Mecânica Geral 2012/13

Tamanho: px
Começar a partir da página:

Download "Mecânica Geral 2012/13"

Transcrição

1 Mecânica Geral 2012/13 MEFT Responsável: Eduardo V. Castro Departamento de Física, Instituto Superior Técnico Corpo Rígido C / Semana 04 15/03/2013 (Tensor de inércia e eixos principais, movimento do girocompasso, precessão na ausência de torque e equações de Euler.) 1. (Kleppner, cap. 7, exemplo 7.14) Considere o sistema de duas massas iguais m em rotação oblíqua em torno de z representado na Fig. 1(esquerda). As massas rodam com velocidade angular constante ω. (a) Determine o tensor de inércia. (b) Calcule o torque aplicado ao sistema. 2. (Baseado no exemplo 7.13 do cap. 7 do Kleppner) Um haltere roda em torno de um determinado eixo que passa pelo seu centro de massa. Num certo instante o haltere encontra-se alinhado com o eixo dos zz, como ilustrado na Fig. 1(direita). Nesse mesmo instante o vector velocidade angular instantâneo é ω = ω y ĵ + ω zˆk. (a) Usando o sistema de eixos representado na Fig. 1(direita) determine os produtos de inércia. (b) Calcule os momentos de inércia. Se precisar use o teorema dos eixos paralelos (Kleppner, cap. 7, exemplo 6.9). (c) Determine o vector momento angular L. É colinear com ω? 3. Seja I 0 o tensor de inércia de um corpo rígido no referencial do centro de massa. Imagine que é conveniente usar um referencial com origem num outro ponto, por exemplo um ponto xo do Figura 1: Kleppner, cap. 7, exemplos 7.14 e

2 Figura 2: Kleppner, cap. 7, problemas 7.6 e 7.7. corpo. Neste novo referencial o centro de massa tem coordenadas (X, Y, Z). Mostre que o tensor de inércia neste referencial se pode escrever como, Y 2 + Z 2 XY XZ I = I 0 + M XY X 2 + Z 2 Y Z. XZ Y Z X 2 + Y 2 Dica: Siga a estratégia usada para demonstrar o teorema dos eixos paralelos (Kleppner, cap. 7, exemplo 6.9). 4. (Kleppner, cap. 7, problema 7.6) É possível colocar uma moeda a rolar numa mesa de forma que a sua trajectória forme um círculo, como ilustrado na Fig. 2(esquerda). Seja b o raio da moeda, R o raio da trajectória do centro de massa da moeda ev a sua velocidade linear. (a) Assumindo que a moeda rola sem deslizar mostre que o ângulo φ que o eixo faz com a horizontal satisfaz a equação tan φ = 3v2 2gR 3v2 4gR b R sin φ. (b) Seja Ω a componente vertical do vector velocidade angular, com Ω = v/r. Em que circunstâncias se pode ignorar o facto de que Ω não coincide com um eixo principal de inércia da moeda? Determine φ neste caso. R: φ = arctan(3v 2 /2gR) 5. (Kleppner, cap. 7, problema 7.9) O centro de massa de uma bicicleta com ciclista encontra-se à altura 2l do chão. Cada roda tem massa m, raio l e momento de inércia ml 2. A trajectória da bicicleta é circular de raio R e a velocidade linear é v (e constante). (a) Sendo M a massa total da bicicleta+ciclista mostre que a inclinação da bicicleta relativamente à vertical é dada por, ( tan φ = v2 1 + m ). gr M Assuma R l. (b) Qual seria o resultado se ignorasse o momento angular das rodas? (c) Analise o caso da bicicleta sem ciclista e discuta a importância de levar em conta o momento angular das rodas. 2

3 Figura 3: Kleppner, cap. 7, exemplo (Kleppner, cap. 7, problema 7.7) Um aro de raio R e massa M encontra-se suspenso por um o que está preso a um ponto na sua orla. Se o suporte rodar com velocidade angular ω em torno de um eixo vertical o aro irá girar sobre si próprio num plano quase horizontal e com o seu centro muito próximo do eixo do suporte, como ilustrado na Fig. 2(centro). O o faz um ângulo α com o eixo vertical. (a) Determine, aproximadamente, o pequeno ângulo β que o plano do aro faz com a horizontal, com ilustração na Fig. 2(direita). R: β RMg/ω 2 (I I ) (b) Determine, aproximadamente, o raio da pequena circunferência que o centro de massa desenha em torno da vertical. R: r tan α g/ω 2 7. (Baseado no exemplo 7.11 do cap. 7 do Kleppner) Considere o girocompasso representado na Fig. 3(esquerda). Pretende-se analisar o seu movimento sabendo que inicialmente o vector momento angular de spin L s do disco e o vector velocidade angular da plataforma Ω fazem um ângulo θ 1 [ver Fig. 3(direita)]. O disco do girocompasso tem momento de inércia I relativamente ao eixo de spin e I relativamente a qualquer eixo perpendicular ao de spin. (a) No referencial do centro de massa do girocompasso obtenha a projecção do vector momento angular na direcção AB, L AB. R: L AB = I θ (b) Seja Ω = φ. Mostre que para rotações innitesimais θ e φ a variação de L AB é L AB = I θ + φ(l s + I Ω cos θ) sin θ φi Ω sin θ. (c) Mostre que para Ω ω s o torque segundo AB é τ AB = I θ + I Ωω s sin θ. (d) Obtenha o mesmo resultado escrevendo o vector momento angular total L em coordenadas cilíndricas (r, φ, z), tomando AB como a direcção radial correspondente a φ = 0, e usando as igualdades d e r /dt = Ω e φ e d e φ /dt = Ω e r. (e) No girocompasso não é possível imprimir torque segundo o eixo xo AB. Use esta facto e a relação θ 1 para determinar o período de oscilação. R: T = 2π I /(Ωω s I ) 3

4 Figura 4: Barra rotativa (Kleppner, cap. 7, exemplo 7.17). (f) Se pretendermos usar este girocompasso como bússola qual deve ser a orientação do eixo AB relativamente à direcção radial da Terra? No equador qual é o período de oscilação para um disco no (I /I = 1/2) a rodar à velocidade de rpm? E no pólo norte? R: T = 2π I /(I ω s Ω cos λ) sendo Ω a velocidade de rotação da Terra e λ a latitude. 8. (Kleppner, cap. 7, problema 7.10) Pretende-se medir a latitude usando um girocompasso. Para isso coloca-se o seu eixo xo [direcção AB na Fig. 3(esquerda)] na horizontal alinhado segundo a direcção este-oeste. O disco do girocompasso tem momento de inércia I relativamente ao eixo de spin e I relativamente a qualquer eixo perpendicular ao de spin. (a) Mostre que se obtém uma posição de equilíbrio alinhando o eixo de spin do disco paralelamente ao eixo polar. O ângulo λ que o eixo de spin faz com a horizontal corresponde à latitude do lugar. (b) Mostre que a conguração da alínea anterior corresponde a uma posição de equilíbrio estável. Para isso admita que inicialmente o eixo de spin faz um pequeno ângulo θ 1 com o eixo polar. Obtenha a equação de movimento para o ângulo θ e mostre que o eixo de spin oscila com período T = 2π I /(I ω s Ω T ) em torno da posição de equilíbrio, sendo Ω T a velocidade angular de rotação da Terra. (c) Qual a frequência de oscilação do girocompasso admitindo que o disco é sucientemente no (I /I = 1/2) e que roda a uma velocidade de rpm? Assuma que o suporte do disco não contribui para o momento de inércia. 9. Considere uma barra uniforme suportada no seu centro por um eixo horizontal como ilustrado na Fig. 4. A barra roda em torno desse eixo sem fricção, e o sistema está montado sobre uma plataforma giratória que roda com velocidade angular Ω. O eixo de rotação da plataforma passa pelo centro da barra. A barra tem momento de inércia I relativamente ao eixo longitudinal e I relativamente a qualquer eixo transversal. (a) Determine a equação de movimento para o ângulo θ que a barra faz com a horizontal. (b) Mostre que para pequenas oscilações em torno da horizontal o movimento é do tipo harmónico simples com frequência ω = (I I )/I Ω. 10. Um empregado de mesa com habilidade para malabarismo lança um prato ao ar que se mantém praticamente horizontal na subida e na descida. Um cliente que está sentado numa mesa observa o movimento do prato. O cliente nota que o prato parece rodar em torno do seu eixo de simetria perpendicular (rotação de spin). Nota também que o próprio eixo de spin parece rodar em torno da vertical, o que confere ao prato um movimento oscilatório relativamente à horizontal (ver gura lateral). Recordando algumas noções de física que aprendeu no curso de engenharia que concluiu no IST o cliente pergunta-se como é tal movimento possível: o prato a rodar em torno 4

5 θ L ω L s ω s Ω L ω Figura 5: Prato em precessão na ausência de torque. do eixo de spin dá origem a um momento angular de spin L s ; o movimento do eixo de spin em torno da vertical indica que L s está a variar de direcção; momento angular a variar implica a presença de torque; porém não há qualquer torque relativamente ao centro de massa do sistema. Após alguns instantes de reexão o cliente conclui que se trata do conhecido movimento de precessão na ausência de torque: embora L = const, uma vez que τ = d L/dt = 0, os vectores ω e L não precisam de ser colineares e o que acontece é que ω (e também L s ) roda em torno de L. Mostre que sabe a que é que o cliente se refere. Comece por decompor L (que pode assumir estar alinhado com a vertical) na componente paralela L s e perpendicular L ao eixo de spin. Decomponha também o vector velocidade angular ω na sua componente paralela ω s e perpendicular ω ao eixo de spin. Introduza o vecto Ω, que é a componente de ω segundo L, e o ângulo θ, que é o ângulo que L s faz com L (ver Fig. 5). (a) Mostre que para ângulos pequenos a velocidade de precessão de L s (ou ω) em torno de L é Ω = ω s I /I, (secção 7.7 do Kleppner, subsecção torque-free precession após a introdução). (b) Use as equações de Euler para mostrar que genericamente para um corpo com simetria cilíndrica a velocidade da alínea anterior se pode escrever como (exemplo 7.18 do Kleppner). Ω = ω si I cos θ, 5

Mecânica Geral 2016/17

Mecânica Geral 2016/17 Mecânica Geral 2016/17 MEFT Responsável: Eduardo V. Castro Departamento de Física, Instituto Superior Técnico Corpo Rígido B (Vectores velocidade angular e momento angular e movimento giroscópico.) 1.

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope.

Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Q1-1 Dois Problemas de Mecânica Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Parte A. O Disco Escondido (3,5 pontos) Considere um cilindro

Leia mais

Física I. Dinâmica de Corpos Rígidos Lista de Exercícios

Física I. Dinâmica de Corpos Rígidos Lista de Exercícios Física I Dinâmica de Corpos Rígidos Lista de Exercícios 1. Campo de Velocidades e Centro Instantâneo de Rotação Dados os itens abaixo, responda ao que se pede: a. O disco abaixo está preso a uma articulação

Leia mais

Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema.

Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Q1-1 Dois problemas de Mecânica (10 pontos) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Parte A. O disco escondido (3.5 pontos) Considere um cilindro

Leia mais

Mecânica Geral 2016/17

Mecânica Geral 2016/17 Mecânica Geral 2016/17 MEFT Responsável: Eduardo V. Castro Departamento de Física, Instituto Superior Técnico Corpo Rígido A (Série adaptada da disciplina de Mecânica e Ondas leccionada pela Prof. Ana

Leia mais

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear,

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Mecânica e Ondas Série 5 Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Instituto Superior Técnico, Av. & 1049-001 Lisboa, Portugal

Leia mais

Física I. Lista de Exercícios LIVE: Exercícios P3

Física I. Lista de Exercícios LIVE: Exercícios P3 Física I Lista de Exercícios LIVE: Exercícios P3 Lista de Exercícios 1. Centro de Massa P2 2016.1 Diurno Exercício 9 Uma chapa metálica de densidade superficial uniforme (I) pode ser cortada das formas

Leia mais

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo.

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo. MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 201/2018 EIC0010 FÍSICA I 1º ANO, 2º SEMESTRE 12 de junho de 2018 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário

Leia mais

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura.

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura. 1) Uma barra delgada homogênea de comprimento L e massa M está inicialmente em repouso como mostra a figura. Preso a uma de suas extremidades há um objeto de massa m e dimensões desprezíveis. Um segundo

Leia mais

Física I para a Escola Politécnica ( ) - P3 (24/06/2016) [16A7]

Física I para a Escola Politécnica ( ) - P3 (24/06/2016) [16A7] Física I para a Escola Politécnica (330) - P3 (/0/0) [A] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número USP (um

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L

Leia mais

Parte 2 - PF de Física I NOME: DRE Teste 1

Parte 2 - PF de Física I NOME: DRE Teste 1 Parte - PF de Física I - 017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [,7 ponto] Dois corpos de massas m 1 = m e m = m se deslocam em uma mesa horizontal sem atrito. Inicialmente possuem velocidades de

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação

Leia mais

9ª Série de Problemas Mecânica e Relatividade MEFT

9ª Série de Problemas Mecânica e Relatividade MEFT 9ª Série de Problemas Mecânica e Relatividade MEFT 1. Um disco com 1 kg de massa e momento de inércia I = 1/2 M R 2 com 10 cm de raio pode rodar sem atrito em torno dum eixo perpendicular ao disco que

Leia mais

FEP Física para Engenharia II. Prova P1 - Gabarito

FEP Física para Engenharia II. Prova P1 - Gabarito FEP2196 - Física para Engenharia II Prova P1 - Gabarito 1. Um cilindro de massa M e raio R rola sem deslizar no interior de um cilindro de raio 2R mantido fixo. O cilindro menor é solto a partir do repouso

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo

Leia mais

Parte 2 - P3 de Física I NOME: DRE Gabarito Teste 1. Assinatura:

Parte 2 - P3 de Física I NOME: DRE Gabarito Teste 1. Assinatura: Parte - P3 de Física I - 018-1 NOME: DRE Gabarito Teste 1 Assinatura: Questão 1 - [,7 pontos] Uma barra de comprimento L e massa M pode girar livremente, sob a ação da gravidade, em torno de um eixo que

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 DINÂMICA Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 1 de março de 013 Roteiro 1 Roteiro 1 : caso geral Componente do momento angular ao longo do eixo de rotação é L = I ω Mas o momento

Leia mais

Múltipla escolha [0,5 cada]:

Múltipla escolha [0,5 cada]: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO - INSTITUTO DE FÍSICA P de Física I - EQN - 015- Prof.: Gabriel Bié Alves Versão: A Nas questões em que for necessário, considere que: todos os fios e molas são ideais;

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1.

3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1. 1 II. 2. Mecânica de Newton 1. Um partícula carregada com carga q quando colocada num campo eléctrico E fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num

Leia mais

Cada questão objetiva vale 0,7 ponto

Cada questão objetiva vale 0,7 ponto Instituto de Física Segunda Prova de Física I 2017/1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a resistência

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-8)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-8) [3A33]-p1/10 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-8) ando necessário, use π = 3, 14 e g=10 m/s 2 (1) (0,75) Um giroscópio está montado sobre um suporte vertical conforme a figura. Assinale a afirmativa incorreta:

Leia mais

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO Parte 2 - P2 de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão 1 - [2,4 ponto] Dois pequenos discos (que podem ser considerados como partículas), de massas m e 2m, se deslocam sobre uma

Leia mais

Movimento Giroscópico Guia de Ensaio Laboratorial

Movimento Giroscópico Guia de Ensaio Laboratorial Movimento Giroscópico Guia de Ensaio Laboratorial Mecânica Aplicada II Cursos MEAer, MEMec, LEAN Abril 2017 Conteúdo Lista de Símbolos........................................... iii 1 Introdução 1 1.1

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental II (MAF 2202) L I S T A I Capítulo 16 Oscilações 1. Um oscilador

Leia mais

2º Teste (Repescagem) de Mecânica Aplicada II

2º Teste (Repescagem) de Mecânica Aplicada II 2º Teste (Repescagem) de Mecânica Aplicada II Este teste é constituído por 3 problemas e tem a duração de uma hora e meia. Justifique convenientemente todas as respostas apresentando cálculos intermédios.

Leia mais

6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações:

6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações: 6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações: a) em relação ao eixo que passa pelo centro e é perpendicular ao plano da régua; b) em relação

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

m 1 m 2 FIG. 1: Máquina de Atwood m 1 m 2 g (d) Qual a relação entre as massas para que o sistema esteja em equilíbrio?

m 1 m 2 FIG. 1: Máquina de Atwood m 1 m 2 g (d) Qual a relação entre as massas para que o sistema esteja em equilíbrio? 1 II.5. Corpo rígido (versão: 20 de Maio, com respostas) 1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações : (a) em relação ao eixo que passa

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

Prova P1 Física para Engenharia II, turma set. 2014

Prova P1 Física para Engenharia II, turma set. 2014 Exercício 1 Um ventilador, cujo momento de inércia é 0,4 kg m 2, opera em 600 rpm (rotações por minuto). Ao ser desligado, sua velocidade angular diminui uniformemente até 300 rpm em 2 s, e continua assim

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 LISTA DE EXERCÍCIOS 3 Essa lista trata dos conceitos de torque, momento angular, momento de inércia e dinâmica de corpos rígidos. Tais conceitos são abordados nos capítulos 11 (todas as seções) e 12 (todas

Leia mais

3. Mecânica de Newton

3. Mecânica de Newton 3. Mecânica de Newton 3.1. Uma partícula carregada com carga q, quando colocada num campo eléctrico E, fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num campo

Leia mais

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α

Leia mais

Profº Carlos Alberto

Profº Carlos Alberto Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 LISTA DE EXERCÍCIOS 3 Essa lista trata dos conceitos de torque, momento angular, momento de inércia e dinâmica e estática de corpos rígidos. Tais conceitos são abordados nos capítulos 11 (todas as seções)

Leia mais

Mecânica e Ondas 1º Ano -2º Semestre 2º Teste/1º Exame 21/06/ :30h. Mestrado Integrado em Engenharia Aeroespacial

Mecânica e Ondas 1º Ano -2º Semestre 2º Teste/1º Exame 21/06/ :30h. Mestrado Integrado em Engenharia Aeroespacial Mestrado Integrado em Engenharia Aeroespacial Mecânica e Ondas 1º Ano -º Semestre º Teste/1º Exame 1/06/014 11:30h Duração do Teste (problemas 3, 4 e 5): 1:30h Duração do Exame: :30h Leia o enunciado com

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá MOMENTO ANGULAR Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 Roteiro 1 Quando todas as partículas de um corpo rígido se movem ao longo de trajetórias que

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2015/2016

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2015/2016 MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 015/016 EIC0010 FÍSICA I 1o ANO, o SEMESTRE 1 de junho de 016 Nome: Duração horas. Prova com consulta de formulário e uso de computador. O formulário

Leia mais

Equações do Movimento

Equações do Movimento Equações do Movimento João Oliveira Departamento de Engenharia Mecânica Área Científica de Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial João Oliveira

Leia mais

Conservação de P e L em colisões. Hipótese: No breve intervalo da colisão, a força INTERNA é muito MAIOR que as eventuais forças externas

Conservação de P e L em colisões. Hipótese: No breve intervalo da colisão, a força INTERNA é muito MAIOR que as eventuais forças externas Conservação de P e L em colisões Hipótese: No breve intervalo da colisão, a força INTERNA é muito MAIOR que as eventuais forças externas antes ω v depois ω ω v v O O F col F col dp dt = F ext P antes =

Leia mais

Mecânica 1. Resumo e Exercícios P3

Mecânica 1. Resumo e Exercícios P3 Mecânica 1 Resumo e Exercícios P3 Conceitos 1. Dinâmica do Ponto 2. Dinâmica do Corpo Rígido 1. Dinâmica do Ponto a. Quantidade de Movimento Linear Vetorial Instantânea Q = m v b. Quantidade de Movimento

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESCA PITÉCNICA DA UNIVERSIDADE DE SÃ PAU Avenida Professor Mello Moraes, nº 31. cep 558-9, São Paulo, SP. Telefone: (xx11) 391 5337 Fax: (xx11) 3813 188 MECÂNICA II - PME 3 Primeira Prova de abril de 17

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II NOME: Não esqueça 1) (4 VAL.) de escrever o nome a) Uma partícula descreve um movimento no espaço definido pelas seguintes trajectória e lei horária: z + y 1 = 2 t = y = x + y 1 = (... e ) y s = 2 t Caracterize-o

Leia mais

m R 45o vertical Segunda Chamada de Física I Assinatura:

m R 45o vertical Segunda Chamada de Física I Assinatura: Segunda Chamada de Física I - 016- NOME: Assinatura: DE Nota Q1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a

Leia mais

Paulo J. S. Gil. Cadeira de Satélites, Lic. Eng. Aeroespacial

Paulo J. S. Gil. Cadeira de Satélites, Lic. Eng. Aeroespacial Órbita no Espaço Paulo J. S. Gil Departamento de Engenharia Mecânica, Secção de Mecânica Aeroespacial Instituto Superior Técnico Cadeira de Satélites, Lic. Eng. Aeroespacial Paulo J. S. Gil (SMA, IST)

Leia mais

Figura 3.2: Quadro artisticamente suspenso

Figura 3.2: Quadro artisticamente suspenso 3.1. Uma partícula carregada com carga q, quando colocada num campo eléctrico E, fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num campo eléctrico E = 10

Leia mais

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções Física Geral I 1º semestre - 2004/05 2 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 9 de Dezembro 2004 Duração: 2 horas + 30 min tolerância Nas

Leia mais

Ensaio Laboratorial de Mecânica Aplicada 2. Movimento Giroscópico

Ensaio Laboratorial de Mecânica Aplicada 2. Movimento Giroscópico Ensaio Laboratorial de Mecânica Aplicada 2 Movimento Giroscópico 1. Introdução O giroscópio consiste num disco solidário com um eixo normal que, por sua vez, está montado num aro, num plano transversal

Leia mais

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução Pêndulo Físico 1. Introdução Nesta experiência estudaremos o movimento periódico executado por um corpo rígido que oscila em torno de um eixo que passa pelo corpo, o que é denominado de pêndulo físico,

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP195 - Física Geral e Experimental para Engenharia I Prova P3 - Gabarito 1. Três partículas de massa m estão presas em uma haste fina e rígida de massa desprezível e comprimento l. O conjunto assim formado

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para

Leia mais

Deslocamento, velocidade e aceleração angular. s r

Deslocamento, velocidade e aceleração angular. s r Rotação Deslocamento, velocidade e aceleração angular s r s r O comprimento de uma circunferência é πr que corresponde um ângulo de π rad (uma revolução) ( rad) (deg ou graus) 180 Exemplo 0 60 3 rad Porque

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

BCJ Lista de Exercícios 7

BCJ Lista de Exercícios 7 BCJ0204-2016.1 Lista de Exercícios 7 1. Um dos primeiros métodos para se medir a velocidade da luz utilizava a rotação de uma roda dentada com velocidade angular constante. Um feixe de luz passava através

Leia mais

Física 1 - EMB5034. Prof. Diego Duarte Rolamento, torque e momento angular (lista 15) 24 de novembro de 2017

Física 1 - EMB5034. Prof. Diego Duarte Rolamento, torque e momento angular (lista 15) 24 de novembro de 2017 Física 1 - EMB5034 Prof. Diego Duarte Rolamento, torque e momento angular (lista 15) 24 de novembro de 2017 1. Um corpo de massa M e raio R está em repouso sobre a superfície de um plano inclinado de inclinação

Leia mais

Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA

Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Mecânica Clássica Curso - Licenciatura em Física EAD Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Aula 1 : Cinemática da partícula Aula 1 : Cinemática da partícula Exemplos Um tubo metálico, retilíneo

Leia mais

Mecânica e Ondas fascículo 16

Mecânica e Ondas fascículo 16 Mecânica e Ondas fascículo 16 April 29, 2008 Contents 16.1 Trabalho e energia no movimento rotacional............ 298 16.2 Teorema do trabalho-energia no movimento rotacional...... 298 16.3 Impulso angular...........................

Leia mais

Física I 2010/2011. Aula 16. Momento de uma Força e Momento Angular

Física I 2010/2011. Aula 16. Momento de uma Força e Momento Angular Física I 2010/2011 Aula 16 Momento de uma Força e Momento Angular Sumário O Momento angular A 2.ª Lei de Newton na forma angular O Momento Angular de um Sistema de Partículas O Momento Angular de um Corpo

Leia mais

Física 1. Rotação e Corpo Rígido Resumo P3

Física 1. Rotação e Corpo Rígido Resumo P3 Física 1 Rotação e Corpo Rígido Resumo P3 Fórmulas e Resumo Teórico Momento Angular - Considerando um corpo de massa m a um momento linear p, temos: L = r p = r mv Torque - Considerando uma força F em

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME MECÂNICA A DINÂMICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME MECÂNICA A DINÂMICA 1 ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME100 - MECÂNICA A DINÂMICA LISTA DE EXERCÍCIOS COMPLEMENTARES AO LIVRO TEXTO (FRANÇA, MATSUMURA) 1) Três barras uniformes de

Leia mais

Parte 2 - P2 de Física I Nota Q Nota Q2 NOME: DRE Teste 1

Parte 2 - P2 de Física I Nota Q Nota Q2 NOME: DRE Teste 1 Parte 2 - P2 de Física I - 2017-2 Nota Q1 88888 Nota Q2 NOME: DRE Teste 1 Assinatura: AS RESPOSTAS DAS QUESTÕES DISCURSIVAS DEVEM SER APRESENTADAS APENAS NAS FOLHAS GRAMPE- ADAS DE FORMA CLARA E ORGANIZADA.

Leia mais

Física I para Engenharia IFUSP P3-18/07/2014

Física I para Engenharia IFUSP P3-18/07/2014 Física I para Engenharia IFUSP - 43195 P3-18/0/014 A prova tem duração de 10 minutos. Resolva cada questão na folha correspondente. Use o verso se necessário. Escreva de forma legível, a lápis ou tinta.

Leia mais

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev.

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev. 30195-Física Geral e Exp. para a Engenharia I - 3 a Prova - 8/06/01 Nome: N o USP: Professor: Turma: A duração da prova é de horas. Material: lápis, caneta, borracha, régua. O uso de calculadora é proibido

Leia mais

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO Parte 2 - P3 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [2,5 pontos] Um bloco de massamestá pendurado por um fio ideal que está enrolado em uma polia fixa, mas que pode girar em torno

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 LISTA DE EXERCÍCIOS 3 Essa lista trata dos conceitos de torque, momento angular, momento de inércia e dinâmica e estática de corpos rígidos. Tais conceitos são abordados nos capítulos 11 (todas as seções

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012 EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE Prova com consulta de formulário e uso de computador. Duração 2 horas. Nome do estudante: Pode consultar

Leia mais

Capítulo 5. Torção Pearson Prentice Hall. Todos os direitos reservados.

Capítulo 5. Torção Pearson Prentice Hall. Todos os direitos reservados. Capítulo 5 Torção slide 1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento

Leia mais

Mecânica e Ondas FÍSICA. Semana 6 - Aula 6 Rotação. Rolamento (Forças com Rotação); Energia Cinética de Rotação

Mecânica e Ondas FÍSICA. Semana 6 - Aula 6 Rotação. Rolamento (Forças com Rotação); Energia Cinética de Rotação Mecânica e Ondas LERC Tagus ºSem 009/0 Prof. J. C. Fernandes http://mo-lerc-tagus.ist.utl.pt/ Mecânica e Ondas Semana 6 - Aula 6 Rotação Rolamento (Forças com Rotação); Energia Cinética de Rotação FÍSICA

Leia mais

LISTA DE EXERCÍCIOS 1

LISTA DE EXERCÍCIOS 1 LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

v CM K = ½ I CM a CM

v CM K = ½ I CM a CM ENGENHARIA 1 ROLAMENTO O rolamento é um movimento que associa translação e rotação. É o caso, por exemplo, de uma roda que, ao mesmo tempo que rotaciona em torno de seu eixo central, translada como um

Leia mais

Parte 2 - P2 de Física I NOME: DRE Teste 1

Parte 2 - P2 de Física I NOME: DRE Teste 1 Parte 2 - P2 de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [3,7 ponto] Um carretel é composto por um cilindro interno de raio r = R/2 e massa M, enrolado por um fio ideal, com 2 discos idênticos,

Leia mais

FIS-26 Prova 01 Março/2011

FIS-26 Prova 01 Março/2011 FIS-26 Prova 01 Março/2011 Nome: Turma: Duração máxima: 120 min. Cada questão (de 1 a 7) vale 15 pontos, mas a nota máxima da prova é 100. 1. Responda às seguintes questões: (a) Uma roda bidimensional

Leia mais

Exame de Época Especial de Mecânica Aplicada II

Exame de Época Especial de Mecânica Aplicada II Exame de Época Especial de Mecânica Aplicada II Este exame é constituído por 4 problemas e tem a duração de duas horas e meia. Justifique convenientemente todas as respostas apresentando cálculos intermédios.

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Roteiro elaborado com base na documentação que acompanha o conjunto por: Otávio A.T. Dias IFT-SP, Elias da Silva e Osvaldo Guimaraes - PUC-SP

Roteiro elaborado com base na documentação que acompanha o conjunto por: Otávio A.T. Dias IFT-SP, Elias da Silva e Osvaldo Guimaraes - PUC-SP 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Otávio A.T. Dias IFT-S, Elias da Silva e Osvaldo Guimaraes - UC-S Este conjunto explora os dispositivos usados para se obter orientação

Leia mais

Física I -2010/2011. a c

Física I -2010/2011. a c Física I -2010/2011 9 a Série - Rotação Questões: Q1 -. Um pêndulo oscila desde a extremidade da trajectória, à esquerda (ponto 1), até à outra extremidade, à direita (ponto 5). Em cada um dos pontos indicados,

Leia mais

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k 1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t + t 2 )i + t 2 k onde r é dado em metros e t em segundos. Determine: (a) (1,0) o vetor velocidade instantânea da partícula,

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC

8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC 8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC 1. Uma mola de constante k = 100 Nm -1 está ligada a uma massa m = 0.6 kg. A massa m pode deslizar sem atrito sobre uma mesa horizontal. Comprime-se

Leia mais

Resumo e Lista de Exercícios. Física II Fuja do Nabo P

Resumo e Lista de Exercícios. Física II Fuja do Nabo P Resumo e Lista de Exercícios Física II Fuja do Nabo P1 018. Resumo 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante

Leia mais

Mecânica. Dinâmica do Corpo Rígido

Mecânica. Dinâmica do Corpo Rígido Mecânica Dinâmica do Corpo Rígido Mecânica» Dinâmica do Corpo Rígido 1 Introdução A equação básica descrevendo o movimento de rotação estabelece a relação entre um torque aplicado ao corpo e a variação

Leia mais

Física I para a Escola Politécnica ( ) - P3 (07/07/2017)

Física I para a Escola Politécnica ( ) - P3 (07/07/2017) Física I para a Escola Politécnica (433101) - P3 (07/07/017) [0000]-p1/9 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) (1) [1,0] Uma bola de sinuca de raio r rola sem deslizar do topo de um domo esférico com raio

Leia mais

(c) [0,5] Qual a potência média transferida ao rotor nesse intervalo L

(c) [0,5] Qual a potência média transferida ao rotor nesse intervalo L FEP2195-Física Geral e Exp. para a Engenharia I - a Prova - 16/06/2011 1. Considere o rotor de um helicóptero como sendo ormado por três pás de comprimento L e massa M, unidas em suas extremidades (a largura

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F o semestre Fernando Sato Prova 3 (Gabarito) - Diurno - 23/06/2008

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F o semestre Fernando Sato Prova 3 (Gabarito) - Diurno - 23/06/2008 UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F 18-1 o semestre 008 - Fernando Sato Prova 3 (Gabarito) - Diurno - 3/06/008 Problema 1: No esquema da figura abaixo, uma bala (com massa

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP196 - Física para Engenharia II Prova REC - Gabarito 1. Considere um cilindro oco de massa, raio externo R e raio interno r. (a) (1,0) Calcule o momento de inércia desse cilindro com relação ao eixo

Leia mais

Dinâmica das Rotações 1 Movimento Plano

Dinâmica das Rotações 1 Movimento Plano Dinâmica das Rotações 1 Movimento Plano 1. Um cilindro uniforme de raio R rola sem deslizar sobre um plano horizontal até atingir um plano inclinado de um ângulo α com a horizontal, como mostra a figura

Leia mais

Aula do cap. 10 Rotação

Aula do cap. 10 Rotação Aula do cap. 10 Rotação Conteúdo da 1ª Parte: Corpos rígidos em rotação; Variáveis angulares; Equações Cinemáticas para aceleração Angular constante; Relação entre Variáveis Lineares e Angulares; Referência:

Leia mais

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3 Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3 (Método das imagens, escoamento em torno de um cilindro com circulação, transformação conforme) EXERCÍCIO 1 [Problema 6 das folhas do

Leia mais

14-Dinâmica do Corpo Rígido

14-Dinâmica do Corpo Rígido 14-Dinâmica do Corpo Rígido ntrodução A equação básica descrevendo o movimento de rotação é aquela que estabelece que um torque aplicado a corpo leva a uma variação do momento angular do mesmo, de tal

Leia mais

x + x x 3 + (a + x) x = 0

x + x x 3 + (a + x) x = 0 MESTRDO INTEGRDO EM ENG. INFORMÁTIC E COMPUTÇÃO 07/08 EIC000 FÍSIC I º NO, º SEMESTRE 7 de junho de 08 Nome: Duração horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar

Leia mais

Física I para a Escola Politécnica ( ) - PSub (14/07/2017)

Física I para a Escola Politécnica ( ) - PSub (14/07/2017) [0000]-p1/8 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) Respostas: z7ba: (1) E; () D; (3) C; (4) A; yy3: (1) D; () A; (3) E; (4) E; E1zy: (1) E; () A; (3) E; (4) E; zgxz: (1) B; () C; (3) B; (4) C; (1) [1,0] Um

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PME 3 MECÂNICA II Prova substitutiva 3 de julho de 18 Duração da Prova: 11 minutos (não é permitido o uso de celulares, notebooks e dispositivos similares) 1ª Questão (3,5 pontos). Na figura ao lado, o

Leia mais