ESPAÇOS VETORIAIS EUCLIDIANOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ESPAÇOS VETORIAIS EUCLIDIANOS"

Transcrição

1 ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma melhor compreensão do que seja uma base ortogonal e uma base ortonormal em um EV e, principalmente, nos darão a noção de medida que nos leva a precisar conceitos como o de área, volume, distância, etc. Consideremos inicialmente o plano R 2, munido de um referencial cartesiano ortogonal (eixos perpendiculare0 e um ponto P(x,y). Vamos calcular a distância do ponto P à origem O (0,0) Observando a figura e utilizando o teorema de Pitágoras, temos que d =. Podemos também, interpretar este resultado dizendo que o comprimento (que passaremos a chamar de norma) do vetor (x,y) é: Por outro lado, se tivéssemos dois vetores u = (x 1, y 1 ) e v =(x 2, y 2 ), podemos definir um produto de u por v assim: <u,v> = x 1 x 2 + y 1 y 2, produto este chamado de produto escalar interno usual e que tem uma relação importante com a norma de um vetor v = (x,y). Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 1

2 Se, ao invés de trabalharmos no R 2, estivéssemos trabalhando no R 3 (munidos de um referencial cartesiano ortogonal), teríamos encontrado uma expressão similar para o produto escalar: E a mesma relação com a norma de um vetor v = (x,y,z) Voltando ao caso do plano, se tivéssemos trabalhando com um referencial não ortogonal (eixos não perpendiculares), e quiséssemos calcular a distância da origem até um ponto P (cujas coordenadas em relação ao referencial fossem (x,y)), teríamos, usando o Teorema de Pitágoras: Obseve que, se usássemos o produto escalar = neste caso não valeria a relação =, mas ela passaria a valer se usássemos a seguinte regra para o produto: Portanto, novamente a noção de distância poderia ser dada a partir de um produto interno de vetores. Concluímos destes exemplos, que o processo usado para se determinar medidas num espaço pode variar e, em cada caso, precisamos ser bem claros sobre qual produto interno estamos trabalhando. Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 2

3 Definição: Seja V um EV real. Um produto sobre V é uma função f: VxV R que a cada par de vetores v 1 e v 2, associa um número real, denotado por <v 1, v 2 >, e que satisfaz as seguintes propriedades: P 1 u.v = v.u P 2 u. (v + w) = u.v + u. w P 3 (αu).v = α(u.v) para todo real α P 4 u.u 0 e u.u = 0 se, e somente se, u = 0. Exemplo: 1) No espaço vetorial V = R 2, a função que associa a cada par de vetores u = (x 1, y 1 ) e v= (x 2, y 2 ) o número real u.v = 3x 1 x 2 + 4y 1 y 2 é um produto interno. 2) O número u.v = 2x 1 x 2 + y 1 2 y 2 2 sendo u = (x 1, y 1 ) e v = (x 2, y 2 ) não define no R 2 um produto interno. Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 3

4 Exercícios: 1) Em relação ao produto interno usual do R 2, calcular u.v, sendo dados: a) u = (-3,4) e v = (5,-2) b) u = (6,-1) e v = (1/2, -4) c) u = (2,30 e v =(0,0) 2) Para os mesmos vetores do exercício anterior, calcular u.v em relação ao produto interno: u.v = 3x 1 x 2 + 4y 1 y 2. 3) Consideremos o R 3 munido do produto interno usual. Sendo v 1 = (1,2,-3), v 2 =(3,-1,-1) e v 3 = (2,-2,0) do R 3, determinar o vetor u tal que u.v 1 = 4, u.v 2 = 6 e u.v 3 = 2. 4) Seja V = {f: [0,1] R; f é contínua} o EV munido do produto interno: Determinar h 1. h 2 e h 1.h 1, tais que h 1, h 2 V e h 1 (t) = t e h 2 (t) = t 2. Espaço Vetorial Euclidiano Um EV real, de dimensão finita, no qual está definido um produto interno é um EV euclidiano. Módulo de um Vetor Dado um vetor v de um EV euclidiano V, define-se módulo, normal ou comprimento de v o número real não-negativo, indicado por v, definido por: v = Se u = (x 1, y 1,z 1 ) R 3, tem-se: u = = Distância entre dois vetores Chama-se de distância entre dois vetores (ou pontos) u e v o número real representado por d(u,v) e definido por: d(u,v) = u-v Sendo u = (x 1, y 1,z 1 ), v = (x 2, y 2,z 2) R 3 com produto interno usual, tem-se: Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 4

5 d(u,v) = x 1 x 2, y 1 -y 2, z 1 z 2 d(u,v) = Observações: 1) Se v = 1, isto é, v.v = 1, o vetor v é chamado vetor unitário, diz-se que V está Normalizado. 2) Todo vetor não nulo v V pode ser normalizado, fazendo: Observemos que: E, portanto, é unitário. Exemplo: Considerando V = R 3 com o produto interno v 1.v 2 = 3x 1 x 2 + 2y 1 y 2 + z 1 z 2, sendo v 1 = (x 1, y 1,z 1 ) e v 2 = (x 2, y 2,z 2 ). Dado o vetor v = (-2,1,2) R 3, em relação a esse produto interno, determine o vetor u, normalizando v: Propriedades do Módulo de um Vetor Seja V um EV euclidiano, tem-se: I. v 0, v V e v= 0, se, e somente se, v = 0. II. αv = α v, v V, α R Demonstração: αv = = = α. = α. v Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 5

6 III. u.v u v, u,v V Se u ou v = 0 vale a igualdade: uv = u. v = 0 Se nem u, nem v são nulos, para qualquer α R vale a desigualdade: (u + αv).(u + αv) 0 Pelo axioma P 4, Efetuando o produto interno, vem: u.u + u.( αv) + (αv.u) + α 2 (v.v) 0 ou, v 2 α 2 + 2(u.v) α + u 2 0 Obtivemos assim, um trinômio do 2º grau em α (pois v 2 0), que deve ser positivo para qualquer valor de α. Como o coeficiente de α 2 é sempre positivo, o discriminante deve ser negativo ou nulo. (2u.v) 2 4 v 2 u 2 0 4(u.v) 2-4 v 2 u 2 0 (u.v) 2 v 2 u 2 Considerando a raiz quadrada positiva de ambos os membros dessa desigualdade, vem: u.v u v Essa desigualdade é conhecida com o nome de Desigualdade de Schwarz ou Inequação de Cauchy-Schwarz. IV. u+v u + v, u,v V Demonstração u+v = u + v = u+v 2 = u 2 +2(u.v) + v 2 Mas: u.v u.v u v logo, u+v 2 u 2 +2 u v + v 2 Ou: Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 6

7 u+v 2 ( u + v ) 2 Ou ainda, u+v u + v Ângulos de dois Vetores Seja V um EV munido com um produto interno. O ângulo θ entre dois vetores u, v V é tal que: Exercícios: 1. Consideremos o R 3 com o produto interno usual. Determinar a componente c do vetor v = (6, -3,c) tal que v = Seja o produto interno usual no R 3 e no R 4. Determinar o ângulo entre os seguintes pares de vetores: a) u = (2,1,-5) e v = (5,0,2) b) u =(1,-1,2,3) e v = (2,0,1,-2) 5. Seja V um EV euclidiano e u, v V. Determinar o cosseno do ângulo entre os vetores u e v, sabendo que u = 3, v = 7 e u +v = 4. Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 7

8 Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 8

9 Vetores ortogonais Seja v um EV euclidiano. Diz-se que dois vetores u e v de V são ortogonais, e se representa por u v, se, e somente se, u.v = 0. Exemplo: Seja V = R 3 um EV euclidiano em relação ao produto interno (x 1, y 1 ).(x 2, y 2 ) = x 1 x 2 +2y 1 y 2. Em relação a este produto interno, os vetores u = (-3,2) e v = (4,3) são ortogonais, pois: u.v = -3.(4) +2.(2).(3) = 0 Observações: 1) O vetor 0 V é ortogonal a qualquer v V. 0.v = 0 2) Se u v, então α u v para todo α R. 3) Se u 1 v e u 2 v, então (u 1 + u 2 ) v. Conjunto Ortogonal de Vetores Seja V um EV euclidiano. Diz-se que um conjunto de vetores {v 1, v 2,...,v n } V é ortogonal se dois vetores quaisquer, distintos, são ortogonais, isto é, v i. v j = 0 para i j. Exemplo: No R 3, o conjunto {(1,2,-3), (3,0,1), (1,-5,-3)} é ortogonal em relação ao produto interno usual, pois: (1,2,-3). (3,0,1) = 0 (1,2,-3).(1,-5,-3) = 0 (3,0,1). (1,-5,-3) = 0 Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 9

10 Teorema: Um conjunto ortogonal de vetores não-nulos A = {v 1, v 2,...,v n } é Linearmente Independente (LI). De fato: Considerando a igualdade: a 1 v 1 + a 2 v av n = 0 Multiplicando o produto interno de ambos os lados da igualdade, temos: (a 1 v 1 + a 2 v av n) v i = 0v i Ou, a 1 (v 1. v i) +...a i (v i.v i ) a(v n. v i )= 0 Como A é ortogonal, v j. v i = 0 para j i e v i.v i 0, pois v i 0. Então a i (v i.v i ) = 0 implica a i = o para i = 1, 2,3...n. Logo, A = {v 1, v 2,...,v n } é LI. Base Ortogonal Uma base {v 1, v 2,...,v n } de V é ortogonal se os seus vetores são dois a dois ortogonais. Assim, se dimv = n, qualquer conjunto de n vetores não-nulos e dois a dois ortogonais, constitui uma base ortogonal. Poe exemplo, o conjunto do exemplo {(1,2,-3), (3,0,1), (1,-5,-3)} é uma base ortogonal do R 3. Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 10

11 Base Ortonormal Uma base B = {v 1, v 2,...,v n } de um EV euclidiano V é ortonormal se B é ortogonal e todos seus vetores são unitários, isto é: Exemplo: Em relação ao produto interno usual, o conjunto: 1) B = {(1,0), (0,1)} é uma base ortonormal do R 2 (é a base canônica). 2) B= {(, } é também uma base ortonormal do R 2. 3) B = {(1,0,0), (0,1,0), (0,0,1)} é uma base ortonormal do R 3 (é a base canônica). 4) B = {u 1, u 2, u 3 } sendo u 1 = (, ; u 2 = (,, u 3 = (0,, é também uma base ortonormal do R 3. Como vimos, o processo que transforma V em chama-se normalização de v. Assim, uma base ortonormal sempre pode ser obtida de uma base ortogonal, normalizando cada vetor. Exemplo: A base B = {v 1, v 2,v 3 }sendo v 1 = (1,1,1), v 2 = (-2,1,1) e v 3 (0,-1,1) é ortogonal em relação ao produto interno usual. Normalizando cada vetor, obtemos: Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 11

12 Processo de Ortogonalização de Gram-Schmidt Para entendermos o processo de ortogonalização de Gram-Schmidt é necessário, termos uma noção de projeção ortogonal. Projeções ortogonais de vetores Em muitas aplicações é importante decompor um vetor u na soma de dois componentes, um paralelo a um vetor não-nulo especificado a e o outro perpendicular a a. Se u e a são posicionados com seus pontos iniciais coincidindo com um ponto Q, podemos decompor o vetor u, da seguinte forma: Baixamos uma perpendicular da ponto de u para a reta ao longo de a e construímos o vetor w 1 de ao pé desta perpendicular. Em seguida tomamos a diferença w 2 = u w 1 Conforme indicado na figura, o vetor w 1 é paralelo ao vetor a e w 2 é perpendicular ao vetor a e w 1 + w 2 = w 1 + (u w 1 ) = u O vetor w 1, chamdo projeção ortogonal de u sobre a, ou então componente vetorial de u ao longo do vetor a, é denotado por proj a u. O vetor w 2 é chamado componente vetorial de u ortogonal ao vetor a. Como w 2 = u w 1, este vetor pode ser escrito com a notação: w 2 = u proj a u. Teorema: Se u e a são vetores em R 2 ou R 3 e se a 0, então: Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 12

13 Demonstração: Sejam w 1 = proj a u e w 2 = u proj a u. Como w 1 é paralelo a a, deve ser um múltiplo escalar de a, e portanto pode ser escrito na forma w 1 = ka. Assim: u = w 1 + w 2 = ka + w 2 Tomando o produto escalar de a, com ambos os lados da equação anterior, temos: u.a = ( ka + w 2 ).a = k + w 2.a Mas w 2.a = 0, pois w 2 é perpendicular a a; portanto dá: Como proj a u = w 1 = ka, obtemos: Seja W um subespaço de dimensão finita de um espaço com produto interno V. a) Se {v 1, v 2,...,v r } é uma base ortonormal de W e u é um vetor qualquer de V, então: proj w u = b) Se {v 1, v 2,...,v r } é uma base ortogonal de W e u é um vetor qualquer de V, então: proj w u = Encontrando uma base ortogonal Teorema: Cada espaço vetorial não-nulo de dimensão finita possui uma base ortonormal. Prova: Seja V um espaço vetorial não-nulo de dimensão finita com produto interno e suponha que {u 1, u 2,...,u n } é uma base de V. É suficiente mostrar que V tem uma base ortogonal, pois os vetores da base ortogonal podem ser normalizados para produzir uma base ortonormal de V. A seguinte sequencia de passos irá produzir uma base ortogonal {v 1,v 2,...,v n } de V. Passo 1: Seja v 1 = u 1. Passo2: Conforme ilustrado, nós podemos obter um vetor v 2 que é ortogonal a v 1 tomando a componente de u 2 que é ortogonal ao espaço W 1 gerado por v 1 : Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 13

14 v 2 = u 2 proj w1 u 2 = u 2 - Passo 3: Para construir um vetor v 3 que é ortogonal a ambos v 1 e v 2, calculamos a componte de u 3 que é ortogonal ao espaço W 2 gerado por v 1 e v 2. v 3 = u 3 proj w2 u 3 = u 3 - Passo 4: Para determinarmos um vetor v 4 que é ortogonal a v 1, v 2 e v 3, calculamos a componente de u 4 que é ortogonal ao espaço W 3 gerado por v 1, v 2, e v 3. v 4 = u 4 proj w3 u 4 = u Continuando desta maneira, nós iremos obter, depois de n passos, um conjunto ortogonal de vetores {v 1, v 2,...,v n }. Como V trem dimensão n e conjuntos ortogonais são LI, o conjunto {v 1, v 2,...,v n } é uma base ortogonal de V. A construção passo a passo acima para converter uma base arbitrária numa base ortogonal é chamada processo de Gram-Schmidt. Exemplo: Considere o espaço vetorial R 3 com o produto interno euclidiano. Aplique o processo de Gram-Schmidt para transformar os vetores de base u 1 = (1,1,1), u 2 = (0,1,1), u 3 = (0,0,1) em uma base ortogonal {v 1, v 2, v 3 }; depois normalize os vetores da base ortogonal para obter uma base ortonormal {q 1, q 2, q 3 }. Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 14

15 Exercícios: 1. Suponha que R 3 tem o produto interno euclidiano. Use o processo de Gram- Schmidt para transformar a base {u 1, u 2,u 3 } em uma base ortonormal. a) u 1 = (1,1,1) u 2 = (-1,1,0) e u 3 = (1,2,1) 2. Seja V = R 3 e o produto interno (x 1, y 1, z 1 ).(x 2, y 2,z 2 ) = 2x 1 x 2 + 3y 1 y 2 + z 1 z 2. Determinar um vetor unitário simultaneamente ortogonal aos vetores u = (1,2,1) e v = (1,1,1). 3. Construir, a partir do vetor v 1 = (1,-2,1), uma base ortogonal do R 3 relativamente ao produto interno usual e obter, a partir dela, uma base ortonormal. 4. O conjunto B = {(1,-1), (2,b)} é uma base ortogonal do R 2 em relação ao produto interno: (x 1, y 1 ).(x 2, y 2) = 2x 1 x 2 + y 1 y 2. Calcular o valor de b e determinar, a partir de B, uma base ortonormal. 5. Em relação ao produto interno usual, determinar uma base ortonormal do seguinte subespaço vetorial do R 3 : S = {(x,y,z) R 3 / x + y- z = 0} 6. Mostre que se f = f(x) e g = g(x) duas funções contínuas em C[a,b] e defina = é um produto interno em C[a,b]. Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 15

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

Disciplina: Álgebra Linear e Geometria Analítica

Disciplina: Álgebra Linear e Geometria Analítica Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O

Leia mais

1.10 Sistemas de coordenadas cartesianas

1.10 Sistemas de coordenadas cartesianas 7 0 Sistemas de coordenadas cartesianas Definição : Um sistema de coordenadas cartesianas no espaço é um v v conjunto formado por um ponto e uma base { } v3 Indicamos um sistema de coordenadas cartesianas

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Geometria Diferencial de Curvas Espaciais

Geometria Diferencial de Curvas Espaciais Geometria Diferencial de Curvas Espaciais 1 Aceleração tangencial e centrípeta Fernando Deeke Sasse Departamento de Matemática CCT UDESC Mostremos que a aceleração de uma partícula viajando ao longo de

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

1. Verifique se são operadores lineares no espaço P n (R): (a) F: P n (R) P n (R) tal que F(f(t)) = tf (t), f(t) P n (R).

1. Verifique se são operadores lineares no espaço P n (R): (a) F: P n (R) P n (R) tal que F(f(t)) = tf (t), f(t) P n (R). UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET ÁLGEBRA LINEAR ASSUNTO: TRANSFORMAÇÕES LINEARES EXERCÍCIOS RESOLVIDOS 1. Verifique se são operadores lineares

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

Equações paramétricas da Reta

Equações paramétricas da Reta 39 6.Retas e Planos Equações de Retas e Planos Equações da Reta Vamos supor que uma reta r é paralela a um vetor V = a, b, c) não nulo e que passa por um ponto P = x, y, z ). Um ponto P = x, pertence a

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

Unidade 3 Função Afim

Unidade 3 Função Afim Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Função Seno. Gráfico da Função Seno

Função Seno. Gráfico da Função Seno Função Seno Dado um número real, podemos associar a ele o valor do seno de um arco que possui medida de radianos. Desta forma, podemos definir uma função cujo domínio é o conjunto dos números reais que,

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller ÁLGEBRA LINEAR Transformações Lineares Prof. Susie C. Keller É um tipo especial de função (aplicação), onde o domínio e o contradomínio são espaços vetoriais. Tanto a variável independente quanto a variável

Leia mais

Planos e Retas. Equações do Plano e da Reta. Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins

Planos e Retas. Equações do Plano e da Reta. Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins Planos e Retas Uma abordagem exploratória das Equações do Plano e da Reta Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins Na geometria, um plano é determinado se

Leia mais

PARTE 11 VETOR GRADIENTE:

PARTE 11 VETOR GRADIENTE: PARTE 11 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 11.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira

Leia mais

Produtos. 4.1 Produtos escalares

Produtos. 4.1 Produtos escalares Capítulo 4 Produtos 4.1 Produtos escalares Neste tópico iremos estudar um novo tipo de operação entre vetores do plano e do espaço. Vamos fazer inicialmente uma consideração geométrica, como segue. Seja

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800)

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Universidade Estadual de Campinas Departamento de Matemática Teorema de Jacobson Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Campinas - SP 2013 1 Resumo Nesta monografia apresentamos a

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

CARTOGRAFIA. Sistemas de Coordenadas. Prof. Luiz Rotta

CARTOGRAFIA. Sistemas de Coordenadas. Prof. Luiz Rotta CARTOGRAFIA Sistemas de Coordenadas Prof. Luiz Rotta SISTEMA DE COORDENADAS Por que os sistemas de coordenadas são necessários? Para expressar a posição de pontos sobre uma superfície É com base em sistemas

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 (UNESP) O gráfico a seguir apresenta dados

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação:

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação: 16. Escala Absoluta Termodinâmica Kelvin propôs uma escala de temperatura que foi baseada na máquina de Carnot. Segundo o resultado (II) na seção do ciclo de Carnot, temos que: O ponto triplo da água foi

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Espaços vectoriais com produto interno. ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15

Espaços vectoriais com produto interno. ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15 Capítulo 6 Espaços vectoriais com produto interno ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15 Definição e propriedades Seja V um espaço vectorial real. Chama-se

Leia mais

Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 2015

Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 2015 Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 015 Introdução Antes de apresentar a lista, introduzirei alguns problemas já vistos em sala de aula para orientar e facilitar a

Leia mais

. (A verificação é imediata.)

. (A verificação é imediata.) 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2010 Instabilidade em Sistemas de Equações Lineares Marisa Ortegoza

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA PRODUTO DE VETORES PRODUTO ESCALAR

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA PRODUTO DE VETORES PRODUTO ESCALAR LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA PRODUTO DE VETORES PRODUTO ESCALAR 9) Sendo u = ( ) e v = ( ). Calcular: a) u v b) (u v ) c)(u + v ) d) (u v ) e) (u - v )(u + v ) a) 9 b)8 c)9 d)66 e) f) 8 )Sendo

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Marília Brasil Xavier REITORA Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA MATERIAL DIDÁTICO EDITORAÇÃO ELETRONICA Odivaldo Teixeira Lopes ARTE FINAL DA CAPA Odivaldo Teixeira

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

Cinemática Bidimensional

Cinemática Bidimensional Cinemática Bidimensional INTRODUÇÃO Após estudar cinemática unidimensional, vamos dar uma perspectiva mais vetorial a tudo isso que a gente viu, abrangendo mais de uma dimensão. Vamos ver algumas aplicações

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA. 01) Dados os vetores e, determine o valor da expressão vetorial. Resp: A=51 1 LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA 01) Dados os vetores e, determine o valor da expressão vetorial. A=51 02) Decomponha o vetor em dois vetores tais que e, com. 03) Dados os vetores, determine

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 2 Professor Marco Costa 1 1. (Fgv 2001) a) No plano cartesiano, considere a circunferência de equação x +y -4x=0 e o ponto P(3,Ë3). Verificar se P é interior, exterior ou pertencente à circunferência. b) Dada a circunferência

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Introdução ao determinante

Introdução ao determinante ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica Unidade 10 Trigonometria: Conceitos Básicos Arcos e ângulos Circunferência trigonométrica Arcos e Ângulos Quando em uma corrida de motocicleta um piloto faz uma curva, geralmente, o traçado descrito pela

Leia mais

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda

Leia mais

Aula 3 Função do 1º Grau

Aula 3 Função do 1º Grau 1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina):

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Seja A um domínio. Mostre que se A[X] é Euclidiano então A é um corpo (considere o ideal (a, X) onde

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa 1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π.

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π. Aula 9 Superfícies de Revolução Seja C uma curva e r uma reta contidas num plano π. Fig. 1: Superfície de revolução S, geratriz C e eixo r contidos no plano π A superfície de revolução S de geratriz C

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

Física Experimental III

Física Experimental III Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de

Leia mais

Matemática - Módulo 1

Matemática - Módulo 1 1. Considerações iniciais Matemática - Módulo 1 TEORIA DOS CONJUNTOS O capítulo que se inicia trata de um assunto que, via-de-regra, é abordado em um plano secundário dentro dos temas que norteiam o ensino

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Corrente elétrica, potência, resistores e leis de Ohm

Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega

MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 12 Determinantes Professor Luciano Nóbrega º Bimestre 2 DETERMINANTES DEFINIÇÃO A toda matriz quadrada está associado um número real ao qual damos o nome de determinante. O determinante

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 6 (entregar no dia 14 01

Leia mais

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC,

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, ESPAÇO VETORIAL Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, + é a operação (função) soma + : V V V, que a cada par (u, v) V V, associa um único elemento de V, denotado

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais

NOÇÕES DE ÁLGEBRA LINEAR

NOÇÕES DE ÁLGEBRA LINEAR ESPAÇO VETORIAL REAL NOÇÕES DE ÁLGEBRA LINEAR ESPAÇOS VETORIAIS Seja um conjunto V φ no qual estão definidas duas operações: adição e multiplicação por escalar, tais que u, v V, u+v V e α R, u V, αu V

Leia mais

2y 2z. x y + 7z = 32 (3)

2y 2z. x y + 7z = 32 (3) UFJF MÓDULO III DO PISM TRIÊNIO 0-03 GABARITO DA PROVA DE MATEMÁTICA Questão Três amigos, André, Bernardo arlos, reúnem-se para disputar um jogo O objetivo do jogo é cada jogador acumular pontos, retirando

Leia mais

AULA DO CPOG. Progressão Aritmética

AULA DO CPOG. Progressão Aritmética AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais