Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l"

Transcrição

1 Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova!

2 Questão Pontos) Seja U um subespaço de P 3 IR) tendo como base β { x x 2 +x 3, 1+x+x 2 }. Considere a transformação linear T : U P 2 IR) dada por: T px)) p x) + x + 1)p). 1 1 Considere que [T ] β γ 2 1, onde γ é uma base para P 2 IR). Pede se: a) Determine [px)] β sabendo que [T px))] γ 3. b) Se γ { x 1, p 1 x), p 2 x) }, determine o polinômio qx) p 1 x) p 2 x). Questão 2. Considere o espaço vetorial real C 1 [, 1]), isto é, Verifique se cada uma das aplicações a) C 1 [, 1]) { f C 1 [, 1]) / f1) }. f x)gx)dx b) 2. Pontos) f x)g x)dx define um produto interno no espaço vetorial C 1 [, 1]). Justifique sua resposta. Questão Pontos) Sejam V um espaço vetorial real munido do produto interno, e 2 a norma Euclidiana. Pede se: a) Mostre que se θ é o ângulo entre os elementos u, v V, não nulos, então u + v 2 2 u v u 2 v 2 cosθ). b) Mostre que se β { q 1,, q n } é um conjunto ortonormal em V, então β é um conjunto linearmente independente em V. Questão 4. Considere o espaço vetorial real P 2 IR) com o produto interno p, q x 2 px)qx)dx ; p, q P 2 IR). 2. Pontos) Determine uma base para o complemento ortogonal do subespaço S [1 + x] em P 2 IR) com relação ao produto interno, definido acima. Questão 5. Considere o espaço vetorial real P 2 IR) com o produto interno 2. Pontos) p, q px)qx)dx ; p, q P 2 IR). Determine a melhor aproximação do polinômio qx) 1 x 2 no subespaço P 1 IR).

3 G A B A R I T O Questão 1. Chamando [px)] β [ ] a. b 2. Pontos) Sabemos que [T px))] γ [T ] β γ [px)] β. Assim, obtemos o seguinte sistema linear 1 1 [ ] 2 1 a b a + b 1 2a + b 3 a + 2b que tem uma única solução a 2 e b. Logo, [px)] β [ ] 2. { a + b 1 b 1 Chamando β { q 1 x), q 2 }, onde q 1 x) x x 2 + x 3 e q 2 x) 1 + x + x 2. Conhecemos a matriz [T ] β γ, onde γ { x 1, p 1 x), p 2 x) }. Assim, temos que T q 1 x)) x 1) + 2p 1 x) + p 2 x) T q 2 x)) x 1) + p 1 x) + 2p 2 x). 1) Tomando T px)) p x) + x + 1)p), vamos calcular T q 1 x)) 1 2x + 3x 2 T q 2 x)) 1 + 2x + x + 1) 3x ) Substituindo 2) em 1), obtemos um sistema linear nas incógnitas p 1 x) 2p 1 x) + p 2 x) 3x 2 3x + 2 p 1 x) + 2p 2 x) 2x + 3 e p 2 x) Fazendo a primeira equação menos a segunda equação, obtemos o que completa a resolução da questão. p 1 x) p 2 x) 3x 2 5x 1,

4 Questão Pontos) a) Note que a aplicação, definida por: não satisfaz a propriedade de simetria. De fato, f x)gx)dx ; f, g C 1 [, 1]) f x)gx)dx g x)fx)dx g, f. Por exemplo, tomando as funções fx) 1 x e gx) 1 x 2, temos que x 2 1 )dx 2 3 Portanto, f, g g, f. e g, f Além disso, podemos verificar facilmente que a aplicação de positividade. De fato, f, f f x)fx)dx 1 2 2x 2 2x )dx 1 3, não satisfaz a propriedade f 2 x)) dx 1 2 f 2 1) f 2 ) ) 1 2 f 2 ), onde f1). Logo, a aplicação, não define um produto interno no espaço vetorial C[, 1 1]). b) Podemos verificar facilmente que a aplicação, definida por: f x)g x)dx ; f, g C 1 [, 1]) satisfaz as propriedades de simetria, homogeneidade e distributividade. De fato, λf, g f x)g x)dx λf) x)g x)dx g x)f x)dx g, f ; f, g C 1 [, 1]). λf x)g x)dx λ para todas funções f, g C 1 [, 1]) e λ IR. f x)g x)dx λ f, g f + g, h f + g) x)h x)dx f x)h x)dx + g x)h x)dx f, h + g, h ; f, g C 1 [, 1]).

5 Vamos mostrar que a aplicação, satisfaz a propriedade de positividade. De fato, f, f pois o integrando é uma função contínua positiva. Agora, supomos que f, f f x) ) 2 dx, f x) ) 2 dx. Como f é uma função contínua, temos que f x) para todo x [, 1]. Logo, f é uma função constante em [, 1], entretanto, f1). Assim, a única função constante no espaço C[, 1 1]) é a função identicamente nula f ), isto é, fx) para todo x [, 1]. Portanto, a aplicação, define um produto interno no espaço vetorial C[, 1 1]). Questão Pontos) a) Considerando que V é um espaço vetorial real, temos que u + v 2 2 u + v, u + v u, u + 2 u, v + v, v. Agora utilizando o fato que θ é o ângulo entre os elementos u e v, não nulos, temos que cosθ) Portanto, obtemos a relação u, v u 2 v 2 u, v u 2 v 2 cosθ). u + v 2 2 u v u 2 v 2 cosθ) que é denominada Lei do Paralelogramo. b) Tomando a combinação linear nula dos elementos do conjunto β c 1 q c i q i + + c n q n V, e fazendo o produto interno de ambos os membros com um elemento q j c 1 q 1, q j + + c i q i, q j + + c n q n, q j. Usando o fato que β é um conjunto ortonormal, isto é, q i, q j para i j obtemos q i, q j 1 para i j c j para j 1,, n. Portanto, mostramos que β é um conjunto linearmente independente em V. β temos que

6 Questão Pontos) Chamando px) 1 + x, temos que o subespaço S [px)] P 2 IR). O subespaço S é definido por: S { q P 2 IR) / r, q ; r S }. Tomando um elemento genérico qx) a + bx + cx 2 S, sabemos que p, q. Assim, temos que p, q x x)a + bx + cx 2 )dx x 2 + x 3 )a + bx + cx 2 )dx ax 2 + bx 3 + cx 4 + ax 3 + bx 4 + cx 5 )dx ax 2 + cx 4 + bx 4 )dx Calculando a integral, resulta a seguinte equação 2 3 a c b Resolvendo a equação acima para a incógnita c, temos que c 5 3 a b. Portanto, todo elemento qx) S é escrito como: qx) a + bx + 53 ) a b x x2 ) a + x x 2 ) b para a, b IR. Desse modo, uma base para o subespaço S é formada pelos elementos completando a resolução da questão. q 1 x) x2 e q 2 x) x x 2,

7 Questão Pontos) A melhor aproximação do elemento qx) 1 x 2 no subespaço P 1 IR) P 2 IR) é dada pela projeção ortogonal do elemento qx) sobre o subespaço P 1 IR). Inicialmente, vamos obter uma base ortogonal β { q 1 x), q 2 x) } para o subespaço P 1 IR) a partir da base canônica β { p 1 x) 1, p 2 x) x }, através do Processo de Ortogonalização de Gram-Schmidt. Desse modo, escolhemos q 1 x) p 1 x) 1. Agora, vamos construir o elemento q 2 x) da seguinte forma: q 2 x) p 2 x) α 12 q 1 x) ortogonal ao subespaço gerado pelo elemento q 1 x). Assim, temos que α 12 p 2, q 1 p 2, q Logo, o elemento q 2 x) x 1 2, completando a base ortogonal β { q 1 x), q 2 x) }. Finalmente, vamos determinar a projeção ortogonal, qx), do elemento qx) 1 x 2 subespaço P 1 IR) que é dada por: no qx) q, q 1 q 1, q 1 q 1x) + q, q 2 q 2, q 2 q 2x) onde q 1, q 1 dx 1 e q 2, q 2 x 1 ) 2 dx q, q 1 q, q 2 1 x 2 )dx x 2 ) x 1 ) dx Portanto, temos que qx) 2 3 x 1 ) x, o que completa a resolução da questão.

1. Mostre que o conjunto R 2 = {(x, y)/x, y R} é um espaço vetorial real, com as operações usuais de adição de elementos e multiplicação por escalar.

1. Mostre que o conjunto R 2 = {(x, y)/x, y R} é um espaço vetorial real, com as operações usuais de adição de elementos e multiplicação por escalar. Fundação Universidade Federal do Vale do São Francisco - UNIVASF Colegiado de Engenharia de Produção - CPROD Prof. Felipe Wergete a Lista de Exercícios de Álgebra Linear - 202.. Mostre que o conjunto R

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução: EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

Disciplina: Álgebra Linear e Geometria Analítica

Disciplina: Álgebra Linear e Geometria Analítica Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

3.1. TRANSFORMAÇÕES LINEARES 79

3.1. TRANSFORMAÇÕES LINEARES 79 31 TRANSFORMAÇÕES LINEARES 79 Exemplo 317 Mostre que existe uma função T : R R satisfazendo à condição aditiva T (x + y) =T (x)+t (y), x, y R, mas não é uma transformação linear, isto é, T (x) 6= ax, paraalgumx

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller ÁLGEBRA LINEAR Transformações Lineares Prof. Susie C. Keller É um tipo especial de função (aplicação), onde o domínio e o contradomínio são espaços vetoriais. Tanto a variável independente quanto a variável

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio

Leia mais

TRIGONOMETRIA CICLO TRIGONOMÉTRICO

TRIGONOMETRIA CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades

Leia mais

Planos e Retas. Equações do Plano e da Reta. Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins

Planos e Retas. Equações do Plano e da Reta. Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins Planos e Retas Uma abordagem exploratória das Equações do Plano e da Reta Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins Na geometria, um plano é determinado se

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

1. Verifique se são operadores lineares no espaço P n (R): (a) F: P n (R) P n (R) tal que F(f(t)) = tf (t), f(t) P n (R).

1. Verifique se são operadores lineares no espaço P n (R): (a) F: P n (R) P n (R) tal que F(f(t)) = tf (t), f(t) P n (R). UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET ÁLGEBRA LINEAR ASSUNTO: TRANSFORMAÇÕES LINEARES EXERCÍCIOS RESOLVIDOS 1. Verifique se são operadores lineares

Leia mais

Alguns Problemas e Exames Resolvidos de LEAmb, LEAN, LEMat, LQ, MEBiol, MEQ 1 o Semestre 2008/2009

Alguns Problemas e Exames Resolvidos de LEAmb, LEAN, LEMat, LQ, MEBiol, MEQ 1 o Semestre 2008/2009 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Alguns Problemas e Exames Resolvidos de LEAmb, LEAN, LEMat, LQ, MEBiol, MEQ 1 o Semestre 2008/2009 Prof. Paulo Pinto http://www.math.ist.utl.pt/

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina):

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Seja A um domínio. Mostre que se A[X] é Euclidiano então A é um corpo (considere o ideal (a, X) onde

Leia mais

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 O preço do litro da gasolina no Estado do Rio de Janeiro custa, em média R$ 2,90. Uma pessoa deseja abastecer seu carro, em um posto no Rio de Janeiro, com 40 reais. Com quantos

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR.

MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR. MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR. UNIDADE DE MASSA ATÔMICA Em 1961, na Conferência da União Internacional de Química Pura e Aplicada estabeleceu-se: DEFINIÇÃO DE MASSA

Leia mais

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5.

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5. UFPB/PRAI/CCT/DME - CAMPUS II DISCIPLINA: Álgebra Linear ALUNO (A): 2 a LISTA DE EXERCÍCIOS 1 a PARTE: QUESTÕES TIPO VERDADEIRO OU FALSO COM JUSTI- FICATIVA. 1. O conjunto dos polinômios de grau m com

Leia mais

2y 2z. x y + 7z = 32 (3)

2y 2z. x y + 7z = 32 (3) UFJF MÓDULO III DO PISM TRIÊNIO 0-03 GABARITO DA PROVA DE MATEMÁTICA Questão Três amigos, André, Bernardo arlos, reúnem-se para disputar um jogo O objetivo do jogo é cada jogador acumular pontos, retirando

Leia mais

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013

[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013 Economia I; 01/013 (º semestre) Prova da Época Recurso 3 de Julho de 013 [RESOLUÇÃO] Distribuição das respostas correctas às perguntas da Parte A (6 valores) nas suas três variantes: ER A B C P1 P P3 P4

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:

Leia mais

AULA DO CPOG. Progressão Aritmética

AULA DO CPOG. Progressão Aritmética AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Unidade 3 Função Afim

Unidade 3 Função Afim Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo

Leia mais

Parte 2. Polinômios sobre domínios e corpos

Parte 2. Polinômios sobre domínios e corpos Parte Polinômios sobre domínios e corpos Pressupomos que o estudante tenha familiaridade com os anéis comutativos com unidade, em particular com domínios e corpos. Alguns exemplos importantes são Z Q R

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

Microeconomia. Prof.: Antonio Carlos Assumpção

Microeconomia. Prof.: Antonio Carlos Assumpção Microeconomia Efeitos Renda e Substituição Prof.: Antonio Carlos Assumpção Efeito Renda e Efeito Substituição Uma queda no preço de um bem ou serviço tem dois efeitos: Substituição e Renda Efeito Substituição

Leia mais

COMENTÁRIO DA PROVA DO BANCO DO BRASIL

COMENTÁRIO DA PROVA DO BANCO DO BRASIL COMENTÁRIO DA PROVA DO BANCO DO BRASIL Prezados concurseiros, segue abaixo os comentários das questões de matemática propostas pela CESPE no último concurso para o cargo de escriturário do Banco do Brasil

Leia mais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 013/I 1 Sejam u = ( 4 3) v = ( 5) e w = (a b) Encontre a e b tais

Leia mais

AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos.

AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos. Questão 1 (1,0) (a) Determine o maior número natural que divide todos os rodutos de três números naturais consecutivos (1,0) (b) Resonda à mesma questão no caso do roduto de quatro números naturais consecutivos

Leia mais

Introdução ao determinante

Introdução ao determinante ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld

Leia mais

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800)

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Universidade Estadual de Campinas Departamento de Matemática Teorema de Jacobson Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Campinas - SP 2013 1 Resumo Nesta monografia apresentamos a

Leia mais

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação

Leia mais

1.10 Sistemas de coordenadas cartesianas

1.10 Sistemas de coordenadas cartesianas 7 0 Sistemas de coordenadas cartesianas Definição : Um sistema de coordenadas cartesianas no espaço é um v v conjunto formado por um ponto e uma base { } v3 Indicamos um sistema de coordenadas cartesianas

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Geometria Diferencial de Curvas Espaciais

Geometria Diferencial de Curvas Espaciais Geometria Diferencial de Curvas Espaciais 1 Aceleração tangencial e centrípeta Fernando Deeke Sasse Departamento de Matemática CCT UDESC Mostremos que a aceleração de uma partícula viajando ao longo de

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

Álgebra Linear - Exercícios (Determinantes)

Álgebra Linear - Exercícios (Determinantes) Álgebra Linear - Exercícios (Determinantes) Índice 1 Teoria dos Determinantes 3 11 Propriedades 3 12 CálculodeDeterminantes 6 13 DeterminanteseRegularidade 8 14 TeoremadeLaplace 11 15 Miscelânea 16 2 1

Leia mais

Aplicações de integração. Cálculo 2 Prof. Aline Paliga

Aplicações de integração. Cálculo 2 Prof. Aline Paliga Aplicações de integração Cálculo Prof. Aline Paliga Áreas entre curvas Nós já definimos e calculamos áreas de regiões que estão sob os gráficos de funções. Aqui nós estamos usando integrais para encontrar

Leia mais

Aula 4 Função do 2º Grau

Aula 4 Função do 2º Grau 1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 (UNESP) O gráfico a seguir apresenta dados

Leia mais

Função Seno. Gráfico da Função Seno

Função Seno. Gráfico da Função Seno Função Seno Dado um número real, podemos associar a ele o valor do seno de um arco que possui medida de radianos. Desta forma, podemos definir uma função cujo domínio é o conjunto dos números reais que,

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

2.2 Subespaços Vetoriais

2.2 Subespaços Vetoriais 32 CAPÍTULO 2. ESPAÇOS VETORIAIS 2.2 Subespaços Vetoriais Sejam V um espaço vetorial sobre R e W um subconjunto de V. Dizemos que W é um subespaço (vetorial) de V se as seguintes condições são satisfeitas:

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431,

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 1. Escreva os elementos de S 4 nas duas notações. Observe que S 4 = 4! = 24. Os elementos de S 4 tem a forma 1 a, 2 b, 3 c, 4 d onde a sequência abcd é uma das seguintes: 1234, 1243, 1324, 1342, 1423,

Leia mais

Números Inteiros AULA. 3.1 Introdução

Números Inteiros AULA. 3.1 Introdução AULA 3 META: Apresentar os números inteiros axiomaticamente através dos Números Naturais. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir números inteiros axiomaticamente. Realizar

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

Eletrônica Básica II. Amplificadores Diferenciais e Multiestágio

Eletrônica Básica II. Amplificadores Diferenciais e Multiestágio Eletrônica Básica II Amplificadores Diferenciais e Multiestágio Amplificadores Diferenciais O amplificador diferencial é a configuração mais utilizada em circuitos integrados analógicos Como exemplo, o

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

NOÇÕES DE ÁLGEBRA LINEAR

NOÇÕES DE ÁLGEBRA LINEAR ESPAÇO VETORIAL REAL NOÇÕES DE ÁLGEBRA LINEAR ESPAÇOS VETORIAIS Seja um conjunto V φ no qual estão definidas duas operações: adição e multiplicação por escalar, tais que u, v V, u+v V e α R, u V, αu V

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

Uso de escalas logaritmicas e linearização

Uso de escalas logaritmicas e linearização Uso de escalas logaritmicas e linearização Notas: Rodrigo Ramos 1 o. sem. 2015 Versão 1.0 Obs: Esse é um texto de matemática, você deve acompanhá-lo com atenção, com lápis e papel, e ir fazendo as coisas

Leia mais

Programação de Aulas 1º Ano 3º Bimestre De 07/08 a 20/09

Programação de Aulas 1º Ano 3º Bimestre De 07/08 a 20/09 Programação de Aulas º Ano 3º Bimestre De 07/08 a 0/09 Data Assunto Geral Assunto Específico 07/08 Função Eponencial Introdução Revisão Potência e Radical 07/08 Definição - Gráfico 08/08 Função e 4/08

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1 UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam

Leia mais

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A = Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

MATEMÁTICA POLINÔMIOS

MATEMÁTICA POLINÔMIOS MATEMÁTICA POLINÔMIOS 1. F.I.Anápolis-GO Seja o polinômio P(x) = x 3 + ax 2 ax + a. O valor de P(1) P(0) é: a) 1 b) a c) 2a d) 2 e) 1 2a 1 2. UFMS Considere o polinômio p(x) = x 3 + mx 20, onde m é um

Leia mais

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1 POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor que a base e o expoente sejam não nulos, pois já

Leia mais

Apostila de Matemática 16 Polinômios

Apostila de Matemática 16 Polinômios Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n

Leia mais

Semana 7 Resolução de Sistemas Lineares

Semana 7 Resolução de Sistemas Lineares 1 CÁLCULO NUMÉRICO Semana 7 Resolução de Sistemas Lineares Professor Luciano Nóbrega UNIDADE 1 2 INTRODUÇÃO Considere o problema de determinar as componentes horizontais e verticais das forças que atuam

Leia mais

Produtos. 4.1 Produtos escalares

Produtos. 4.1 Produtos escalares Capítulo 4 Produtos 4.1 Produtos escalares Neste tópico iremos estudar um novo tipo de operação entre vetores do plano e do espaço. Vamos fazer inicialmente uma consideração geométrica, como segue. Seja

Leia mais

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π.

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π. Aula 9 Superfícies de Revolução Seja C uma curva e r uma reta contidas num plano π. Fig. 1: Superfície de revolução S, geratriz C e eixo r contidos no plano π A superfície de revolução S de geratriz C

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais