A = 0 1 i 3 i. 1 i 2i 1. i k 0 O determinante da submatriz formada pelas linhas I, III e IV é o seguinte: 1 0 k 1 i 2i 1 i k 0 = i 2i 1 k 0 + k 1 i

Tamanho: px
Começar a partir da página:

Download "A = 0 1 i 3 i. 1 i 2i 1. i k 0 O determinante da submatriz formada pelas linhas I, III e IV é o seguinte: 1 0 k 1 i 2i 1 i k 0 = i 2i 1 k 0 + k 1 i"

Transcrição

1 Exercício 1. Por definição (f(ϕ))(x) = ϕ(x 2 ), portanto, para todos λ, µ R, temos (f(λϕ + µψ))(x) = (λϕ + µψ)(x 2 ) = λ ϕ(x 2 ) + µ ψ(x 2 ) = λ (f(ϕ))(x) + µ (f(ψ))(x) = (λ f(ϕ) + µ f(ψ))(x). Como isso vale para todo x R, temos que f(λϕ + µψ) = λ f(ϕ) + µ f(ψ), portanto f é linear. Temos que f(ϕ) = 0 sse ϕ(x 2 ) = 0 para todo x R. Isso equivale a afirmar que, se existe x R tal que y = x 2, então ϕ(y) = 0. Como existe x com esta propriedade sse y 0, concluímos que f(ϕ) = 0 sse ϕ(y) = 0 para todo y 0. Logo ker(f) = {ϕ C 0 (R) : ϕ [0,+ ) = 0}. Seja ψ = f(ϕ). Então ψ( x) = ϕ(( x) 2 ) = ϕ(x 2 ) = ψ(x), logo ψ é uma função par. Demonstremos a volta. Seja ψ C 0 (R) uma função par. A função ϕ(x) := ψ( x ) está bem definida e é contínua. Temos que (f(ϕ))(x) = ψ( x 2 ) = ψ( x ). Como ψ é par, ψ( x ) = ψ(x), logo f(ϕ) = ψ. Isso demonstra que a imagem de f é o subespaço vetorial de C 0 (R) formado pelas funções pares. Exercício 2. O posto da seguinte matriz tem que ser igual a 3: 1 0 k A = k 1 i 3 i 1 i 2i 1. i k 0 O determinante da submatriz formada pelas linhas I, III e IV é o seguinte: 1 0 k 1 i 2i 1 i k 0 = i 2i 1 k 0 + k 1 i i k = k(k + 2 2i). Logo, se k 0, 2i 2 a família é independente. Para k = 0 temos: A = 0 1 i 3 i 1 i 2i 1. i 0 0 A última linha foi cortada por ser múltiplo da primeira. Obtemos uma matriz de ordem 3 com determinante (1 i)(2i 1) i(3 i) = 0, logo as colunas são dependentes. Para k = 2i 2 obtemos: 1 0 2i 2 A = 2i 2 1 i 3 i 1 i 2i 1. i 2i 2 0 O determinante da submatriz formada pelas primeiras três linhas é o seguinte: 1 0 2i 2 2i 2 1 i 3 i 1 i 2i 1 = 1 i 3 i i 2i 1 + (2i 2) 2i 2 i 1 1 i = 8 4i, 1

2 2 logo as três colunas são independentes. Afinal, a família dada é independente se, e somente se, k 0. Podíamos obter o mesmo resultado por escalonamento. Exercício 3. É imediato verificar que uma função f : R R tem suporte compacto se, e somente se, existe M 0 tal que f(x) = 0 para todo x tal que x M. Equivalentemente, supp(f) [ M, M]. Sejam f, g Cc 0 (R) e λ, µ R. Por hipótese existem M 1, M 2 0 tais que supp(f) [ M 1, M 1 ] e supp(g) [ M 2, M 2 ]. Seja M = max{m 1, M 2 }. Então f(x) = 0 e g(x) = 0 para todo x tal que x M, logo (λf + µg)(x) = 0 para todo x tal que x M. Por isso supp(λf + µg) [ M, M], logo λf + µg Cc 0 (R). Isso mostra que se trata de um subespaço vetorial. Seja {f 1,..., f n } Cc 0 (R) uma família finita e demonstremos que não pode gerar Cc 0 (R) todo. Seja supp(f i ) [ M i, M i ] para i {1,..., n}. Definimos M := max{m 1,..., M n }. Claramente supp(f i ) [ M, M] para todo i, logo, para quaisquer λ 1,..., λ n R, também supp(λ 1 f 1 + +λ n f n ) [ M, M]. É fácil construir uma função f Cc 0 (R) tal que supp(f) / [ M, M], por exemplo a seguinte: 0 x M 2 x + M + 2 M 2 x M 1 f(x) = 1 M 1 x M + 1 x + M + 2 M + 1 x M x M + 2. Isso mostra que nenhuma família finita pode gerar C 0 c (R). Exercício 4. Seja (i) a sequência constante com valor i. É claro que (i) A. Ademais, A (i) = {(a n ) : a n 0}. De fato, se (b n ) S, então (b n ) (i) i i = 0; reciprocamente, se b n 0, então (a n ) := (b n ) + (i) 0 + i = i, logo (a n ) A. Só falta provar que A (i) é um subespaço vetorial. De fato, se b n 0 e b n 0, então λb n + µb n λ0 + µ0 = 0. Exercício 5. Se a família {(k, 3, 3), (0, 1, 1), ( 1, 2, k)} for independente, então é uma base de R 3, logo f existe única (uma função linear é completamente determinada pelas imagens dos elementos de uma base do domínio, as quais podem ser escolhidas livremente). Isso acontece se, e somente se, o seguinte determinante é nulo: k k = k k = k(k 2). Portanto, se k 0, 2 a função f existe única. Se k = 0, a matriz se torna: O determinante da submatriz destacada é 1 0, portanto a segunda e a terceira coluna formam uma subfamília maximal independente. O primeiro vetor é combinação linear dos dois demais, sendo (0, 3, 3) = 3(0, 1, 1) + 0( 1, 2, 0), portanto

3 3 devemos verificar se f(0, 3, 3) = 3f(0, 1, 1) + 0f( 1, 2, 0), ou seja, se (3, 3, 3) = 3(1, 1, 1) + 0(1, 1, 1). Como esta identidade é válida, a função f existe, mas não é única, pois somente as imagens de dois vetores independentes são fixadas. Se k = 2, a matriz se torna: O determinante da submatriz destacada é 1 0, portanto a segunda e a terceira coluna formam uma subfamília maximal independente. O primeiro vetor é combinação linear dos dois demais, sendo (2, 3, 3) = 7(0, 1, 1) 2( 1, 2, 2), portanto devemos verificar se f(2, 3, 3) = 7f(0, 1, 1) 2f( 1, 2, 2), ou seja, se (3, 3, 3) = 7(1, 1, 1) 2(1, 1, 1). Como esta identidade não é verificada, f não existe. Afinal, f existe para k 2 e é única para k 0, 2. Exercício 6. O sistema linear que define A não é impossível, pois a matriz incompleta é: [ ] 1 1 0, 1 0 i 2 a qual tem posto 2, portanto a matriz completa e a incompleta têm posto 2. Por isso A é um subespaço afim de dimensão 1 (trata-se de uma reta complexa). Podemos também mostrar a verificação direta. Fixemos o vetor (2, 1, 1) A. Seja W = A (2, 1, 1) = {(a 2, b 1, c 1) : a b = 1; a (2 i)c = i} = {(ã, b, c) : ã b = 0; ã (2 i) c = 0}. O leitor pode verificar que W é um subespaço vetorial, portanto A é um subespaço afim. Exercício 7. Considerando como são definidas a soma e o produto externo no espaço das matrizes complexas, temos que verificar se (1, 2, 0, 0), é combinação linear de {(k, 1 i, 0, 0), (1, 1 i, k i, 2), (i + 2, 2, 0, 2i)}. Método I: Apliquemos o teorema de Rouché-Capelli. Consideremos a matriz completa: k 1 i [A b] = 1 i 1 i 0 k i i 0 Para que o sistema admita solução tem que valer a igualdade rk[a b] = rk(a). Como rk(a) 3, antes de tudo é necessário que det[a b] = 0. Aplicando a regra de Laplace à terceira linha obtemos: det[a b] = (i k) det k i i = 2i(k i)(2k 1 + i). 0 2i 0

4 4 Por isso as únicas duas possibilidades são k = i e k = 1 1 i. Para k = i a matriz A se torna: i 1 i + 2 A = 1 i 1 i i Calculemos o determinante da submatriz formada pelas linhas I, II e IV aplicando a regra de Laplace à linha IV. Obtemos 2( 2i (i+2)(1 i))+2i(i(1 i) (1 i)) = 2 + 2i 0, portanto rk(a) = rk[a b] = 3. Para k = 1 1 i a matriz A se torna: 1 1i 1 i + 2 A = 1 i 1 i i 0 0 i Calculemos o determinante da submatriz formada pelas linhas I, II e III aplicando a regra de Laplace à linha III. Obtemos ( 3i 1 )(1 i)( 3 i) 0, portanto rk(a) = rk[a b] = 3. Afinal, A é combinação linear de A 1, A 2 e A 3 se, e somente se, k = i ou k = 1 1i. Método II: Usemos o método de Gauss: k 1 i i 1 i II 1 II i 1 + i 1 i 0 k i 0 0 I II k 1 i IV 0 i 0 1IV 0 k i i i 1 + i II II ki 0 1 k (2 + i) + k(1 + i) 1 k(i + 1) III IV 0 1 i 0. 0 k i 0 0 Se k = i a última linha se anula, portanto obtemos: i 1 + i 0 1 i 1 + 2i 2 i II II (1 i)iii i 1 + i 0 1 i 0. II III 0 1 i i 2 i O sistema admite solução, portanto, para k = i, a matriz A é combinação linear de {A 1, A 2, A 3 }. Se k i a quarta linha dá β = 0, portanto podemos tirar a segunda coluna e a quarta linha, obtendo: 1 1 i 1 + i 0 (2 + i) + k(1 + i) 1 k(i + 1), III 1III i II III, 0 i i 1 + i 0 1 0, III III ((2 + i) + k(1 + i))ii, 0 (2 + i) + k(1 + i) 1 k(i + 1)

5 1 1 i 1 + i k(i + 1) O sistema admite solução se, e somente se, k = 1 i+1 = i. Afinal, A é combinação linear da família {A 1, A 2, A 3 } se, e somente se, k = i ou k = i. Exercício 8. Para achar o kernel de f, temos que resolver o sistema linear homogêneo (z + iw + (2 i)u, z + 2u, z + w 3u) = (0, 0, 0). Usemos o método de Gauss. 1 i 2 i II II I 1 i 2 i 0 0 i i 0 III III + I i 1 i 0 II iii III 1 III 1 i 2 i i Logo obtemos u = t, w = t e z = 2t. Portanto, Ker(f) = ( 2, 1, 1). Temos que Im(f) = {(z + iw + (2 i)u, z + 2u, z + w 3u)} = {z(1, 1, 1) + w(i, 0, 1) + u(2 i, 2, 3)}, logo Im(f) = (1, 1, 1), (i, 0, 1), (2 i, 2, 3). Pelo teorema do núcleo e da imagem, dim Im(f) = 3 dim Ker(f) = 2, logo temos que achar dois geradores independentes. Portanto, Im(f) = (1, 1, 1), (i, 0, 1). f não é injetora, pois Ker(f) {0}, nem é sobrejetora, pois dim Im(f) < 3 (sendo uma função de C 3 a C 3, é injetora se, e somente se, é sobrejetora). A matriz representativa a respeito da base canônica é a matriz dos coeficientes das entradas da função f: A = 1 i 2 i A respeito da base A, comecemos aplicando a definição. Temos que f(1, 0, i) = (2 + 2i, 1 + 2i, 1 3i), f(1, 1, 1) = (3, 3, 3) e f(0, 1, 1) = (2, 2, 2). Seja (2 + 2i, 1+2i, 1 3i) = α(1, 0, i)+β(1, 1, 1)+γ(0, 1, 1). Resolvendo o sistema, obtemos α = 2i 5, β = 7 e γ = 2i 6. Seja (3, 3, 3) = α(1, 0, i) + β(1, 1, 1) + γ(0, 1, 1). Obtemos α = 6i, β = 3 6i e γ = 6i. Seja (2, 2, 2) = α(1, 0, i)+β(1, 1, 1)+γ(0, 1, 1). Obtemos α = 4i, β = 2 4i e γ = 4i. Logo, a matriz representativa é: 2i 5 6i 4i B = 7 3 6i 2 4i. 2i 6 6i 4i Para calcular B através da matriz de mudança de base, temos que B = C 1 AC, sendo: C = C 1 = 0 i i 1 i i. i i i 5

6 6 Exercício 9. Uma função aditiva mas não homogênea é a conjugação conj: C n C n, z z. Uma função homogênea mas não aditiva pode ser a seguinte: f : C 2 C ( { z z 2 w 0 w w) 0 w = 0. Observamos que essa função não é contínua em relação à topologia euclidiana. Podemos também encontrar uma função contínua e homogênea mas não aditiva: f : C 2 C ( { z z z (z, w) (0, 0) z + w w) 0 (z, w) = (0, 0). Exercício 10. A segunda parte é bem mais simples. Podemos considerar as mesmas funções do exercício precedente, aplicadas a vetores reais, ou também a seguinte: f : R 2 R ( x y) 3 x 3 + y 3. A primeira parte é bem mais complicada. Observamos que, se f : R n R m for aditiva, então é também Q-homogênea, portanto Q-linear. De fato: para todo n N temos que f(nv) = f(v + + v) = f(v) + + f(v) = nf(v); f(0) = 0, pois f(0 + 0) = f(0) + f(0) e, ao mesmo tempo, f(0 + 0) = f(0), portanto f(0) + f(0) = f(0), logo f(0) = 0. Isso equivale ao fato que f(0v) = 0f(v). f( v) + f(v) = f( v + v) = f(0) = 0, logo f( v) = f(v). Isso implica que f(nv) = nf(v) para todo n Z, logo f é Z-linear; f(m 1 v) = mf( 1 v) por causa da Z-linearidade, logo f( 1 v) = 1 f(v). Isso m m m m implica que f é Q-linear. Se f for também contínua em relação à topologia euclidiana, então é R-linear. De fato, se λ R, existe uma sequência racional {q n } Q tal que q n λ, logo: f(λv) = f( lim q nv) ( ) = lim f(q nv) = lim q nf(v) = λf(v). n + n + n + Na igualdade ( ) usamos a continuidade de f. Por isso, para encontrar o exemplo procurado, temos que considerar funções não contínuas, mas não há uma fórmula simples para descrever uma função desse tipo. Uma maneira pode ser a seguinte. Seja A = {x i } i Λ R uma base de R como Q-espaço vetorial (que existe pelo lema de Zorn). Fixemos i 1, i 2 Λ, i 1 i 2. Consideremos a seguinte função Q-linear, definida dando as imagens dos elementos

7 7 da base A: f : R R x i1 x i2 x i2 x i1 x i x i i Λ \ {i 1, i 2 }. Esta função é aditiva, pois é Q-linear. Observamos que f 2 = id. Se f fosse R-linear, seria da forma f(x) = αx, sendo α R. Como f 2 = id, necessariamente α = ±1, logo f = id ou f = id. Isso não é possível, pois f(x i1 ) x i1, logo f id, e f(x i ) = x i para todo i Λ \ {i 1, i 2 }, logo f id.

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2 Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A

Leia mais

Lista de exercícios 7 Independência Linear.

Lista de exercícios 7 Independência Linear. Universidade Federal do Paraná semestre 6. Algebra Linear Olivier Brahic Lista de exercícios 7 Independência Linear. Exercício : Determine se os seguintes vetores são linearmente independentes em R : (

Leia mais

1. Não temos um espaço vetorial, pois a seguinte propriedade (a + b) v = a v + b v não vale. De fato:

1. Não temos um espaço vetorial, pois a seguinte propriedade (a + b) v = a v + b v não vale. De fato: Sumário No que se segue, C, R, Q, Z, N denotam respectivamente, o conjunto dos números complexos, reais, racionais, inteiros e naturais. Denotaremos por I (ou id) End(V ) a função identidade do espaço

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Exercício 1. Determine se os seguintes conjuntos são

Leia mais

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações

Leia mais

Álgebra Linear I. Resumo e Exercícios P3

Álgebra Linear I. Resumo e Exercícios P3 Álgebra Linear I Resumo e Exercícios P3 Fórmulas e Resuminho Teórico Espaço Vetorial Qualquer conjunto V com 2 operações: Soma e Produto escalar, tal que 1. u + v + w = u + v + w u, v, w V 2. u + v = v

Leia mais

Exercícios sobre Espaços Vetoriais II

Exercícios sobre Espaços Vetoriais II Exercícios sobre Espaços Vetoriais II Prof.: Alonso Sepúlveda Castellanos Sala 1F 104 1. Seja V um espaço vetorial não trivial sobre um corpo infinito. Mostre que V contém infinitos elementos. 2. Sejam

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

= f(0) D2 f 0 (x, x) + o( x 2 )

= f(0) D2 f 0 (x, x) + o( x 2 ) 6 a aula, 26-04-2007 Formas Quadráticas Suponhamos que 0 é um ponto crítico duma função suave f : U R definida sobre um aberto U R n. O desenvolvimento de Taylor de segunda ordem da função f em 0 permite-nos

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

ALGA I. Representação matricial das aplicações lineares

ALGA I. Representação matricial das aplicações lineares Módulo 6 ALGA I Representação matricial das aplicações lineares Contents 61 Matriz de uma aplicação linear 76 62 Cálculo do núcleo e imagem 77 63 Matriz da composta 78 64 GL(n Pontos de vista passivo e

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de (a) 3; (b) 2; (c) 0; (d) 1; (e) 2.

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de (a) 3; (b) 2; (c) 0; (d) 1; (e) 2. MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de 2018 Questão 1. Seja U = [(2, 1, 1), (1, 0, 2)], subespaço vetorial de R 3 e ax + by + z = 0 uma equação de U, isto é U = { (x, y, z)

Leia mais

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números

Leia mais

Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas

Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas Álgebra Linear I - Lista 1 Matrizes e Transformações lineares Respostas 1 Sejam A e B matrizes quadradas do mesmo tamanho Dê um exemplo onde (A + B 2 A 2 + 2A B + B 2 Complete: (A + B 2 = A 2 + B 2 +?

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de

Leia mais

Lista de exercícios 8 Bases e Dimensão.

Lista de exercícios 8 Bases e Dimensão. Universidade Federal do Paraná semestre 05. Algebra Linear, CM 005 Olivier Brahic Lista de exercícios 8 Bases e Dimensão. Exercício : No exercício da Folha 7, indique se os vetores formam uma base para

Leia mais

Parte 2 - Espaços Vetoriais

Parte 2 - Espaços Vetoriais Espaço Vetorial: Parte 2 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear

Leia mais

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores Álgebra Linear I - Aula 11 1. Dependência e independência linear. 2. Bases. 3. Coordenadas. 4. Bases de R 3 e produto misto. Roteiro 1 Dependência e independência linear de vetores Definição 1 (Dependência

Leia mais

Universidade Federal Fluminense - GAN

Universidade Federal Fluminense - GAN Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

ÁLGEBRA LINEAR. Exame Final

ÁLGEBRA LINEAR. Exame Final UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0

Leia mais

Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning.

Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning. 1 0 Lista de Exercício de Mat 116- Álgebra Linear para Química Turma: 01410 ( 0 semestre 014) Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição,

Leia mais

Resolução do efólio B

Resolução do efólio B Resolução do efólio B Álgebra Linear I Código: 21002 I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das afirmações a), b), c), d) é verdadeira. Indique-a marcando no quadrado

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO EXERCÍCIOS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2458 Álgebra Linear para Engenharia II Primeira Lista de Exercícios - Professor: Equipe da Disciplina 1. Em R 3, sejam S 1

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ Prova de seleção ao Mestrado e/ou Programa de Verão Programas: ICMC-USP, UFAL, UFRJ Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento

Leia mais

Aula 25 - Espaços Vetoriais

Aula 25 - Espaços Vetoriais Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista.

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista. MCTB002-13 Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares Os Exercícios 3 e 4 são os exercícios bônus dessa lista. Definição 1. Dados conjuntos X e Y, uma função ϕ :

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal

Leia mais

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa. Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum

Leia mais

n. 33 Núcleo de uma transformação linear

n. 33 Núcleo de uma transformação linear n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto por N(f) ou Ker (f).

Leia mais

Versão geométrica do teorema de Hahn-Banach

Versão geométrica do teorema de Hahn-Banach Versão geométrica do teorema de Hahn-Banach Eduardo Marques de Sá Centro de Matemática da Universidade de Coimbra Outubro 2013 Convexos e Funcionais de Minkowski V é um espaço vetorial sobre R. Dado um

Leia mais

Álgebra Linear. Transformações Lineares

Álgebra Linear. Transformações Lineares Álgebra Linear Transformações Lineares Fórmulas e Resumo Teórico Para fins gerais, considere V um espaço vetorial e uma transformação T: V W. Propriedades de Transformações Lineares - T é linear se: Para

Leia mais

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras; Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:

Leia mais

REVISÃO DE ÁLGEBRA LINEAR

REVISÃO DE ÁLGEBRA LINEAR REVISÃO DE ÁLGEBRA LINEAR I) INTRODUÇÃO D1. Estabilidade para a operação + : x E, y E, x + y E D2. Definição de grupo comutativo (Abeliano): (E,+) é um grupo comutativo se e somente se: 1) Associatividade:

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

1 Álgebra linear matricial

1 Álgebra linear matricial MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

3 a Avaliação Parcial - Álgebra Linear

3 a Avaliação Parcial - Álgebra Linear 3 a Avaliação Parcial - Álgebra Linear - 016.1 1. Considere a função T : R 3 R 3 dada por T(x, y, z) = (x y z, x y + z, x y z) e as bases de R 3 B = (1, 1, 1), (1, 0, 1), ( 1,, 0)} (a) Encontre [T] B B.

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018 GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 08 ( Seja a R e f(x, y ax + ( ay. Designe por C a a cónica dada por f(x, y 0. (a Mostre que os quatro pontos (±, ± R pertencem a todas as cónicas C a (independentemente

Leia mais

ÁLGEBRA LINEAR I - MAT Determinar se os seguintes conjuntos são linearmente dependente ou linearmente independente (R).

ÁLGEBRA LINEAR I - MAT Determinar se os seguintes conjuntos são linearmente dependente ou linearmente independente (R). UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 3 a Lista de

Leia mais

Indicação de uma possível resolução do exame

Indicação de uma possível resolução do exame Eame de Álgebra Linear e Geometria Analítica Eng Electrotécnica e Eng Mecânica 3 de Janeiro de 7 Duração horas, Tolerância 5 minutos (Sem consulta) Indicação de uma possível resolução do eame Considere

Leia mais

Lista de exercícios para entregar

Lista de exercícios para entregar Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para

Leia mais

GAAL Exercícios 6: Umas soluções

GAAL Exercícios 6: Umas soluções GAAL Exercícios 6: Umas soluções. Quais dos seguintes vetores são combinação linear de u = (5, 3, ), v = (, 4, 3), w = (, 8, 7)? (a) (, 2, 5) (b) (, 2, 8) (c) ( 2, ) (d) (, 2, 3). O conjunto {u, v, w}

Leia mais

Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0

Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0 Q. Considere as bases: B = { (,),(, ) }, C = { (,,),(,,),(,,) }, der e der, respectivamente. Seja T :R R a transformação linear cuja matriz em relação às bases B e C é: [T] BC =. Temos que T(,) é igual

Leia mais

Apostila Minicurso SEMAT XXVII

Apostila Minicurso SEMAT XXVII Apostila Minicurso SEMAT XXVII Título do Minicurso: Estrutura algébrica dos germes de funções Autores: Amanda Monteiro, Daniel Silva costa Ferreira e Plínio Gabriel Sicuti Orientadora: Prof a. Dr a. Michelle

Leia mais

Capítulo Propriedades das operações com vetores

Capítulo Propriedades das operações com vetores Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:

Leia mais

Lista de exercícios 6 Espaços Vetoriais

Lista de exercícios 6 Espaços Vetoriais Universidade Federal do Paraná semestre 016. Algebra Linear, Olivier Brahic Lista de exercícios 6 Espaços Vetoriais Exercícios da Seção 3. Exercício 1: Determine se os seguintes conjuntos formam subespaços

Leia mais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,

Leia mais

MAT Álgebra Linear para Engenharia II

MAT Álgebra Linear para Engenharia II MAT2458 - Álgebra Linear para Engenharia II Prova de Recuperação - 05/02/2014 Nome: Professor: NUSP: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas

Leia mais

MAT Resumo Teórico e Lista de

MAT Resumo Teórico e Lista de MAT 0132 - Resumo Teórico e Lista de Exercícios April 10, 2005 1 Vetores Geométricos Livres 1.1 Construção dos Vetores 1.2 Adição de Vetores 1.3 Multiplicação de um Vetor por um Número Real 2 Espaços Vetoriais

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios 1 Espaços vetoriais Primeira Lista de Exercícios {( ) } a b Exercício 1.1. Considere M 2 := : a, b, c, d R, : M c d 2 M 2 M 2 dada por e : R M 2 M 2 dada por ( ) ( ) ( ) a1 b 1 a2 b 2 a1 + a := 2 b 1 +

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n

Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n 1. Exercícios do livro Análise Real, volume 2, Elon Lages Lima, páginas

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

Resolução do efólio A Álgebra Linear I Código: 21002

Resolução do efólio A Álgebra Linear I Código: 21002 Resolução do efólio A Álgebra Linear I Código: I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das afirmações a), b), c), d) é verdadeira. Indique-a marcando no quadrado

Leia mais

ALGA I. Bases, coordenadas e dimensão

ALGA I. Bases, coordenadas e dimensão Módulo 5 ALGA I. Bases, coordenadas e dimensão Contents 5.1 Bases, coordenadas e dimensão............. 58 5.2 Cálculos com coordenadas. Problemas......... 65 5.3 Mudanças de base e de coordenadas..........

Leia mais

(d) Cada vetor de R 2 pode ser escrito de forma única como combinação linear dos vetores

(d) Cada vetor de R 2 pode ser escrito de forma única como combinação linear dos vetores UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Revisão Básica de Prof. Dr. José Carlos de Souza Junior Universidade Federal de Alfenas 26 de novembro de 2014 Revisão de Definição 1 (Espaço Vetorial) Um conjunto V é um espaço vetorial sobre R, se em

Leia mais

Álgebra Linear II - Poli - Prova 2

Álgebra Linear II - Poli - Prova 2 Álgebra Linear II - Poli - Prova 4 Q. Seja U um espaço vetorial com dim(u =. Considere as seguintes afirmações: (I existe uma transformação linear T : U U tal que dim(ker T + dim(im T = 5; (II se T : U

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 2006 Segunda Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Questão 1. A matriz de mudança da base ordenada

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

Métodos iterativos para sistemas lineares.

Métodos iterativos para sistemas lineares. Métodos iterativos para sistemas lineares. Alan Costa de Souza 7 de Setembro de 2017 Alan Costa de Souza Métodos iterativos para sistemas lineares. 7 de Setembro de 2017 1 / 46 Introdução. A ideia central

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova! Questão 1. 2. Pontos) Seja U um

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal

Leia mais

Funções suaves e Variedades

Funções suaves e Variedades a aula, 5-03-2007 Funções suaves e Variedades Os objectos de estudo da Topologia Diferencial são as variedades e as aplicações suaves, onde suave significa ser de classe C. As variedades consideradas são

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

Transformações Lineares

Transformações Lineares Transformações Lineares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra

Leia mais

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por:

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por: Lista de Exercícios - Espaços Vetoriais. Seja V o conjunto de todos os pares ordenados de números reais e considere as operações de adição e multiplicação por escalar definidas por: i. u + v (x y) + (s

Leia mais

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de

Leia mais

Álgebra linear A Primeira lista de exercícios

Álgebra linear A Primeira lista de exercícios Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b

Leia mais

2 Espaços Vetoriais. 2.1 Espaços Vetoriais Euclidianos

2 Espaços Vetoriais. 2.1 Espaços Vetoriais Euclidianos 2 Espaços Vetoriais 2.1 Espaços Vetoriais Euclidianos Definição: Dado n N, considere-se o conjunto de todos os n-uplos ordenados de elementos reais, isto é o conjunto de elementos da forma x = (x 1,, x

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G de Álgebra Linear I 7. Gabarito ) Considere o conjunto de vetores W = {(,, ); (, 5, ); (,, ); (3,, ); (, 3, ); (,, )}. (a) Determine a equação cartesiana do sub-espaço vetorial V gerado pelos vetores

Leia mais

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

Um Estudo Sobre Espaços Vetoriais Simpléticos

Um Estudo Sobre Espaços Vetoriais Simpléticos Um Estudo Sobre Espaços Vetoriais Simpléticos Fabiano Borges da Silva Lívia T. Minami Borges 28 de novembro de 2015 Resumo O presente artigo estuda de maneira detalhada espaços vetoriais que possuem uma

Leia mais

Lista de Exercícios cap. 4

Lista de Exercícios cap. 4 Lista de Exercícios cap. 4 1) Consideremos a transformação, linear T: IR² IR² definida por T(x, y) = (3x 2y, x + 4y). Utilizar os vetores u = (1,2) e v = (3, 1) para mostrar que T(3u + 4v) = 3T(u) + 4T(v).

Leia mais

Notas de Aula - Espaços Vetoriais I

Notas de Aula - Espaços Vetoriais I Notas de Aula - Espaços Vetoriais I 1 O espaço vetorial R 2 A definição de espaço vetorial que veremos adiante faz uso da ideia de operações definidas sobre um conjunto. Iniciaremos nosso estudo explorando

Leia mais

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna

Leia mais

Álgebra Linear e Aplicações - Lista para Primeira Prova

Álgebra Linear e Aplicações - Lista para Primeira Prova Álgebra Linear e Aplicações - Lista para Primeira Prova Nestas notas, X, Y,... são espaços vetoriais sobre o mesmo corpo F {R, C}. Você pode supor que todos os espaços têm dimensão finita. Os exercícios

Leia mais

AV1 - MA UMA SOLUÇÃO. d b =. 3q 2 = 2p 2,

AV1 - MA UMA SOLUÇÃO. d b =. 3q 2 = 2p 2, AV1 - MA 11-01 Questão 1. Prove que se a, b, c e d são números racionais tais que a + b 3 = c + d 3 então a = c e b = d. A igualdade a + b 3 = c + d 3 implica que (a c) = (d b) 3. Suponha que tenhamos

Leia mais

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG 1 Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos Ana Cristina Vieira Departamento de Matemática - ICEx - UFMG - 2011 1. Representações de Grupos Finitos 1.1. Fatos iniciais Consideremos

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

Aula 3 A Reta e a Dependência Linear

Aula 3 A Reta e a Dependência Linear MÓDULO 1 - AULA 3 Aula 3 A Reta e a Dependência Linear Objetivos Determinar a equação paramétrica de uma reta no plano. Compreender o paralelismo entre retas e vetores. Entender a noção de dependência

Leia mais

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,

Leia mais

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais):

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais): a Lista. Sejam u = ( 4 ) v = ( 5) e w = (a b). Encontre a e b tais que (a)w = u + v (b)w = 5v (c)u + w = u v. Represente os vetores acima no plano cartesiano.. Sejam u = (4 ) v = ( 4) e w = (a b c). Encontre

Leia mais

f) (,) = (,2) g) (,) = (,) h) (,) = (, ) i) (,) = (3, 2 ) d) (,) = (3, 2) e) (,) = 2(,) f) (,) = (, ) +2 # ' ( +

f) (,) = (,2) g) (,) = (,) h) (,) = (, ) i) (,) = (3, 2 ) d) (,) = (3, 2) e) (,) = 2(,) f) (,) = (, ) +2 # ' ( + Lista de exercícios: Unidade 3 Transformações Lineares 1) Consideremos a transformação linear : ² ² definida por (,) = (3 2, +4). Utilizar os vetores = (1,2) e = (3, 1) para mostrar que (3 +4) = 3() +

Leia mais