENDES PROJETO DE OBSERVADOR DE ESTADOS PARA UM CARRO

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA DA USP ANDRÉ DE SOUZA MENDES PROJETO DE OBSERVADOR DE ESTADOS PARA UM CARRO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA DA USP ANDRÉ DE SOUZA MENDES PROJETO DE OBSERVADOR DE ESTADOS PARA UM CARRO São Paulo 2016 LISTA DE ILUSTRAÇÕES Ilustração 1 Modelo do veículo............................

Leia mais

EN ESTABILIDADE E CONTRoLE DE AERONAVES II - MOVIMENTO LONGITUDINAL DO AVIÃO. Maria Cecília Zanardi Fernando Madeira

EN ESTABILIDADE E CONTRoLE DE AERONAVES II - MOVIMENTO LONGITUDINAL DO AVIÃO. Maria Cecília Zanardi Fernando Madeira EN 3205 - ESTABILIDADE E CONTRoLE DE AERONAVES II - MOVIMENTO LONGITUDINAL DO AVIÃO Maria Cecília Zanardi Fernando Madeira Estabilidade e Controle de Aeronaves II - MOVIMENTO LONGITUDINAL DO AVIÃO REFERENCIAS:

Leia mais

ESTUDO DAS EQUAÇÕES DE EQUILÍBRIO DO ALPHA ONE

ESTUDO DAS EQUAÇÕES DE EQUILÍBRIO DO ALPHA ONE ESUDO DAS EQUAÇÕES DE EQUILÍBRIO DO ALPHA ONE Felipe Perroni de Oliveira Instituto ecnológico de Aeronáutica (IA) 12228-900 São José dos Campos, SP, Brasil Bolsista PIBIC-CNPq felipe.perroni@gmail.com

Leia mais

MEC2-98/99 ANÁLISE CINEMÁTICA DE MECANISMOS 2.1. Fig 1 - Mecanismo com 2 graus de liberdade

MEC2-98/99 ANÁLISE CINEMÁTICA DE MECANISMOS 2.1. Fig 1 - Mecanismo com 2 graus de liberdade MEC - 98/99 ANÁLISE CINEMÁTICA DE MECANISMOS.1 Problema nº Fig 1 - Mecanismo com graus de liberdade No mecanismo representado na figura, a barra ABE está ligada por uma articulação plana à barra OA e através

Leia mais

AB-721 Atividade 1. Flávio Ribeiro / Figura 1: Pouso de planador na competição de 2008 em Lüsse, Alemanha.

AB-721 Atividade 1. Flávio Ribeiro / Figura 1: Pouso de planador na competição de 2008 em Lüsse, Alemanha. AB-72 Atividade Flávio Ribeiro / flaviocr@ita.br 209 Objetivo Figura : Pouso de planador na competição de 2008 em Lüsse, Alemanha. O objetivo desta aula prática começar a usar o MATLAB para aplicações

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: As condições que

Leia mais

AB-701 Aula de Exercı cios I

AB-701 Aula de Exercı cios I AB-70 Aula de Exercı cios I Fla vio Silvestre / flaviojs@ita.br 2/04/206 Objetivo Figura : Pouso de planador na competic a o de 2008 em Lu sse, Alemanha. O objetivo desta aula pra tica comec ar a usar

Leia mais

Trabalho: Dinâmica da vibração de árvores

Trabalho: Dinâmica da vibração de árvores Trabalho: Dinâmica da vibração de árvores Professor: Emílio Graciliano Ferreira Mercuri, D.Sc. Departamento de Engenharia Ambiental - DEA, Universidade Federal do Paraná - UFPR mercuri@ufpr.br As árvores

Leia mais

Equações de Movimento, Forças e Momentos.

Equações de Movimento, Forças e Momentos. Introdução ao Controle Automático de Aeronaves Equações de Movimento, Forças e Momentos. Leonardo Tôrres torres@cpdee.ufmg.br Escola de Engenharia Universidade Federal de Minas Gerais/EEUFMG Dep. Eng.

Leia mais

Mecânica Geral 2016/17

Mecânica Geral 2016/17 Mecânica Geral 2016/17 MEFT Responsável: Eduardo V. Castro Departamento de Física, Instituto Superior Técnico Corpo Rígido B (Vectores velocidade angular e momento angular e movimento giroscópico.) 1.

Leia mais

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO. No instante em que a válvula borboleta é aberta, qual é a aceleração angular

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO. No instante em que a válvula borboleta é aberta, qual é a aceleração angular INTRODUÇÃO ESTUDO DE CASO MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO Um motor de dois cilindros roda em vazio, a 1000 rpm, quando a válvula borboleta (que regula o fluxo de ar e altera a carga de trabalho) é

Leia mais

Mecânica Geral 2012/13

Mecânica Geral 2012/13 Mecânica Geral 2012/13 MEFT Responsável: Eduardo V. Castro Departamento de Física, Instituto Superior Técnico Corpo Rígido C / Semana 04 15/03/2013 (Tensor de inércia e eixos principais, movimento do girocompasso,

Leia mais

Introdução à Robótica Industrial p. 1/20

Introdução à Robótica Industrial p. 1/20 Introdução à Robótica Industrial Adriano A. G. Siqueira Aula 6 Introdução à Robótica Industrial p. 1/20 Dinâmica de Manipuladores Relação entre as forças e torques aplicados nas juntas e o movimento do

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4 O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um

Leia mais

Controlador Não-Linear Bidirecional de Tempo Ótimo para Veículo Aéreo Não Tripulado

Controlador Não-Linear Bidirecional de Tempo Ótimo para Veículo Aéreo Não Tripulado Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Controlador Não-Linear Bidirecional de Tempo Ótimo para Veículo Aéreo Não Tripulado Leandro Pfuller Lisboa Orientador: Aurélio

Leia mais

MVO-31: Desempenho de Aeronaves

MVO-31: Desempenho de Aeronaves Planeio Departamento de Mecânica do Voo Divisão de Engenharia Aeroespacial Instituto Tecnológico de Aeronáutica 2019 PARTE III Planeio Permanente g: ângulo de trajetória L D velocidade peso: mg Decompondo-se

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Segundo Exercício de Modelagem e Simulação Computacional Maio 2012 EMSC#2 - MECÂNICA B PME 2200

Segundo Exercício de Modelagem e Simulação Computacional Maio 2012 EMSC#2 - MECÂNICA B PME 2200 Segundo Exercício de Modelagem e Simulação Computacional Maio 01 EMSC# - MECÂNICA B PME 00 1. ENUNCIADO DO PROBLEMA Um planador (vide Fig. 1) se aproxima da pista do aeroporto para pouso com ângulo de

Leia mais

Física I. Dinâmica de Corpos Rígidos Lista de Exercícios

Física I. Dinâmica de Corpos Rígidos Lista de Exercícios Física I Dinâmica de Corpos Rígidos Lista de Exercícios 1. Campo de Velocidades e Centro Instantâneo de Rotação Dados os itens abaixo, responda ao que se pede: a. O disco abaixo está preso a uma articulação

Leia mais

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções Física Geral I 1º semestre - 2004/05 2 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 9 de Dezembro 2004 Duração: 2 horas + 30 min tolerância Nas

Leia mais

Apresentação Outras Coordenadas... 39

Apresentação Outras Coordenadas... 39 Sumário Apresentação... 15 1. Referenciais e Coordenadas Cartesianas... 17 1.1 Introdução... 17 1.2 O Espaço Físico... 18 1.3 Tempo... 19 1.3.1 Mas o Tempo é Finito ou Infinito?... 21 1.3.2 Pode-se Viajar

Leia mais

Notas sobre Mecânica Clássica

Notas sobre Mecânica Clássica Notas sobre Mecânica Clássica Hildeberto Eulalio Cabral 1 Cinemática do corpo rígido Em mecânica clássica, um corpo rígido é um sistema de pontos materiais cuas distâncias entre dois quaisquer deles mantem-se

Leia mais

Transformações Geométricas Grafos de Cena

Transformações Geométricas Grafos de Cena Transformações Geométricas Grafos de Cena Edward Angel, Cap. 4 Instituto Superior Técnico Computação Gráfica 2009/2010 1 Na última aula... Transformações Geométricas Translação Escala Rotação Espaço Homogéneo

Leia mais

O pêndulo composto. k 2 0 = I z. Logo,

O pêndulo composto. k 2 0 = I z. Logo, O pêndulo composto Um pêndulo composto consiste de um corpo rígido, de massa M, que pode girar livremente em torno de um eixo sob a ação da gravidade. Escolhamos o eixo z como sendo o eixo de rotação.

Leia mais

Estabilidade Dinâmica

Estabilidade Dinâmica Estabilidade Dinâmica João Oliveira Departamento de Engenharia Mecânica, Área Científica de Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial Versão de

Leia mais

Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais

Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais Questão 1 Considerando os momentos de inércia de um corpo no sistema de eixos principais de inércia com origem no centro de massa

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Torção de uma Barra Prismática

Torção de uma Barra Prismática Torção de uma Barra Prismática 1 Torção de uma Barra Prismática Torção Uniforme ou de Saint Venant; Aplicação do método semi-inverso. 2 Figura 1. Barra prismática genérica. Barra submetida a momentos de

Leia mais

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α

Leia mais

Estabilidade Dinâmica: Modos Laterais

Estabilidade Dinâmica: Modos Laterais Estabilidade Dinâmica: Modos Laterais João Oliveira Estabilidade de Voo, Eng. Aeroesacial Versão de 13 de Dezembro de 2011 1 Modos laterais 1.1 Determinação dos modos laterais Determinação dos modos laterais

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESCA PITÉCNICA DA UNIVERSIDADE DE SÃ PAU Avenida Professor Mello Moraes, nº 31. cep 558-9, São Paulo, SP. Telefone: (xx11) 391 5337 Fax: (xx11) 3813 188 MECÂNICA II - PME 3 Primeira Prova de abril de 17

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo

Leia mais

Cinemática da partícula fluida

Cinemática da partícula fluida Cinemática da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Cinemática da partícula fluida 1 / 16 Sumário 1 Descrição do movimento 2 Cinemática

Leia mais

G3 FIS /06/2013 MECÂNICA NEWTONIANA B NOME:

G3 FIS /06/2013 MECÂNICA NEWTONIANA B NOME: G3 FIS1026 17/06/2013 MECÂNICA NEWTONIANA B NOME: Matrícula: TURMA: QUESTÃO VALOR GRAU REVISÃO 1 3,0 2 3,5 3 3,5 Total 10,0 Dados: g = 10 m/s 2 ; Sistema de coordenadas y α constante: Δω = αt; Δθ = ω 0

Leia mais

Mecânica II - FFI0111: Lista #3

Mecânica II - FFI0111: Lista #3 Mecânica II - FFI0111: Lista #3 Fazer até 11/04/2011 L.A.Ferreira ; Seg.Qua. 10:10 11:50 Estagiário: Gabriel Luchini 1 Problema 1 A equação de Newton é de segunda ordem no tempo. Você aprendeu que, para

Leia mais

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO Parte 2 - P2 de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão 1 - [2,4 ponto] Dois pequenos discos (que podem ser considerados como partículas), de massas m e 2m, se deslocam sobre uma

Leia mais

Aula Prática 1: Movimento Longitudinal

Aula Prática 1: Movimento Longitudinal Aula Prática 1: Movimento Longitudinal AB-722 Flávio Luiz Cardoso Ribeiro http://flavioluiz.github.io flaviocr@ita.br Departamento de Mecânica do Voo Divisão de Engenharia Aeronáutica e Aeroespacial Instituto

Leia mais

Corpos Rígidos CORPOS RÍGIDOS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá

Corpos Rígidos CORPOS RÍGIDOS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá CORPOS RÍGIDOS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 2 Roteiro 1 2 Algarismos significativos 0,333 3 alg. sign. 3,155 4 alg. sign. 3 1 alg. sign. 3,0

Leia mais

Mecânica 1. Resumo e Exercícios P3

Mecânica 1. Resumo e Exercícios P3 Mecânica 1 Resumo e Exercícios P3 Conceitos 1. Dinâmica do Ponto 2. Dinâmica do Corpo Rígido 1. Dinâmica do Ponto a. Quantidade de Movimento Linear Vetorial Instantânea Q = m v b. Quantidade de Movimento

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

Lista 7. Campo magnético, força de Lorentz, aplicações

Lista 7. Campo magnético, força de Lorentz, aplicações Lista 7 Campo magnético, força de Lorentz, aplicações Q28.1) Considere a equação da força magnética aplicada sobre uma partícula carregada se movendo numa região com campo magnético: F = q v B. R: Sim,

Leia mais

CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS

CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS 82 CPÍTULO 9 CINEMÁTIC DO MOVIMENTO ESPCIL DE CORPOS RÍGIDOS O estudo da dinâmica do corpo rígido requer o conhecimento da aceleração do centro de massa e das características cinemáticas do corpo denominadas

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica PME 3100 - Mecânica I - Segunda Prova- Duração 110 minutos 14 de outubro de 014 Obs. Não é permitido o uso de dispositivos eletrônicos, como calculadoras, tablets e celulares. C QUESTÃO 1 (3,0 pontos).

Leia mais

Exame Oral. Segunda Fase do Exame de Seleção para a École Polytechnique Alessandro T. M. Gagliardi

Exame Oral. Segunda Fase do Exame de Seleção para a École Polytechnique Alessandro T. M. Gagliardi Exame Oral Segunda Fase do Exame de Seleção para a École Polytechnique - 2012 Alessandro T. M. Gagliardi Depto. de Física Matemática, Universidade de São Paulo, Brasil 2 de Dezembro de 2012 Conteúdo 1

Leia mais

3 Análise da Estabilidade de Tensão em um Sistema Elétrico de Potência

3 Análise da Estabilidade de Tensão em um Sistema Elétrico de Potência 3 Análise da Estabilidade de Tensão em um Sistema Elétrico de Potência O problema de estabilidade de tensão normalmente ocorre em sistemas muito carregados. Uma perturbação que leva ao colapso de tensão

Leia mais

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula - Cinemática Professor: Gustavo Silva 1 Cinemática do Movimento Plano de um Corpo Rígido 1 Movimento de um corpo rígido; 2 Translação; 3 Rotação em torno de um eixo

Leia mais

Movimento em 2 ou 3 dimensões

Movimento em 2 ou 3 dimensões Movimento em 2 ou 3 dimensões O vetor Posição z y O r x Escolha de uma origem (O) do sistema de coordenadas (x,y,z). Versores: i, j, k i = j = k =1 O vetor Posição z y O r x Escolha de uma origem (O) do

Leia mais

Sistemas de Coordenadas e Equações de Movimento

Sistemas de Coordenadas e Equações de Movimento Introdução ao Controle Automático de Aeronaves Sistemas de Coordenadas e Equações de Movimento Leonardo Tôrres torres@cpdee.ufmg.br Escola de Engenharia Universidade Federal de Minas Gerais/EEUFMG Dep.

Leia mais

Gabarito da Prova P1 - Física 1

Gabarito da Prova P1 - Física 1 Gabarito da Prova P1 - Física 1 1. Duas partículas (1 e 2) se movem ao longo do eixo x e y, respectivamente, com velocidades constantes v 1 = 2ˆx cm/s e v 2 = 3ŷ cm/s. Em t = 0 s elas estão nas posições:

Leia mais

Introdução à Robótica Industrial p. 1/23

Introdução à Robótica Industrial p. 1/23 Introdução à Robótica Industrial Adriano A. G. Siqueira Aula 4 Introdução à Robótica Industrial p. 1/23 Cinemática Direta Dado: variáveis das juntas (ângulos ou deslocamentos) Procurado: posição e orientação

Leia mais

Sistemas de Coordenadas e Equações de Movimento

Sistemas de Coordenadas e Equações de Movimento Introdução ao Controle Automático de Aeronaves Sistemas de Coordenadas e Equações de Movimento Leonardo Tôrres torres@cpdee.ufmg.br Escola de Engenharia Universidade Federal de Minas Gerais/EEUFMG Dep.

Leia mais

Movimento Circular e Uniforme

Movimento Circular e Uniforme A principal característica desse tipo de movimento é que a partícula ou o corpo no qual estamos considerando tem o módulo da velocidade constante na sua trajetória circular. Exemplos: - Satélites na órbita

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04 Assunto:Produto escalar, bases canônicas do R 2 e R 3, produto vetorial, produto misto, equação da reta no R 2 Palavras-chaves: Produto

Leia mais

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.

Leia mais

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Prof. Alex G. Dias Prof. Alysson F. Ferrari Eletrostática Neste curso trataremos da parte estática do eletromagnetismo. Ou seja:

Leia mais

11 Cinemática de partículas 605

11 Cinemática de partículas 605 SUMÁRIO 11 Cinemática de partículas 605 11.1 Introdução à dinâmica 606 Movimento retilíneo de partículas 607 11.2 Posição, velocidade e aceleração 607 11.3 Determinação do movimento de uma partícula 611

Leia mais

28/Set/ Movimento a uma dimensão Aceleração constante Queda livre 3.2 Movimento 2 e 3-D Vetor deslocamento 3.2.

28/Set/ Movimento a uma dimensão Aceleração constante Queda livre 3.2 Movimento 2 e 3-D Vetor deslocamento 3.2. 28/Set/2016 3.1 Movimento a uma dimensão 3.1.1 Aceleração constante 3.1.2 Queda livre 3.2 Movimento 2 e 3-D 3.2.1 Vetor deslocamento 3.2.2 Vetor velocidade 3.2.3 Vetor aceleração 3.3 Movimento relativo

Leia mais

Trabalho: Dinâmica da vibração de árvores

Trabalho: Dinâmica da vibração de árvores Trabalho: Dinâmica da vibração de árvores Professor: Emílio Graciliano Ferreira Mercuri, D.Sc. Departamento de Engenharia Ambiental - DEA, Universidade Federal do Paraná - UFPR mercuri@ufpr.br As árvores

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótica Prof. Reinaldo Bianchi Centro Universitário FEI 2016 5 a Aula Pós Graduação - IECAT Objetivos desta aula Velocidade e Aceleração de corpo rígido. Matrizes de inércia. Bibliografia Capítulos 5

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questão 1. (3 pontos) Numa mesa horizontal sem atrito, dois corpos, de massas 2m e m, ambos com a mesma rapidez v, colidem no ponto O conforme a figura. A rapidez final do corpo de

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Oficinas de Física 2015/1 Gabarito Oficina 8 Dinâmica Angular

Universidade Federal do Rio de Janeiro Instituto de Física Oficinas de Física 2015/1 Gabarito Oficina 8 Dinâmica Angular Universidade Federal do Rio de Janeiro Instituto de Física Oficinas de Física 2015/1 Gabarito Oficina 8 Dinâmica Angular 1) (a) A energia mecânica conserva-se pois num rolamento sem deslizamento a força

Leia mais

Fundamentos de Mecânica

Fundamentos de Mecânica Fundamentos de Mecânica 43151 Gabarito do estudo dirigido 3 (Movimento em uma dimensão) Primeiro semestre de 213 1. Um elevador sobe com uma aceleração para cima de 1, 2 m/s 2. No instante em que sua velocidade

Leia mais

Mecânica Clássica 1 - Lista 2 Professor: Gabriel T. Landi

Mecânica Clássica 1 - Lista 2 Professor: Gabriel T. Landi Mecânica Clássica 1 - Lista 2 Professor: Gabriel T. Landi Data de entrega: 04/11/2015 (quarta-feira). Leitura: Landau capítulo 3. Thornton & Marion, capítulos 1, 2, 8 e 9. Regras do jogo: Você pode usar

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013 Introdução à INTRODUÇÃO À MECÂNICA ANALÍTICA Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro Introdução à 1 Introdução à Roteiro Introdução à 1 Introdução à Exemplo

Leia mais

VEHICLE DYNAMICS - LATERAL ANDRÉ DE SOUZA MENDES ARTICULATED VEHICLE MODEL

VEHICLE DYNAMICS - LATERAL ANDRÉ DE SOUZA MENDES ARTICULATED VEHICLE MODEL VEHICLE DYNAMICS - LATERAL ANDRÉ DE SOUZA MENDES ARTICULATED VEHICLE MODEL São Bernardo do Campo 2016 0.1 MODELO DO VEÍCULO ARTICULADO O modelo físico do conjunto é ilustrado na figura 1. Para caracterizar

Leia mais

v CM K = ½ I CM a CM

v CM K = ½ I CM a CM ENGENHARIA 1 ROLAMENTO O rolamento é um movimento que associa translação e rotação. É o caso, por exemplo, de uma roda que, ao mesmo tempo que rotaciona em torno de seu eixo central, translada como um

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 016 Respostas esperadas Parte 1 Estas são sugestões de possíveis respostas Outras possibilidades também podem ser consideradas

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

Dinâmica da Atmosfera

Dinâmica da Atmosfera Dinâmica da Atmosfera Forças atuantes sobre corpos sobre a superfície terrestre: fricção, coriolis, gravitacional, etc. Efeitos de temperatura Efeitos geográficos Pêndulo de Focault Trajetória do Pêndulo

Leia mais

AB Roteiro para o relatório

AB Roteiro para o relatório AB-722 - Roteiro para o relatório Professore: Flávio Ribeiro 2018 A seguinte lista de exercícios deve ser apresentada na forma de um relatório. Ela está dividida em duas partes: a primeira consiste em

Leia mais

Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011

Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011 Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011 A vista da prova será feita na 2 a feira 5/12/2011, na sala de aula no horário de 8h-8h30. Primeira Questão No sistema de coordenadas

Leia mais

Introdução à Robótica Industrial p. 1/25

Introdução à Robótica Industrial p. 1/25 Introdução à Robótica Industrial Adriano A. G. Siqueira Aula 5 Introdução à Robótica Industrial p. 1/25 Espaço das juntas e Espaço das posições e orientações Espaço das juntas: q = q 1 q 2. { q i = θ i,

Leia mais

1ª Prova de Física I - FCM0101

1ª Prova de Física I - FCM0101 1ª Prova de Física I - FCM11 #USP: Nome: Instruções: 1. Escreva seu nome e número USP no espaço acima.. A duração da prova é de horas. A prova tem 4 questões. 3. Não é permitido consultar livros, anotações

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

m R 45o vertical Segunda Chamada de Física I Assinatura:

m R 45o vertical Segunda Chamada de Física I Assinatura: Segunda Chamada de Física I - 016- NOME: Assinatura: DE Nota Q1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema.

Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Q1-1 Dois problemas de Mecânica (10 pontos) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Parte A. O disco escondido (3.5 pontos) Considere um cilindro

Leia mais

II. MODELAGEM MATEMÁTICA (cont.)

II. MODELAGEM MATEMÁTICA (cont.) INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA MP-272: CONTROLE E NAVEGAÇÃO DE MULTICÓPTEROS II. MODELAGEM MATEMÁTICA (cont.) Prof. Davi Antônio dos Santos (davists@ita.br) Departamento

Leia mais