Notas de Aula de Física

Tamanho: px
Começar a partir da página:

Download "Notas de Aula de Física"

Transcrição

1 Versão preliinar 7 de setebro de 00 Notas de Aula de ísica 05. LEIS DE NEWON... ONDE ESÃO AS ORÇAS?... PRIMEIRA LEI DE NEWON... SEGUNDA LEI DE NEWON... ERCEIRA LEI DE NEWON... 4 APLICAÇÕES DAS LEIS DE NEWON... 4 Exeplo Exeplo Exeplo Exeplo Exeplo SOLUÇÃO DE ALGUNS PROBLEMAS

2 05. Leis de Newton No nosso dia a dia encontraos objetos que se ove e outros que peranece e repouso. À prieira vista, parece que u corpo está e repouso quando não existe forças atuando nele, e inicia o oviento quando ua força coeça a atuar sobre si. No desenrolar deste capítulo vaos ver o quanto essas aparências se aproxia ou se afasta da realidade. Onde estão as forças? Gravidade As coisas cae porque são atraídas pela erra. Há ua força que puxa cada objeto para baixo e que tabé é responsável por anter a atosfera sobre a erra e tabé por deixar a Lua e os satélites artificiais e órbita. É a chaada força gravitacional. Essa força representa ua interação existente entre a erra e os objetos que estão sobre ela. Sustentação Para que as coisas não caia é preciso segurá-las. Para levar a prancha o garotão faz força para cia. Da esa fora, a cadeira sustenta a oça, enquanto ela toa sol. E cada u desses casos, há duas forças opostas: a força da gravidade, que puxa a oça e a prancha para baixo, e ua força para cia, de sustentação, que a ão do surfista faz na prancha e a cadeira faz na oça. E geral, ela é conhecida coo força noral. Na água A água tabé pode sustentar coisas, ipedindo que elas afunde. Essa interação da água co os objetos se dá no sentido oposto ao da gravidade e é edida através de ua força que chaaos de epuxo hidrostático. É por isso que nos sentios ais leves quando estaos dentro da água. O que sustenta balões no ar tabé é ua força de epuxo, igual à que observaos na água. No ar Para se segurar no ar o pássaro bate asas e consegue co que o ar exerça ua força para cia, suficienteente grande para vencer a força da gravidade. Da esa fora, o oviento dos aviões e o forato especial de suas asas acaba por criar ua força de sustentação. Essas forças tabé pode ser chaadas de epuxo. Poré, trata-se de u epuxo dinâico, ou seja, que depende de u oviento para existir. As forças de epuxo estático que observaos na água ou no caso de balões, não depende de u oviento para surgir. As foras pelas quais os objetos interage uns co os outros são uito variadas. A interação das asas de u pássaro co o ar, que perite o vôo, por exeplo, é diferente da interação entre ua raquete e ua bolinha de pingue-pongue, da interação entre ua lixa e ua parede ou entre u íã e u alfinete. Isaac Newton, o faoso físico inglês do século XVIII, conseguiu elaborar leis que perite lidar co toda essa variedade, descrevendo essas interações coo forças que age entre os objetos. Cada interação representa ua força diferente, que depende das Cap 05

3 diferentes condições e que os objetos interage. Mas todas obedece aos esos princípios elaborados por Newton, e que ficara conhecidos coo Leis de Newton. Leituras de ísica - MECÂNICA - Capítulo GRE - Grupo de Reelaboração do Ensino de ísica Instituto de ísica da USP - junho de 998 Prieira Lei de Newton Antes da época de Galileu a aioria dos filósofos pensava que fosse necessária algua influência ou força para anter u corpo e oviento. Supunha que u corpo e repouso estivesse e seu estado natural. Acreditava que para u corpo overse e linha reta co velocidade constante fosse necessário algu agente externo epurrando-o continuaente, caso contrário ele iria parar. oi difícil provar o contrário dada a necessidade de livrar o corpo de certas influências, coo o atrito. Estudando o oviento de corpos e superfícies cada vez ais planas e lisas, Galileu afirou ser necessária ua força para odificar a velocidade de u corpo as nenhua força é exigida para anter essa velocidade constante. Newton enunciou que: "U corpo tende a peranecer e repouso ou e oviento retilíneo e unifore, quando a resultante das forças que atua sobre si for nula". Seja e as forças que atua nu corpo. A resultante das forças será a soa vetorial das forças que atua nesse corpo: = = Quando a resultante for nula o corpo peranecerá e repouso ou se deslocará co oviento retilíneo e unifore. 0 Segunda Lei de Newton Newton enunciou que: "A resultante das forças que atua sobre u corpo é igual ao produto da sua assa pela aceleração co a qual ele irá se ovientar". Seja, e as forças que atua sobre u corpo de assa. A resultante das forças será a soa vetorial das forças que atua nesse corpo, logo: = Cap 05

4 erceira Lei de Newton Ua força é apenas u aspecto da interação útua entre dois corpos. Verifica-se experientalente que quando u corpo exerce ua força sobre outro, o segundo sepre exerce ua força no prieiro. Newton enunciou que: "Quando u corpo exerce ua força nu segundo corpo, este últio reagirá sobre o prieiro co ua força de esa intensidade e sentido contrário". Vaos considerar u corpo sobre ua superfície horizontal plana e lisa, e preso a esse corpo está ua vareta rígida. Ua força é aplicada na vareta, essa força se transite até o corpo de odo que a vareta exerce ua força sobre o corpo e esse corpo reage à ação da vareta exercendo sobre ela ua força co eso ódulo que as co sentido contrário. e são forças de ação e reação. Aplicações das Leis de Newton Exeplo 5-6 A figura ao lado ostra u bloco (o bloco deslizante) de assa M =,kg. Ele se ove livreente se atrito, sobre ua fina caada de ar na superfície horizontal de ua esa. O bloco deslizante está preso a ua corda que passa e volta de ua polia de assa e atritos desprezíveis e te, na outra extreidade, u segundo bloco (o bloco suspenso) de assa =,kg. O bloco suspenso, ao cair, acelera o bloco deslizante para a direita. Deterine: a) A aceleração do bloco deslizante. M N P Usando a segunda Lei de Newton, para cada u dos corpos, tereos p Cap 05 4

5 para o corpo deslizante: e para o corpo suspenso: N P = MA p = a Coo os dois blocos estão presos por ua corda suposta inextensível e de assa desprezível, eles terão (e ódulo) as esas velocidades e acelerações. A = a Alé disso, a tensão se transitirá integralente através da corda: = Para o corpo deslizante a Lei de Newton toa a fora escalar: N - P = 0 e para o segundo corpo: = Ma p - = a Soando as duas últias equações, encontraos: ou seja: p = g = (M ) a a = g =,8/s M b) A aceleração do bloco suspenso Coo já foi encionado, os dois bloco tê a esa aceleração, e ódulo: a = g =,8/s M c) A tensão na corda oi ostrado que: logo: = Ma M = g =,57N M Cap 05 5

6 Exeplo 5-8 A figura ao lado ostra u bloco de assa = 5kg suspenso por três cordas. Quais as tensões nas cordas? θ θ θ = 8 0 θ = 47 0 O peso P do bloco é transitido pela corda para o nó, de odo que = P. Coo o nó está e repouso, a resultante das forças que atua nele é nula. Coo a resultante é nula, obviaente a soa das coponentes vertical e horizontal das forças tabé será nula. y θ θ x senθ senθ - = 0 - cosθ cosθ = 0 Da últia equação teos: cosθ = cosθ e usando este resultado na prieira, teos: θ cosθ = sen = cosθ senθ senθ cosθ cosθ senθ cosθ = sen ( θ θ ) cosθ ou seja: e = = 0,79N sen cosθ ( θ θ ) = = 4,7N sen cosθ ( θ θ ) Cap 05 6

7 Exeplo 5-9 A figura ao lado ostra u bloco de assa = 5kg seguro por ua corda, sobre u plano inclinado se atrito. Se θ = 7 0, qual a tensão na corda? Qual força é exercida pelo plano sobre o bloco? N P = 0 x N - P cosθ = 0 - P senθ = 0 A força exercida pelo plano sobre o bloco é a força noral N : y N = P senθ = 9,8. 5. sen7 0 = 66,7Newtons N = P cosθ = 9,8. 5. cos7 0 N = 0,97Newtons θ P Exeplo 5-0 A figura ao lado ostra u bloco de assa = 5kg, sobre u plano inclinado se atrito. Se θ = 7 0, qual a aceleração do bloco? N P x logo: P senθ = a N - P cosθ =0 a = g senθ y N a = 9,8. sen7 0 a = 4,45/s θ P Cap 05 7

8 Exeplo 5- A figura ao lado ostra dois blocos ligados por ua corda, que passa por ua polia de assa e atritos desprezíveis. azendo =,kg e M =,8kg, deterine a tensão na corda e o ódulo da aceleração (siultânea) dos dois blocos. Para o corpo da esquerda, teos a equação: p p M e para o corpo da direita: P = MA P = MA A corda é considerada inextensível portanto os corpos terão a esa aceleração (e ódulo). a = A A corda tabé é considerada de assa desprezível, logo: = = As equações terão a fora: - p = a p M Soando as equações: P - = Ma P Coo p = g e P = Mg P - p = (M ) a M a = g =,4/s M De ua equação anterior, teos: = p a logo M = g M g = g ( M ) ( M ) M M = g = 6,59N M Cap 05 8

9 Solução de alguns probleas 6 U óbile grosseiro pende de u teto co duas peças etálicas presas por ua corda de assa desprezível, confore a figura. São dada as assas das peças. a) Qual a tensão na corda inferior? =,5kg = 4,5kg Coo o óbile está e repouso, é nula a resultante das forças que atua e cada parte dele. Considerando a parte inferior do óbile, tereos: P = 0 ou seja: - P = 0 = P = g P P = 4,N b) Qual a tensão na corda superior? Considerando a parte superior do óbile: ou seja: P = - P - = 0 = P as = = P = P P = ( )g 0 = 78,4N 40 Dois blocos estão e contato sobre ua esa se atrito. Ua força horizontal é aplicada a u dos blocos coo ostrado na figura ao lado. a) Se =,kg, =,kg e =,N, deterine a força de contato entre os dois blocos. Cap 05 9

10 Os blocos e ove-se coo u conjunto co aceleração a e a resultante das forças que atua nesse conjunto é a força externa, que obedece à equação: = ( )a No entanto, podeos analisar os corpos coo se cada fosse ua entidade independente. Abos estão se ovendo co aceleração a, logo: As forças e são ação e reação, logo = -, ou ainda: =. eos então que: a = = 0,9/s, logo = =,09N b) Mostre que se a esa força for aplicada e ao invés de, a força de contato é,n, que não é o eso valor obtido e (a). Explique a diferença. Neste caso teos: Encontraos que: a = = 0,9/s, logo = =,0N 45 U objeto está pendurado nua balança de ola presa a u teto de u elevador. A balança arca 65N, quando o elevador ainda está parado. a) Qual a indicação na balança, quando o elevador estiver subindo co ua velocidade constante de 7,6/s? Vaos considerar a indicação da balança, e esse é o valor da força vertical que suspende o objeto. eos então duas forças atuando no objeto: o seu peso e a tensão. Quando o elevador estiver e repouso ou co velocidade constante, a resultante das forças será nula. Cap 05 0 P

11 Nessa situação, a balança apresentará ua leitura, que é a esa de quando o elevador estava parado, e as forças que atua no objeto deve satisfazer à equação: P = 0 - P = 0 P = = 65N b) Qual a indicação na balança quando o elevador, subindo co ua velocidade de 7,6/s, for desacelerado à razão de,4/s? Neste caso, o objeto está acelerado, e portanto a equação te a fora: P = a P - = a = P - a a = P = 49N g 49 rês blocos estão conectados, coo na figura ao lado, sobre ua esa horizontal se atrito, e puxados para a direita co ua força =65N. Se =kg, =4kg e =kg, calcule: a) A aceleração do sistea. As forças horizontais que atua nos corpos estão ostradas no desenho ao lado. Coo as cordas de conexão entre os blocos tê assas desprezíveis = e =. A resultante de forças que atua neste conjunto é, logo: = ( )a ou seja a = = 0,97/s b) As tensões e. Para o corpo de assa teos: = a = =,64N Para o corpo de assa teos: a - = a = a = Cap 05

12 = = = 4,9N 57 Ua corrente forada por cinco elos, co assa de 0,00kg cada u, é levantada verticalente co aceleração constante de,5/s, confore a figura. Deterine: a) As forças que atua entre os elos adjacentes. No diagraa das forças que atua na corrente não colocaos os pesos de cada elo. Vaos analisar a equação que relaciona as forças atuantes e cada elo: Elo 5: 45 - p = a 45 = (ga) =,N Elo 4: p = a, as 54 = 45, logo: 4 = 45 (ga) = (ga) =,46N Elo : Elo : p = a, as 4 = 4, logo: = 4 (ga) = (ga) =,69N - - p = a, as =, logo: = (ga) = 4(ga) = 4,9N b) A força exercida sobre o elo superior pela pessoa que levanta a corrente. Elo : - - p = a, as =, logo: c) A força resultante que acelera cada elo. = (ga) = 5(ga) = 6,5N A força resultante sobre cada elo é igual a a = 0,5N Cap 05

13 58 U bloco de assa =,70kg está sobre u plano co 0 0 de inclinação, se atrito, preso por ua corda que passa por ua polia, de assa e atrito desprezíveis, e te na outra extreidade u outro bloco de assa =,0kg, pendurado verticalente, coo ostra a figura. Quais são: a) Os ódulos das acelerações de cada bloco? N y Y N θ X P P θ P θ P Aplicando a segunda Lei de Newton para os dois corpos, tereos: P N P Coo os dois blocos estão conectados por ua corda inextensível, quando u deles se deslocar de ua distância s nu intervalo de tepo t o outro se deslocará da esa distância no eso intervalo de tepo, logo as suas acelerações serão as esas, e ódulo. Ou seja: a = a = a Coo a corda te assa desprezível, podeos ostrar que as tensões são iguais, ou seja: = = Vaos supor que o bloco de assa irá descer. Caso essa suposição não seja verdadeira a aceleração terá o sinal negativo. Para o prieiro bloco, teos as seguintes equações: N - P cosθ = 0 - P senθ = a Cap 05

14 e para o segundo: Prof. Roero avares da Silva P - = a Soando as duas últias equações, encontraos: ou seja: P - P senθ = ( ) a a g senθ = = 0,75/s b) O sentido da aceleração de? Enquanto - senθ > 0 nós tereos o corpo de assa descendo, e quando a desigualdade for contrária ele subirá. Se tiveros ua igualdade, os dois corpos estarão e equilíbrio. c) Qual a tensão na corda? = P senθ a = g g ( θ ) g sen = = 0,84N 6 U acaco de 0kg sobe por ua corda de assa desprezível, que passa sobre o galho de ua árvore, se atrito, e te presa na outra extreidade ua caixa de 5kg que está no solo. a) Qual o ódulo da aceleração ínia que o acaco deve ter para levantar a caixa do solo? é a força que o acaco faz na corda. e são ação e reação. Aplicando a segunda Lei de Newton para o acaco: p p = a - p = a = g a A aceleração ínia a M que o acaco deverá subir pela corda será aquela tal que é apenas igual ao peso do corpo P que está no chão, deixando-o co resultante nula. Desse odo: P Cap 05 4

15 = P = g a M a M = Mg - g a M M = g = 4,9/s b) Se, após levantar a caixa, o acaco parar de subir e ficar agarrado à corda, qual será a sua aceleração? Neste caso tereos ua áquina de Atwood, coo já foi ostrado anteriorente, e o acaco subirá acelerado enquanto o corpo descerá. A aceleração de cada u será: M a = g =,96/s ; a < a M M c) Qual será a tensão na corda? p = a g = a M M = g g = g M M M = g = 7,6N M 70 U balão de assa M, co ar quente, está descendo verticalente co ua aceleração a para baixo. Que quantidade de assa deve ser atirada para fora do balão, para que ele suba co ua aceleração a (eso ódulo e sentido oposto)? Suponha que a força de subida devido ao ar (epuxo) não varie e função da assa (carga de estabilização) que ele perdeu. A equação de oviento do balão antes que ele atire fora ua assa, será: ou seja: E M g = a Antes E Depois E M g - E = M a E = M ( g - a ) a a A equação depois de atirar, será: E ( M ) g = ( M )a M g " ( M )g Cap 05 5

16 ou seja: E - ( M - ) g = ( M - ) a E = ( M - ) ( g a ) eos então que: E = M ( g - a ) = ( M - ) ( g a ) De onde encontraos que: a = M g a Cap 05 6

1ª LISTA DE DINÂMICA E ESTÁTICA. está inicialmente em repouso nas coordenadas 2,00 m, 4,00 m. (a) Quais são as componentes da

1ª LISTA DE DINÂMICA E ESTÁTICA. está inicialmente em repouso nas coordenadas 2,00 m, 4,00 m. (a) Quais são as componentes da Universidade do Estado da Bahia UNEB Departaento de Ciências Exatas e da Terra DCET I Curso de Engenharia de Produção Civil Disciplina: Física Geral e Experiental I Prof.: Paulo Raos 1 1ª LISTA DE DINÂMICA

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO IMPULSO E QUNTIDDE DE MOVIMENTO 1. Ua bolinha se choca contra ua superfície plana e lisa co velocidade escalar de 10 /s, refletindo-se e seguida, confore a figura abaixo. Considere que a assa da bolinha

Leia mais

Simulado 2 Física AFA/EFOMM 2012. B)30 2 m. D)50 2 m. 1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m.

Simulado 2 Física AFA/EFOMM 2012. B)30 2 m. D)50 2 m. 1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. Prof. André otta - ottabip@hotail.co Siulado 2 Física AFA/EFO 2012 1- Os veículos ostrados na figura desloca-se co velocidades constantes de 20 /s e 12/s e se aproxia de u certo cruzaento. Qual era a distância

Leia mais

PADRÃO DE RESPOSTA - FÍSICA - Grupos H e I

PADRÃO DE RESPOSTA - FÍSICA - Grupos H e I PDRÃO DE RESPOST - FÍSC - Grupos H e a UESTÃO: (, pontos) valiador Revisor Íãs são frequenteente utilizados para prender pequenos objetos e superfícies etálicas planas e verticais, coo quadros de avisos

Leia mais

Resumo com exercícios resolvidos do assunto: Sistemas de Partículas

Resumo com exercícios resolvidos do assunto: Sistemas de Partículas www.engenhariafacil.weebly.co Resuo co exercícios resolvidos do assunto: Sisteas de Partículas (I) (II) (III) Conservação do Moento Centro de Massa Colisões (I) Conservação do Moento Na ecânica clássica,

Leia mais

Física Fascículo 04 Eliana S. de Souza Braga

Física Fascículo 04 Eliana S. de Souza Braga Física Fascículo Eliana S. de Souza raa Índice Choques, Lançaentos, Graitação esuo eórico... Exercícios... Gabarito... Choques, Lançaentos, Graitação esuo eórico Lançaento horizontal x oiento ertical queda

Leia mais

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA DEPARTAMENTO DE ENGENHARIA F Í S I C A II - DINÂMICA ALUNO: RA: 1 - OS PRINCÍPIOS FUNDAMENTAIS DINÂMICA A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam.

Leia mais

LISTA UERJ 2014 LEIS DE NEWTON

LISTA UERJ 2014 LEIS DE NEWTON 1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal

Leia mais

Construção de um sistema de Realidade Virtual (1 a Parte) O Engine Físico

Construção de um sistema de Realidade Virtual (1 a Parte) O Engine Físico Construção de u sistea de Realidade Virtual (1 a Parte) O Engine Físico Roberto Scalco, Fabrício Martins Pedroso, Jorge Tressino Rua, Ricardo Del Roio, Wellington Francisco Centro Universitário do Instituto

Leia mais

CAPíTULO 10 - ACELERAÇÃO DE CORIOL\S E CORRENTES GEOSTRÓFICAS

CAPíTULO 10 - ACELERAÇÃO DE CORIOL\S E CORRENTES GEOSTRÓFICAS 1 CAPíTULO 10 - ACELERAÇÃO DE CORIOL\S E CORRENTES GEOSTRÓFICAS 1. Introdução Seja u vetor à nu sistea de coordenadas (x, y, z), co os versores T,], k, de odo que - - - A = A 1 i + A 2 j + A 3 k. A derivada

Leia mais

Leis de Newton. Até agora apenas descrevemos o movimento: CINEMÁTICA (posição, velocidade, aceleração).

Leis de Newton. Até agora apenas descrevemos o movimento: CINEMÁTICA (posição, velocidade, aceleração). Leis de Newton Prof. Rony Gonçalves Curso de Física Até agora apenas descrevemos o movimento: CINEMÁTICA (posição, velocidade, aceleração). Entretanto, é impossível PREVER movimentos usando somente a cinemática.

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

:: Física :: é percorrida antes do acionamento dos freios, a velocidade do automóvel (54 km/h ou 15 m/s) permanece constante.

:: Física :: é percorrida antes do acionamento dos freios, a velocidade do automóvel (54 km/h ou 15 m/s) permanece constante. Questão 01 - Alternativa B :: Física :: Coo a distância d R é percorrida antes do acionaento dos freios, a velocidade do autoóvel (54 k/h ou 15 /s) peranece constante. Então: v = 15 /s t = 4/5 s v = x

Leia mais

Questão 46. Questão 48. Questão 47. alternativa E. alternativa A. gasto pela pedra, entre a janela do 12 o piso e a do piso térreo, é aproximadamente:

Questão 46. Questão 48. Questão 47. alternativa E. alternativa A. gasto pela pedra, entre a janela do 12 o piso e a do piso térreo, é aproximadamente: Questão 46 gasto pela pedra, entre a janela do 1 o piso e a do piso térreo, é aproxiadaente: A figura ostra, e deterinado instante, dois carros A e B e oviento retilíneo unifore. O carro A, co velocidade

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações As leis de Newton e suas aplicações Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o conceito de força

Leia mais

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA Leis de Newton INTRODUÇÃO Isaac Newton foi um revolucionário na ciência. Teve grandes contribuições na Física, Astronomia, Matemática, Cálculo etc. Mas com certeza, uma das suas maiores contribuições são

Leia mais

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 1) Certo dia, uma escaladora de montanhas de 75 kg sobe do nível de 1500 m de um rochedo

Leia mais

Aula 6 Primeira Lei da Termodinâmica

Aula 6 Primeira Lei da Termodinâmica Aula 6 Prieira Lei da Terodinâica 1. Introdução Coo vios na aula anterior, o calor e o trabalho são foras equivalentes de transferência de energia para dentro ou para fora do sistea. 2. A Energia interna

Leia mais

Exercícios 6 Aplicações das Leis de Newton

Exercícios 6 Aplicações das Leis de Newton Exercícios 6 plicações das Leis de Newton Primeira Lei de Newton: Partículas em Equilíbrio 1. Determine a intensidade e o sentido de F de modo que o ponto material esteja em equilíbrio. Resp: = 31,8 0,

Leia mais

Capítulo 14. Fluidos

Capítulo 14. Fluidos Capítulo 4 luidos Capítulo 4 - luidos O que é u luido? Massa Especíica e ressão luidos e Repouso Medindo a ressão rincípio de ascal rincípio de rquiedes luidos Ideais e Moviento Equação da continuidade

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Plano Inclinado com e sem atrito

Plano Inclinado com e sem atrito Plano Inclinado com e sem atrito 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente

Leia mais

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças:

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças: UNIVERSIDADE FEDERAL DE SANTA CATARINA-CFM DEPARTAMENTO DE FÍSICA FSC 5107 FÍSICA GERAL IA- Semestre 2012.2 LISTA DE EXERCÍCIOS 4 LEIS DE NEWTON (PARTE I) Imagine que você esteja sustentando um livro de

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

FÍSICA DADOS. 10 v som = 340 m/s T (K) = 273 + T( o C) s = 38) 27) Q = mc T = C T 39) i = 30) U = Q τ 42) 31) Instruções:

FÍSICA DADOS. 10 v som = 340 m/s T (K) = 273 + T( o C) s = 38) 27) Q = mc T = C T 39) i = 30) U = Q τ 42) 31) Instruções: FÍSICA DADOS 9 N. g = 0 k 0 = 9,0 0 s C 8 c = 3,0 0 v so = 340 /s T (K) = 73 + T( o C) s 0) d = d 0 + v 0 t + at 4) E p = gh 6) 0) v = v 0 + at 5) E c = v 03) v = 04) T= f 05) 0 PV P V = 38) T T V = k0

Leia mais

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física PROF.: MIRANDA 2ª Lista de Exercícios DINÂMICA Física Aplicada Física 01. Uma mola possui constante elástica de 500 N/m. Ao aplicarmos sobre esta uma força de 125 Newtons, qual será a deformação da mola?

Leia mais

TEORIA ELETRÔNICA DA MAGNETIZAÇÃO

TEORIA ELETRÔNICA DA MAGNETIZAÇÃO 113 17 TEORA ELETRÔNCA DA MANETZAÇÃO Sabeos que ua corrente elétrica passando por u condutor dá orige a u capo agnético e torno deste. A este capo daos o noe de capo eletro-agnético, para denotar a sua

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:18. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:18. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor e Física pela Universidade Ludwig Maxiilian de Munique, Aleanha Universidade Federal da

Leia mais

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua Segunda Lei de Newton 1. (G1 - UTFPR 01) Associe a Coluna I (Afirmação) com a Coluna II (Lei Física). Coluna I Afirmação

Leia mais

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experimental para Engenharia I LISTA 05

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experimental para Engenharia I LISTA 05 UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experiental para Engenharia I LISTA 05 Rotação de corpos rígidos 1. A hélice de u avião gira a 1900 rev/in. (a) Calcule a velocidade

Leia mais

FÍSICA - 1 o ANO MÓDULO 32 COLISÕES REVISÃO

FÍSICA - 1 o ANO MÓDULO 32 COLISÕES REVISÃO FÍSICA - 1 o ANO MÓDULO 32 COLISÕES REVISÃO Fixação 1) Duas partículas A e B, de assas A = 1,0 kg e B = 2,0 kg, ove-se inicialente sobre a esa reta, coo ilustra a figura, onde estão assinalados os sentidos

Leia mais

Programa de Retomada de Conteúdo - 3º Bimestre

Programa de Retomada de Conteúdo - 3º Bimestre Educação Infantil, Ensino Fundamental e Ensino Médio Regular. Rua Cantagalo 313, 325, 337 e 339 Tatuapé Fones: 2293-9393 e 2293-9166 Diretoria de Ensino Região LESTE 5 Programa de Retomada de Conteúdo

Leia mais

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira 1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira www.proamfer.com.br amfer@uol.com.br 1 Em uma experiência, a barra homogênea, de secção reta constante e peso 100

Leia mais

CORTESIA Prof. Renato Brito

CORTESIA Prof. Renato Brito INSTITUTO TECNOÓGICO DE AERONÁUTICA VESTIBUAR 987/988 PROVA DE FÍSICA 0. (ITA- 88 ) U disco gira, e torno do seu eixo, sujeito a u torque constante. Deterinando-se a velocidade angular édia entre os instante

Leia mais

3.3. O Ensaio de Tração

3.3. O Ensaio de Tração Capítulo 3 - Resistência dos Materiais 3.1. Definição Resistência dos Materiais é u rao da Mecânica plicada que estuda o coportaento dos sólidos quando estão sujeitos a diferentes tipos de carregaento.

Leia mais

que faz a velocidade angular de um corpo mudar. Como, então, explicar que a velocidade angular do martelo dessa Figura permanece constante?

que faz a velocidade angular de um corpo mudar. Como, então, explicar que a velocidade angular do martelo dessa Figura permanece constante? Exercícios Sears & Zeanski, Young & Freedan Física 0ª Edição Editora Pearson Capítulo 0 Torque e Moento angular QUESTÕES PAA DISCUSSÃO Q0. Ao apertar os parafusos da cabeça do otor de u autoóvel, a grandeza

Leia mais

Quinta aula de estática dos fluidos. Primeiro semestre de 2012

Quinta aula de estática dos fluidos. Primeiro semestre de 2012 Quinta aula de estática dos fluidos Prieiro seestre de 01 Vaos rocurar alicar o que estudaos até este onto e exercícios. .1 No sistea da figura, desrezando-se o desnível entre os cilindros, deterinar o

Leia mais

Capítulo 3 A Mecânica Clássica

Capítulo 3 A Mecânica Clássica Capítulo 3 A Mecânica Clássica AMecânica Clássica é formalmente descrita pelo físico, matemático e filósofo Isaac Newton no século XVII. Segundo ele, todos os eventos no universo são resultados de forças.

Leia mais

Aplicação da conservação da energia mecânica a movimentos em campos gravíticos

Aplicação da conservação da energia mecânica a movimentos em campos gravíticos ª aula Suário: licação da conservação da energia ecânica a ovientos e caos gravíticos. nergia oteial elástica. Forças não conservativas e variação da energia ecânica. licação da conservação da energia

Leia mais

= C. (1) dt. A Equação da Membrana

= C. (1) dt. A Equação da Membrana A Equação da Mebrana Vaos considerar aqui ua aproxiação e que a célula nervosa é isopotencial, ou seja, e que o seu potencial de ebrana não varia ao longo da ebrana. Neste caso, podeos desprezar a estrutura

Leia mais

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa DINÂMICA FORÇA: LEIS DE NEWTON A partir de agora passaremos a estudar a Dinâmica, parte

Leia mais

07. Obras célebres da literatura brasileira foram ambientadas em regiões assinaladas neste mapa:

07. Obras célebres da literatura brasileira foram ambientadas em regiões assinaladas neste mapa: 6 FUVEST 09/0/202 Seu é Direito nas Melhores Faculdades 07. Obras célebres da literatura brasileira fora abientadas e regiões assinaladas neste apa: Co base nas indicações do apa e e seus conhecientos,

Leia mais

LISTA UERJ 1ª FASE LEIS DE NEWTON

LISTA UERJ 1ª FASE LEIS DE NEWTON 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente ao plano inclinado é igual

Leia mais

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Unidade VIII: Estática e Equilíbrio de um corpo rígido Página 1 de 10 Unidade VIII: Estática e Equilíbrio de um corpo rígido 8.1 - Equilíbrio: Um corpo pode estar em equilíbrio das seguintes formas: a) Equilíbrio estático - É aquele no qual o corpo está em

Leia mais

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315. SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas

Leia mais

2 Podemos representar graficamente o comportamento de (1) para alguns ângulos φ, que são mostrado nas figuras que se seguem.

2 Podemos representar graficamente o comportamento de (1) para alguns ângulos φ, que são mostrado nas figuras que se seguem. POTÊNCIA EM CARGAS GENÉRICAS Prof. Antonio Sergio C. de Menezes. Depto de Engenharia Elétrica Muitas cargas nua instalação elétrica se coporta de fora resistiva ou uito aproxiadaente coo tal. Exeplo: lâpadas

Leia mais

0.1 Leis de Newton e suas aplicações

0.1 Leis de Newton e suas aplicações 0.1 Leis de Newton e suas aplicações 1 0.1 Leis de Newton e suas aplicações 1. Responda os itens justificando claraente suas respostas a partir das Leis de Newton. (a) No eio de ua discussão, Maurício

Leia mais

CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS

CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS CICUIOS EÉICOS EGIME PEMANENE SENOIDA, EPESENAÇÃO FASOIA E As análises de circuitos até o presente, levou e consideração a aplicação de fontes de energia elétrica a u circuito e conseqüente resposta por

Leia mais

UNIDADE IV: Ser humano e saúde Cultura indígena. Aula: 14.1 Conteúdo: Introdução a estática e suas definições.

UNIDADE IV: Ser humano e saúde Cultura indígena. Aula: 14.1 Conteúdo: Introdução a estática e suas definições. UNIDADE IV: Ser humano e saúde Cultura indígena. Aula: 14.1 Conteúdo: Introdução a estática e suas definições. Habilidade: Compreender os conceitos físicos relacionados a estática de um ponto material

Leia mais

2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE NOTA: DATA: / / 2011 PROFESSOR:

2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE NOTA: DATA: / / 2011 PROFESSOR: 2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE DATA: / / 2011 PROFESSOR: ALUNO(A): Nº: NOTA: Questão 1 - A cidade de São Paulo tem cerca de 23 km de raio. Numa certa madrugada, parte-se de carro, inicialmente

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F. Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento

Leia mais

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / /

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / / NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO Professor: Rodrigo Lins ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1) Na situação esquematizada na f igura, a mesa é plana, horizontal e perfeitamente polida. A

Leia mais

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Unidade VIII: Estática e Equilíbrio de um corpo rígido 132Colégio Santa Catarina Unidade VIII: Estática e Equilíbrio de um corpo rígido 132 Unidade VIII: Estática e Equilíbrio de um corpo rígido 8.1 - Equilíbrio: Um corpo pode estar em equilíbrio das seguintes

Leia mais

Revisões de análise modal e análise sísmica por espectros de resposta

Revisões de análise modal e análise sísmica por espectros de resposta Revisões de análise odal e análise sísica por espectros de resposta Apontaentos da Disciplina de Dinâica e Engenharia Sísica Mestrado e Engenharia de Estruturas Instituto Superior Técnico Luís Guerreiro

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Leis de Newton 1-Sobre uma superfície plana, horizontal e sem atrito, encontra-se apoiado um corpo de massa 2,0 kg, sujeito à ação das forças F 1 e F 2, paralelas a ela. s intensidades de F

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27 1 FÍSICA Dado: Aceleração da gravidade: 10 m/s 01. Considere que cerca de 70% da massa do corpo humano é constituída de água. Seja 10 N, a ordem de grandeza do número de moléculas de água no corpo de um

Leia mais

Objetivo: converter um comando de posição de entrada em uma resposta de posição de saída.

Objetivo: converter um comando de posição de entrada em uma resposta de posição de saída. Prof. Celso Módulo 0 83 SISTEMAS DE CONTOLE DE POSIÇÃO Objetivo: converter u coando de posição de entrada e ua resposta de posição de saída. Aplicações: - antenas - braços robóticos - acionadores de disco

Leia mais

5) A bola da figura é solta em A (topo de uma rampa). Como se comporta a velocidade da bola no trecho inclinado e no trecho horizontal? Por quê?

5) A bola da figura é solta em A (topo de uma rampa). Como se comporta a velocidade da bola no trecho inclinado e no trecho horizontal? Por quê? COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III Lista de Exercícios (Leis de Newton) SÉRIE: 1ª COORDENADOR: Eduardo Gama PROFESSOR(A): Sandro Fernandes ALUNO(A): 1) Imagine uma superfície horizontal

Leia mais

Exercícios de Física Estática

Exercícios de Física Estática Exercícios de Física Estática 1. Dois blocos idênticos de comprimento L = 24 cm são colocados sobre uma mesa, como mostra a figura a seguir. Determine o máximo valor de x, em cm, para que os blocos fiquem

Leia mais

FORÇA DE ATRITO PLANO INCLINADO

FORÇA DE ATRITO PLANO INCLINADO FORÇA DE ATRITO PLANO INCLINADO Prof. Ms. Edgar Leis de Newton - dinâmica Pensamento Antigo Associavam o movimento a presença obrigatória de uma força. Esta idéia era defendida por Aristóteles, e só foi

Leia mais

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo:

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: Estudo das forças: aplicação da leis de Newton. Habilidades: Utilizar as leis de Newton para resolver situações problemas. REVISÃO

Leia mais

Física. Plano Inclinado. Questão 01 - (UNITAU SP/2015)

Física. Plano Inclinado. Questão 01 - (UNITAU SP/2015) Questão 01 - (UNITAU SP/2015) No sistema mecânico abaixo, os dois blocos estão inicialmente em repouso. Os blocos são, então, abandonados e caem até atingir o solo. Despreze qualquer forma de atrito e

Leia mais

Exemplos de aceleração Constante 1 D

Exemplos de aceleração Constante 1 D Exemplos de aceleração Constante 1 D 1) Dada a equação de movimento de uma partícula em movimento retilíneo, s=-t 3 +3t 2 +2 obtenha: a) A velocidade média entre 1 e 4 segundos; e) A velocidade máxima;

Leia mais

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON Aluno (a): N Série: 1º Professor : Vinicius Jacques Data: 03/08/2010 Disciplina: FÍSICA EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON 01. Explique a função do cinto de segurança de um carro, utilizando o

Leia mais

Ano. p. 59-68 USO DE PROGRAMA ORIENTADO A OBJETOS EM VIBRAÇÕES MECÂNICAS P. 1. Cláudio Sérgio SARTORI

Ano. p. 59-68 USO DE PROGRAMA ORIENTADO A OBJETOS EM VIBRAÇÕES MECÂNICAS P. 1. Cláudio Sérgio SARTORI N., Março Ano Cláudio Sérgio SARTORI n. USO DE PROGRAMA ORIENTADO A OBJETOS EM VIBRAÇÕES MECÂNICAS p. 59-68 Instituto de Engenharia Arquitetura e Design INSEAD Centro Universitário Nossa Senhora do Patrocínio

Leia mais

Plano Inclinado Com Atrito

Plano Inclinado Com Atrito Plano Inclinado Com Atrito 1. (Fgv 2013) A figura representa dois alpinistas A e B, em que B, tendo atingido o cume da montanha, puxa A por uma corda, ajudando-o a terminar a escalada. O alpinista A pesa

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06 Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi Maio/2015 Atenção: Semana de prova S1 15/06 até 30/06 LISTA DE EXERCÍCIOS # 2 1) Um corpo de 2,5 kg está

Leia mais

F. Jorge Lino Módulo de Weibull MÓDULO DE WEIBULL. F. Jorge Lino

F. Jorge Lino Módulo de Weibull MÓDULO DE WEIBULL. F. Jorge Lino MÓDULO DE WEIBULL F. Jorge Lino Departaento de Engenharia Mecânica e Gestão Industrial da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, Telf. 22508704/42,

Leia mais

Exercícios Força de Atrico Força Elástica

Exercícios Força de Atrico Força Elástica Exercícios Força de Atrico Força Elástica 1-Evaristo avalia o peso de dois objetos utilizando um dinamômetro cuja mola tem constante elástica K = 35 N/m. Inicialmente, ele pendura um objeto A no dinamômetro

Leia mais

Exercícios Força de Atrico Força Elástica

Exercícios Força de Atrico Força Elástica Exercícios Força de Atrico Força Elástica 1-Evaristo avalia o peso de dois objetos utilizando um dinamômetro cuja mola tem constante elástica K = 35 N/m. Inicialmente, ele pendura um objeto A no dinamômetro

Leia mais

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano

Leia mais

Leis de Newton 2013/2014

Leis de Newton 2013/2014 Leis de Newton 2013/2014 1. (G1 - ifce 2014) Considere as afirmações sob a luz da 2ª lei de Newton. I. Quando a aceleração de um corpo é nula, a força resultante sobre ele também é nula. II. Para corpos

Leia mais

Física. Física Módulo 1 Leis de Newton

Física. Física Módulo 1 Leis de Newton Física Módulo 1 Leis de Newton Cinemática x Dinâmica: A previsão dos movimentos Até agora apenas descrevemos os movimentos : cinemática É impossível, no entanto, prever movimentos somente usando a cinemática.

Leia mais

INTRODUÇÃO À MECÂNICA CLÁSSICA. Folhas de Problemas

INTRODUÇÃO À MECÂNICA CLÁSSICA. Folhas de Problemas INTRODUÇÃO À MECÂNIC CLÁSSIC 2001/2002 Folhas de Probleas Paulo Sá, Maria Inês Carvalho e níbal Matos (recolha de probleas de diversas fontes) Bibliografia principal. Bedford, W. Fowler, Engineering Mechanics

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 8B Ensino Médio Equipe de Física Data: FÍSICA Estática de um ponto Para que um ponto esteja em equilíbrio precisa satisfazer a seguinte condição: A resultante de todas

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE:

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: 01. As pirâmides do Egito estão entre as construções mais conhecidas em todo o mundo, entre outras coisas pela incrível capacidade de engenharia

Leia mais

e) Primeira Lei de Kepler. c) Lei de Ampére;

e) Primeira Lei de Kepler. c) Lei de Ampére; Física Módulo 2 - Leis de Newton 1) De acordo com a Primeira Lei de Newton: a) Um corpo tende a permanecer em repouso ou em movimento retilíneo uniforme quando a resultante das forças que atuam sobre ele

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia

Leia mais

GABARITO DO SIMULADO DISCURSIVO

GABARITO DO SIMULADO DISCURSIVO GABARITO DO SIMULADO DISCURSIVO 1. (Unifesp 013) O atleta húngaro Krisztian Pars conquistou medalha de ouro na olimpíada de Londres no lançamento de martelo. Após girar sobre si próprio, o atleta lança

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07 01 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental I (MAF 2201) LISTA 03 Capítulo 07 1. (Pergunta 01) Classifique

Leia mais

Teste 2 Colégio Módulo 3 o Ano do Ensino Médio Prof.: Wladimir

Teste 2 Colégio Módulo 3 o Ano do Ensino Médio Prof.: Wladimir Teste 2 Colégio Módulo 3 o Ano do Ensino Médio Prof.: Wladimir Questão 01 Três blocos A, B, e C, de massa,, estão numa superfície lisa e horizontal, desprovida de atritos. Aplica-se no bloco A uma força

Leia mais

Jason Alfredo Carlson Gallas, professor titular de física teórica,

Jason Alfredo Carlson Gallas, professor titular de física teórica, IST 2 - Pro. Jason Gallas, IF UFRGS 2 de Dezebro de 200, às 13:08 Exercícios Resolvidos de Dinâica Clássica Jason lredo Carlson Gallas, proessor titular de ísica teórica, Doutor e Física pela Universidade

Leia mais

MOVIMENTO SOB A AÇÃO DA GRAVIDADE QUEDA LIVRE Lançamento obliquo e horizontal. profº CARLOS ALÍPIO

MOVIMENTO SOB A AÇÃO DA GRAVIDADE QUEDA LIVRE Lançamento obliquo e horizontal. profº CARLOS ALÍPIO 1 MOVIMENTO SOB A AÇÃO DA GRAVIDADE QUEDA LIVRE Lançamento obliquo e horizontal 2 QUEDA LIVRE MOVIMENTO SOB AÇÃO DA GRAVIDADE Na natureza podemos observar que um corpo abandonado dentro do campo gravitacional

Leia mais

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem

Leia mais

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR TC 3 UECE - 03 FASE MEICINA e EGULA SEMANA 0 a 5 de dezembro POF.: Célio Normando. A figura a seguir mostra um escorregador na forma de um semicírculo de raio = 5,0 m. Um garoto escorrega do topo (ponto

Leia mais

APLICAÇÃO DO MÉTODO DOS MÍNIMOS QUADRADOS: PROBLEMA DO PARAQUEDISTA EM QUEDA LIVRE

APLICAÇÃO DO MÉTODO DOS MÍNIMOS QUADRADOS: PROBLEMA DO PARAQUEDISTA EM QUEDA LIVRE APLICAÇÃO DO MÉTODO DOS MÍNIMOS QUADRADOS: PROBLEMA DO PARAQUEDISTA EM QUEDA LIVRE Tatiana Turina Kozaa 1 Graziela Marchi Tiago E diversas áreas coo engenharia, física, entre outras, uitas de suas aplicações

Leia mais

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Cálculo de resultante I Considere um corpo sobre o qual atual três forças distintas. Calcule a força resultante. F 1 = 10 N 30 F

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

Leis de Isaac Newton

Leis de Isaac Newton Leis de Isaac Newton Lei da Inércia A primeira lei de Newton Lei da Inércia A primeira lei de Newton diz que todo corpo tende a manter o seu movimento. Se em repouso, irá permanecer em repouso, desde que

Leia mais

Aula 4. Inferência para duas populações.

Aula 4. Inferência para duas populações. Aula 4. Inferência para duas populações. Teos duas aostras independentes de duas populações P e P : população P aostra x, x,..., x n população P aostra y, y,..., y Observação: taanho de aostras pode ser

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

Cinemática Dinâmica Onde estão as forças? Gravidade

Cinemática Dinâmica Onde estão as forças? Gravidade Forç e Moviento I Cineátic: prte n ecânic que estud os ovientos, independenteente de sus cuss e d nturez dos corpos. Dinâic: prte n ecânic que estud o oviento dos corpos, levndo e cont s forçs que produzir

Leia mais

4. Princípios matemáticos da dinâmica

4. Princípios matemáticos da dinâmica 4. Princípios matemáticos da dinâmica Aos 23 anos Isaac Newton teve uma ideia inovadora que foi a inspiração para a sua teoria da gravitação e da mecânica em geral. Newton pensou que assim como uma maçã

Leia mais

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará. TC 3 UECE 01 FASE POF.: Célio Normando Conteúdo: Lâmpadas Incandescentes 1. A lâmpada incandescente é um dispositivo elétrico que transforma energia elétrica em energia luminosa e energia térmica. Uma

Leia mais

Como erguer um piano sem fazer força

Como erguer um piano sem fazer força A U A UL LA Como erguer um piano sem fazer força Como vimos na aula sobre as leis de Newton, podemos olhar o movimento das coisas sob o ponto de vista da Dinâmica, ou melhor, olhando os motivos que levam

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

MATERIAL DE APOIO FÍSICA

MATERIAL DE APOIO FÍSICA COLÉGIO FRANCO-BRASILEIRO NOME: N : TURMA: PROFESSOR(A): SÉRIE: 1º DATA: / / 2014 MATERIAL DE APOIO FÍSICA I. VETORES 1. Dois vetores de módulos iguais possuem direções que fazem entre si um ângulo de

Leia mais