São as vigas que são fabricadas com mais de um material.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "São as vigas que são fabricadas com mais de um material."

Transcrição

1 - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões em Vigas Tópicos Avançados Vigas compostas São as vigas que são fabricadas com mais de um material. Exemplos: Tubos revestidos com plásticos e vigas de madeira reforçadas com placas de aço. Veja a Figura. Figura - Exemplo de vigas compostas: (a) viga bi metálica, (b) tubo de aço revestido com plástico, (c) Viga de madeira reforçada com uma placa de aço. Outros tipos de vigas compostas têm sido desenvolvidos nos últimos anos, basicamente para economizar material e reduzir peso. Salete Souza de Oliveira Buffoni

2 Vigas sanduíche são amplamente utilizadas nas indústrias aeroespaciais e de aviação, em que se faz necessário pouco peso com alta resistência e rigidez. Uma viga sanduíche típica apresenta-se na Figura. Figura Vigas sanduíche com (a) Núcleo de plástico (b) Núcleo em forma de colméia (c) Núcleo corrugado A viga sanduíche apresentada na Figura, consiste de duas faces finas de material relativamente resistente separadas por um núcleo espesso de material leve e pouco resistente. Uma vez que as faces estão a maior distância da linha neutra (onde as tensões de flexão são maiores), elas funcionam mais ou menos como os flanges de uma viga de perfil I. O núcleo serve como um enchimento que serve de sustentação para as faces, estabilizando-as contra empenamento e flambagem. Plásticos, espumas leves, bem como caixas de papelão e estruturas em formato de colméia ou corrugadas são usadas frequentemente como núcleo. Salete Souza de Oliveira Buffoni

3 Tensões e deformações As deformações em vigas compostas são determinadas a partir do mesmo axioma básico que usamos para encontrar as deformações em vigas de um material, isto é, as seções transversais permanecem planas durante a flexão. Esse axioma é válido para a flexão pura independente da natureza do material. As deformações longitudinais ε x variam linearmente do topo até a base da viga, como expresso pela eq. Já estudada na aula de flexão e repetida aqui: ε x y = = κy () ρ onde y é a distância a partir da linha neutra, ρ é o raio de curvatura e κ é a curvatura. Analisando a Figura 3, nota-se que essa viga consiste de duas partes, as quais estão colocadas de maneira que permita considera-las como uma única viga sólida. Analisando a Figura 3 nota-se que essa viga consiste de duas partes, denominadas de e que estão colocadas de maneira que permita considerá-las como uma única viga sólida. Como já foi discutido, assume-se que o plano xy é um plano de simetria e que o plano xz é o plano neutro da viga. Entretanto, a linha neutra não passa pelo centróide da seção transversal, no caso da viga ser composta por dois materiais diferentes. Figura 3 (a) Viga composta de dois materiais (b) seção transversal da viga (c) distribuição de deformações ε x ao longo da altura da viga e (d) distribuição de tensões σ x na viga para o caso em que E E >. Salete Souza de Oliveira Buffoni 3

4 Se a viga é flexionada com curvatura positiva, as deformações ε x, irão variar como ilustrado na Figura 3.c, sendo ε A a deformação de compressão no topo da viga, ε B a deformação de tração na base e ε C a deformação na superfície de contato dos dois materiais. Note que a deformação é zero na linha neutra. Denotando-se os módulos de elasticidade para os materiais e como E e E, respectivamente, e também assumindo que E > E ilustrado na Figura 3.d. A tensão no topo da viga é: A tensão de tração na base é: A A, obtemos o diagrama de tensão σ = E ε () σ = E ε (3) B B Na superfície de contato, as tensões nos dois materiais são diferentes porque seus módulos são diferentes. Material σ C = Eε C ; Material é σ C = Eε C (4) Usando a lei de Hooke e equação (), podemos expressar as tensões normais a uma distância y da linha neutra em termos da curvatura: σ x = κy ; σ = κy (5) E Em que σ x é a tensão no material e σ x é a tensão no material. Com base nessas equações, podemos localizar a linha neutra e obter a relação momento-curvatura. x E Linha Neutra A posição da linha neutra é encontrada a partir da condição de que a força axial resultante agindo na seção transversal é zero, consequentemente σ x da + σ xda = 0 (6) Subentendendo-se que a primeira integral é calculada sobre a área de seção transversal do material e a segunda integral é calculada sobre a área de seção transversal do material. Substituindo σ x e σ x das expressões (5) na expressão (6) obtém-se E κ yda E κyda 0 (7) = Como a curvatura é constante ao longo de uma dada seção transversal, ela não é envolvida nas integrações e pode ser cancelada da equação, assim, Salete Souza de Oliveira Buffoni 4

5 E yda + E yda = 0 (8) As integrais nessas equações representam os primeiros momentos das duas partes da área da seção transversal com respeito à linha neutra. Se a seção transversal de uma viga é duplamente simétrica, como no caso de uma viga de madeira com placas de cobertura de aço no topo e na base como na Figura 4, a linha neutra está localizada à meia altura da seção transversal e a equação (8) não é necessária. Figura 4- Seção transversal duplamente simétrica. Relação momento-curvatura A relação momento-curvatura para uma viga composta por dois materiais pode ser determinada a partir da condição de que o momento resultante das tensões de flexão é igual ao momento fletor M agindo na seção transversal. Seguindo os mesmos passos para uma viga de um material. M = A = κe σ yda = x y da + κe σ yda x y da σ x yda (9) A equação (9) pode ser escrita de forma mais simples ( E I E ) M = κ + (0) I Salete Souza de Oliveira Buffoni 5

6 onde I e I são os momentos de inércia em relação à linha neutra (o eixo z) das áreas de seção transversal dos materiais e, respectivamente. Note que I = I + I, sendo que I é o momento de inércia de toda a área de seção transversal em relação à linha neutra. A equação (0) pode ser resolvida para a curvatura em termos do momento fletor: M κ = = () ρ E I + E I Essa equação é a relação momento curvatura para uma viga de dois materiais. O denominador no lado direito é a rigidez a flexão da viga composta. Tensões Normais As tensões normais (ou tensões de flexão) na viga são obtidas substituindo-se a expressão para a curvatura () nas expressões para σ x e σ x das equações (5) σ x = E I MyE + E I MyE σ x = () EI + E I As expressões () são conhecidas como fórmulas de flexão para uma viga composta, fornecem as tensões normais nos materiais e, respectivamente. Se os dois materiais têm o mesmo módulo de elasticidade(e =E =E), então ambas as equações se reduzem à fórmula de flexão para uma viga de um material. Teoria Aproximada para Flexão de Vigas Sanduíche Vigas sanduíche com seções transversais duplamente simétricas e compostas de dois materiais elásticos lineares como apresenta a Figura 5. Podem ser analisadas quanto à flexão usando as equações () e (), como descrito nas seções anteriores. Podemos desenvolver uma teoria aproximada para flexão de vigas sanduíche com a introdução de algumas hipóteses simplificadoras. Salete Souza de Oliveira Buffoni 6

7 Figura 5- Seção transversal de uma viga sanduíche tendo dois eixos de simetria(seção transversal duplamente simétrica). Se o material das faces (material ) tiver um módulo de elasticidade muito maior do que o material do núcleo (material ), é razoável desconsiderar as tensões normais no núcleo e assumir que as faces resistem a todas as tensões de flexão longitudinais. Essa suposição é equivalente a dizer que o módulo de elasticidade do núcleo E é zero. A fórmula de flexão para o material e é: My σ x = σ x = 0 (3) I A quantidade I é o momento de inércia das duas faces calculado com relação à linha neutra; dessa forma: I 3 3 ( h ) b = (4) hc onde b é a largura da viga, h é a altura total da viga e h c é a altura do núcleo. h c = h t (5) onde t é a espessura das faces. As tensões normais máximas na viga sanduíche ocorrem no topo e na base da seção transversal para y=h/ e h/, respectivamente. Dessa forma, da Eq. (3) obtemos: Mh Mh σ topo = ; σ base = (6) I I Se o momento fletor M é positivo, a face superior está em compressão e a face inferior está em tração. Salete Souza de Oliveira Buffoni 7

8 Se as faces são finas comparadas com a espessura do núcleo(isto é, se t é pequeno comparado com h c ), podemos desconsiderar as tensões de cisalhamento nas faces e considerar que o núcleo suporta todas as tensões de cisalhamento. Sob essas condições, a tensão e deformação de cisalhamento média no núcleo são, respectivamente., τ media = V bh c V γ media = (7) bh G Onde V é a força de cisalhamento agindo na seção transversal e G c é o módulo de elasticidade de cisalhamento para o material do núcleo.(embora a tensão de cisalhamento máxima e a deformação de cisalhamento máxima sejam maiores do que os valores médios, os valores médios são usados com freqüência para fins de dimensionamento). c c Exercícios: )Uma viga sanduíche com faces de liga de alumínio revestindo um núcleo de plástico como apresenta a Figura 6, está submetida a um momento fletor M=3,0 kn.m. A espessura das faces é t=5 mm e seu módulo de elasticidade E = 7 GPa. A altura do núcleo de plástico é h c = 50 mm e seu módulo de elasticidade é E = 800 MPa. As dimensões totais da viga são h=60 mm e b=00 mm. Determine as tensões de tração e compressão máximas nas faces e no núcleo usando (a) A teoria geral para vigas compostas e (b) a teoria aproximada para vigas sanduíche. Figura 6 Seção transversal de viga sanduíche com faces de liga de alumínio e um núcleo de plástico Resposta: (a) ( σ ) = 9,0 MPa, ( σ ) = 0,98 MPa (b) ( σ ) = 0,0 MPa max ± max ± max ± Salete Souza de Oliveira Buffoni 8

9 . Uma viga composta como apresentado na Figura 7 é construída com uma viga de madeira (dimensões reais de 4,0 in x 6,0 in)e uma placa de reforço feita de aço(4,0 in. de largura 0,5 in. de espessura). Admite-se que a madeira e aço estão perfeitamente unidos de forma a se comportarem como uma única viga. A viga está submetida a um momento fletor positivo M=60 k-in. Calcule as maiores tensões de tração e compressão na madeira (material ) e as tensões máxima e mínima no aço (material ) se E = 500 ksi e E =30000 ksi. Figura 7 Seção transversal de uma viga composta de madeira e aço. Obs.: Resolvido no Gere pág. 303 Resposta: σ = 30 psi, σ 5 psi, σ 760 psi, σ 5030 psi A C = B = C = Referências Bibliográficas:. BEER, F.P. e JOHNSTON, JR., E.R. Resistência dos Materiais, 3.º Ed., Makron Books, Gere, J. M. Mecânica dos Materiais, Editora Thomson Learning 3. HIBBELER, R.C. Resistência dos Materiais, 3.º Ed., Editora Livros Técnicos e Científicos, 000. Observações: - O presente texto é baseado nas referências citadas. - Todas as figuras se encontram nas referências citadas. Salete Souza de Oliveira Buffoni 9

Capítulo1 Tensão Normal

Capítulo1 Tensão Normal - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Referências Bibliográficas:

Leia mais

Tensão de Cisalhamento

Tensão de Cisalhamento - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensão de Cisalhamento

Leia mais

Torção - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI

Torção - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI RESISTÊNCIA DOS MATERIAIS Torção Definições: Torção se refere ao giro de

Leia mais

Capítulo 4 Cisalhamento

Capítulo 4 Cisalhamento Capítulo 4 Cisalhamento 4.1 Revisão V dm dx 4.2 A fórmula do cisalhamento A fórmula do cisalhamento é usada para encontrar a tensão de cisalhamento na seção transversal. VQ It onde Q yda y' A' A' Q= momento

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Assunto: Cálculo de Lajes Prof. Ederaldo Azevedo Aula 3 e-mail: ederaldoazevedo@yahoo.com.br 3.1. Conceitos preliminares: Estrutura é a parte ou o conjunto das partes de uma construção que se destina a

Leia mais

Flambagem de Colunas Introdução

Flambagem de Colunas Introdução - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Flambagem de Colunas Introdução Os sistemas

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

Tensões Admissíveis e Tensões Últimas; Coeficiente de Segurança

Tensões Admissíveis e Tensões Últimas; Coeficiente de Segurança - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões Admissíveis e Tensões

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 4 Deformações e Propriedades Mecânicas dos Materiais Tópicos Abordados Nesta Aula Estudo de Deformações, Normal e por Cisalhamento. Propriedades Mecânicas dos Materiais. Coeficiente de Poisson. Deformação

Leia mais

DIMENSIONAMENTO DE ELEMENTOS DE ESTRUTURAS DE AÇO USANDO MÉTODOS

DIMENSIONAMENTO DE ELEMENTOS DE ESTRUTURAS DE AÇO USANDO MÉTODOS Contribuição técnica nº 5 ESTUDO NUMÉRICO-EXPERIMENTAL DE LIGAÇÕES PARAFUSADAS COM CHAPA DE TOPO ENTRE VIGA METÁLICA DE SEÇÃO I E PILAR MISTO PREENCHIDO COM CONCRETO NUMÉRICOS DE SEÇÃO QUADRADA DIMENSIONAMENTO

Leia mais

CAPÍTULO 4 4. ELEMENTOS ESTRUTURAIS. 4.1 Classificação Geométrica dos Elementos Estruturais

CAPÍTULO 4 4. ELEMENTOS ESTRUTURAIS. 4.1 Classificação Geométrica dos Elementos Estruturais Elementos Estruturais 64 CAPÍTULO 4 4. ELEMENTOS ESTRUTURAIS 4.1 Classificação Geométrica dos Elementos Estruturais Neste item apresenta-se uma classificação dos elementos estruturais com base na geometria

Leia mais

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO 1. Uma mola, com comprimento de repouso (inicial) igual a 30 mm, foi submetida a um ensaio de compressão. Sabe-se

Leia mais

COMPARAÇÃO DE CÁLCULOS ANALÍTICOS COM ELEMENTOS FINITOS DE VIGAS COMPOSTAS

COMPARAÇÃO DE CÁLCULOS ANALÍTICOS COM ELEMENTOS FINITOS DE VIGAS COMPOSTAS COMPARAÇÃO DE CÁLCULOS ANALÍTICOS COM ELEMENTOS FINITOS DE VIGAS COMPOSTAS Benedito Rabelo de Moura Junior 1, Denis da Silva Ponzo 2, Júlio César Moraes 3, Leandro Aparecido dos Santos 4, Vagner Luiz Silva

Leia mais

Resistência. dos Materiais II

Resistência. dos Materiais II Resistência Prof. MSc Eng Halley Dias dos Materiais II Material elaborado pelo Prof. MSc Eng Halley Dias Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina Aplicado ao Curso Técnico de

Leia mais

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS PRISMAS Os prismas são sólidos geométricos muito utilizados na construção civil e indústria. PRISMAS base Os poliedros representados a seguir são denominados prismas. face lateral base Nesses prismas,

Leia mais

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Walter Francisco HurtaresOrrala 1 Sílvio de Souza Lima 2 Resumo A determinação automatizada de diagramas

Leia mais

Prof. Michel Sadalla Filho

Prof. Michel Sadalla Filho Referências MECÂNICA APLICADA Prof. Michel Sadalla Filho Centros de Gravidade, Centro de Massa, Centróides de uma figura plana DOC 06 14 Fev 2013 Ver. 01 HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo:

Leia mais

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves.

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Vasos de Pressão Introdução

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.

Leia mais

Resumo. Palavras-chave. Concreto Armado; Pórtico Plano; Dimensionamento; Otimização. Introdução

Resumo. Palavras-chave. Concreto Armado; Pórtico Plano; Dimensionamento; Otimização. Introdução Procedimento Numérico para Busca do Dimensionamento Otimizado de Pórticos Planos de Concreto Armado Wilson T. Rosa Filho 1, Maria Cecilia A. Teixeira da Silva 2, Francisco A. Menezes 3 1 Universidade Estadual

Leia mais

IV Seminário de Iniciação Científica

IV Seminário de Iniciação Científica 385 AVALIAÇÃO DA RESISTÊNCIA À COMPRESSÃO E DO MÓDULO DE ELASTICIDADE DO CONCRETO QUANDO SUBMETIDO A CARREGAMENTO PERMANENTE DE LONGA DURAÇÃO (Dt = 9 dias) Wilson Ferreira Cândido 1,5 ;Reynaldo Machado

Leia mais

Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Elementos estruturais. Prof. MSc. Luiz Carlos de Almeida

Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Elementos estruturais. Prof. MSc. Luiz Carlos de Almeida Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas Elementos estruturais Notas de aula da disciplina AU405 Concreto Prof. MSc. Luiz Carlos de Almeida Agosto/2006

Leia mais

NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues.

NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. Lista 12: Equilíbrio do Corpo Rígido NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii.

Leia mais

Especi cação Técnica Cabo OPGW

Especi cação Técnica Cabo OPGW Especi cação Técnica Cabo OPGW No Especificação.: ZTT 15-48656 Revisão: DS_V.00-15/02/2016 Escrito por: Fabricante: ZTT Cable - Jiangsu Zhongtian Technology Co.,td. Gerencia Técnica Escritório Comercial

Leia mais

PERDAS DA FORÇA DE PROTENSÃO

PERDAS DA FORÇA DE PROTENSÃO PERDAS DA FORÇA DE PROTENSÃO Autor: Profº. Manfred Theodor Schmid Rudloff Industrial Ltda. 2 Edição - 1998 - REV. 01 2 PUBLICAÇÃO TÉCNICA ÍNDICE CAPÍTULO DESCRIÇÃO PÁGINA 1 PERDAS IMEDIATAS 3 1.1 Perdas

Leia mais

Comportamento de Dutos Enterrados: Modelagem Numérica x Ensaio Experimental

Comportamento de Dutos Enterrados: Modelagem Numérica x Ensaio Experimental Comportamento de Dutos Enterrados: Modelagem Numérica x Ensaio Experimental Stephane do Nascimento Santos UERJ, Rio de Janeiro, Brasil, snsantos04@gmail.com Denise Maria Soares Gerscovich UERJ, Rio de

Leia mais

Prof. Daniela Barreiro Claro

Prof. Daniela Barreiro Claro O volume de dados está crescendo sem parar Gigabytes, Petabytes, etc. Dificuldade na descoberta do conhecimento Dados disponíveis x Análise dos Dados Dados disponíveis Analisar e compreender os dados 2

Leia mais

FÍSICA. A) 2 J B) 6 J C) 8 J D) 10 J E) Zero. A) 6,2x10 6 metros. B) 4,8x10 1 metros. C) 2,4x10 3 metros. D) 2,1x10 9 metros. E) 4,3x10 6 metros.

FÍSICA. A) 2 J B) 6 J C) 8 J D) 10 J E) Zero. A) 6,2x10 6 metros. B) 4,8x10 1 metros. C) 2,4x10 3 metros. D) 2,1x10 9 metros. E) 4,3x10 6 metros. FÍSICA 16) Numa tempestade, ouve-se o trovão 7,0 segundos após a visualização do relâmpago. Sabendo que a velocidade da luz é de 3,0x10 8 m/s e que a velocidade do som é de 3,4x10 2 m/s, é possível afirmar

Leia mais

RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 7. Professor Alberto Dresch Webler

RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 7. Professor Alberto Dresch Webler Resistências dos Materiais dos Materiais - Aula 5 - Aula 7 RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 7 Professor Alberto Dresch Webler 1 Aula 7 Tensão e deformação de cisalhamento; Tensões e cargas admissíveis;

Leia mais

-ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO

-ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO INFRAINFRA -ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO Profa. Daniane Franciesca Vicentini Prof. Djalma Pereira Prof. Eduardo Ratton Profa. Márcia de Andrade Pereira DEFINIÇÕES CORPO ESTRADAL: forma assumida

Leia mais

VASOS SEPARADORES E ACUMULADORES

VASOS SEPARADORES E ACUMULADORES VASOS SEPARADORES E ACUMULADORES SÃO EQUIPAMENTOS MUITO USADOS NA INDÚSTRIA QUÍMICA PARA VÁRIAS FUNÇÕES, ENTRE ELAS: MISTURA OU SEPARAÇÃO DE FASES DISSOLUÇÃO AQUECIMENTO NEUTRALIZAÇÃO CRISTALIZAÇÃO REAÇÃO

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

TQS - SISEs Parte 10 Fundações em bloco sobre 3 estacas sem baldrame e sobre 1 estaca com baldra

TQS - SISEs Parte 10 Fundações em bloco sobre 3 estacas sem baldrame e sobre 1 estaca com baldra Palavras-chave: SISEs, bloco sobre estacas, pórtico espacial, baldrames. Seguindo o assunto da Interação entre estrutura, fundação e solo, vamos apresentar agora out ras duas possíveis soluções, tendo

Leia mais

ESTUDO EXPERIMETAL DE UMA LIGAÇÃO VIGA-PILAR DE CONCRETO PRÉ-MOLDADO PARCIALMENTE RESISTENTE A MOMENTO FLETOR

ESTUDO EXPERIMETAL DE UMA LIGAÇÃO VIGA-PILAR DE CONCRETO PRÉ-MOLDADO PARCIALMENTE RESISTENTE A MOMENTO FLETOR ESTUDO EXPERIMETAL DE UMA LIGAÇÃO VIGA-PILAR DE CONCRETO PRÉ-MOLDADO PARCIALMENTE RESISTENTE A MOMENTO FLETOR Mounir Khalil El Debs Professor EESC/USP Alice Baldissera Mestre em Engenharia de Estruturas,

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

mecânica e estruturas geodésicas II FLAMBAGEM PROF. DR. CARLOS AURÉLIO NADL

mecânica e estruturas geodésicas II FLAMBAGEM PROF. DR. CARLOS AURÉLIO NADL mecânica e estruturas geodésicas II FLAMBAGEM PROF. DR. CARLOS AURÉLIO NADL FONTE:AutoFEM Buckling Analysis Buckling = FLAMBAGEM Flambagem em trilho ferroviário (tala de junção) Ensaio em laboratório de

Leia mais

Introdução: momento fletor.

Introdução: momento fletor. Flexão em Vigas e Projeto de Vigas APOSTILA Mecânica dos Sólidos II Introdução: As vigas certamente podem ser consideradas entre os mais importantes de todos os elementos estruturais. Citamos como exemplo

Leia mais

ESTRUTURAS DE FUNDAÇÕES RASAS

ESTRUTURAS DE FUNDAÇÕES RASAS Universidade Federal de Ouro Preto - Escola de Minas Departamento de Engenharia Civil CIV620-Construções de Concreto Armado ESTRUTURAS DE FUNDAÇÕES RASAS Profa. Rovadávia Aline Jesus Ribas Ouro Preto,

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

PROJETO DE ESTRADAS Prof o. f D r D. An A de rson on Ma M nzo zo i

PROJETO DE ESTRADAS Prof o. f D r D. An A de rson on Ma M nzo zo i PROJETO DE ESTRADAS Prof. Dr. Anderson Manzoli CONCEITOS: Após traçados o perfil longitudinal e transversal, já se dispõe de dados necessários para uma verificação da viabilidade da locação do greide de

Leia mais

COMPORTAMENTO E PROPRIEDADES DOS MATERIAIS

COMPORTAMENTO E PROPRIEDADES DOS MATERIAIS Capítulo 4 COMPORTAMENTO E PROPRIEDADES DOS MATERIAIS PROPRIEDADES FÍSICAS DENSIDADE APARENTE E DENSIDADE REAL A DENSIDADE APARENTE é a relação entre a massa do material e o volume total (incluindo o volume

Leia mais

Ficha de identificação da entidade participante

Ficha de identificação da entidade participante Ficha de identificação da entidade participante Designação ECT-UTAD Escola de Ciências e Tecnologia da Universidade de Trás-os-Montes e Alto Douro Professor responsável José Boaventura Ribeiro da Cunha

Leia mais

CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA

CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA Problemas deste tipo têm aparecido nas provas do ITA nos últimos dez anos. E por ser um assunto simples e rápido de ser abrodado, não vale apena para o aluno deiar

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Propriedades de Materiais sob Tração Objetivos

Leia mais

Se a força de tração de cálculo for 110 kn, a área do tirante, em cm 2 é A) 5,0. B) 4,5. C) 3,0. D) 2,5. E) 7,5.

Se a força de tração de cálculo for 110 kn, a área do tirante, em cm 2 é A) 5,0. B) 4,5. C) 3,0. D) 2,5. E) 7,5. 25.(TRT-18/FCC/2013) Uma barra de aço especial, de seção circular com extremidades rosqueadas é utilizada como tirante em uma estrutura metálica. O aço apresenta f y = 242 MPa e f u = 396 MPa. Dados: Coeficientes

Leia mais

ATIVIDADE DE FÍSICA PARA AS FÉRIAS 8. o A/B PROF. A GRAZIELA

ATIVIDADE DE FÍSICA PARA AS FÉRIAS 8. o A/B PROF. A GRAZIELA ATIVIDADE DE FÍSICA PARA AS FÉRIAS 8. o A/B PROF. A GRAZIELA QUESTÃO 1) Utilize as informações do texto abaixo para responder às questões que o seguem. Uma máquina simples para bombear água: A RODA D ÁGUA

Leia mais

Física I 2010/2011. Aula12 Centro de Massa e Momento Linear II

Física I 2010/2011. Aula12 Centro de Massa e Momento Linear II Física I 2010/2011 Aula12 Centro de Massa e Momento Linear II Sumário Colisões Momento linear e energia cinética em colisões Colisões inelásticas a uma dimensão Colisões elásticas a uma dimensão Colisões

Leia mais

INFLUÊNCIA DO TIPO DE LAJE NO DIMENSIONAMENTO DE VIGAS MISTAS.

INFLUÊNCIA DO TIPO DE LAJE NO DIMENSIONAMENTO DE VIGAS MISTAS. UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE TECNOLOGIA COLEGIADO ENGENHARIA CIVIL RAPHAEL LIMA DE SOUZA INFLUÊNCIA DO TIPO DE LAJE NO DIMENSIONAMENTO DE VIGAS MISTAS. FEIRA DE SANTANA 2011

Leia mais

4. DIMENSIONAMENTO DE ESCADAS EM CONCRETO ARMADO

4. DIMENSIONAMENTO DE ESCADAS EM CONCRETO ARMADO 4. DIMENSIONAMENTO DE ESCADAS EM CONCRETO ARMADO 4.1 Escada com vãos paralelos O tipo mais usual de escada em concreto armado tem como elemento resistente uma laje armada em uma só direção (longitudinalmente),

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a. Se AB tiver diâmetro de 10 mm

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA

UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA Disciplina: Física Básica III Prof. Dr. Robert R.

Leia mais

Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/

Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/ Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/ Estrutura Sistema qualquer de elementos ligados, construído para suportar ou transferir

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

2.0 O PROJETO DE LAJES PROTENDIDAS - SÍNTESE

2.0 O PROJETO DE LAJES PROTENDIDAS - SÍNTESE LAJES PLANAS PROTENDIDAS: DETERMINAÇÃO DA FORÇA DE PROTENSÃO E PRÉ-DIMENSIONAMENTO DOS CABOS UM PROCESSO PRÁTICO 1.0 - INTRODUÇÃO Nos projetos de lajes protendidas, as armaduras a serem determinadas resultam

Leia mais

Circuitos de Comunicação. Prática 1: PWM

Circuitos de Comunicação. Prática 1: PWM Circuitos de Comunicação Prática 1: PWM Professor: Hélio Magalhães Grupo: Geraldo Gomes, Paulo José Nunes Recife, 04 de Maio de 2014 SUMÁRIO Resumo 3 Parte I PWM - Teoria 3 Geração do PWM 5 Parte II Prática

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. antunes@ibilce.unesp.br, socorro@ibilce.unesp.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. antunes@ibilce.unesp.br, socorro@ibilce.unesp. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos e Algoritmos Preparado a partir do texto: Rangel, Socorro.

Leia mais

2 Fundamentos para avaliação e monitoramento de placas.

2 Fundamentos para avaliação e monitoramento de placas. 26 2 Fundamentos para avaliação e monitoramento de placas. As placas são elementos estruturais limitados por duas superfícies planas distanciadas entre si por uma espessura. No caso da dimensão da espessura

Leia mais

Capítulo 3 Propriedades Mecânicas dos Materiais

Capítulo 3 Propriedades Mecânicas dos Materiais Capítulo 3 Propriedades Mecânicas dos Materiais 3.1 O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa

Leia mais

OPERAÇÕES UNITÁRIAS 1I. Sólidos SÓLIDOS PARTICULADOS 1: Particulados - PROPRIEDADES DOS SÓLIDOS PARTICULADOS - PENEIRAÇÃO

OPERAÇÕES UNITÁRIAS 1I. Sólidos SÓLIDOS PARTICULADOS 1: Particulados - PROPRIEDADES DOS SÓLIDOS PARTICULADOS - PENEIRAÇÃO OPERAÇÕES UNITÁRIAS 1I Sólidos SÓLIDOS PARTICULADOS 1: Particulados - PROPRIEDADES DOS SÓLIDOS PARTICULADOS - PENEIRAÇÃO Prof. Dr. Félix Monteiro Pereira PROF. DR. FÉLIX MONTEIRO PEREIRA 1 O que é um sólido

Leia mais

Lista de Exercícios Aula 04 Propagação do Calor

Lista de Exercícios Aula 04 Propagação do Calor Lista de Exercícios Aula 04 Propagação do Calor 1. (Halliday) Suponha que a barra da figura seja de cobre e que L = 25 cm e A = 1,0 cm 2. Após ter sido alcançado o regime estacionário, T2 = 125 0 C e T1

Leia mais

Acessórios de Tubulação Classificação quanto a finalidade e tipos

Acessórios de Tubulação Classificação quanto a finalidade e tipos Acessórios de Tubulação Classificação quanto a finalidade e tipos 1 De acordo com o sistema de ligação empregado os acessórios se classificam em: Acessórios para solda de topo; Acessórios para solda de

Leia mais

MODELOS INTUITIVOS DE VIGAS VIERENDEEL PARA O ESTUDO DO DESEMPENHO ESTRUTURAL QUANDO SUJEITAS A APLICAÇÃO DE CARREGAMENTOS

MODELOS INTUITIVOS DE VIGAS VIERENDEEL PARA O ESTUDO DO DESEMPENHO ESTRUTURAL QUANDO SUJEITAS A APLICAÇÃO DE CARREGAMENTOS Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 266 MODELOS INTUITIVOS DE VIGAS VIERENDEEL PARA O ESTUDO DO DESEMPENHO ESTRUTURAL QUANDO SUJEITAS A APLICAÇÃO DE CARREGAMENTOS

Leia mais

Programação Linear - Parte 4

Programação Linear - Parte 4 Mestrado em Modelagem e Otimização - CAC/UFG Programação Linear - Parte 4 Profs. Thiago Alves de Queiroz Muris Lage Júnior 1/2014 Thiago Queiroz (DM) Parte 4 1/2014 1 / 18 Solução Inicial O método simplex

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

Memorial Descritivo BUEIROS CELULARES DE CONCRETO. 01 BUEIRO triplo na RS715 com 3,00m X 2,50m X 16m, cada célula, no km 0 + 188,5m.

Memorial Descritivo BUEIROS CELULARES DE CONCRETO. 01 BUEIRO triplo na RS715 com 3,00m X 2,50m X 16m, cada célula, no km 0 + 188,5m. Memorial Descritivo BUEIROS CELULARES DE CONCRETO OBRAS / LOCALIZAÇÃO 01 BUEIRO triplo na RS715 com 3,00m X 2,50m X 16m, cada célula, no km 0 + 188,5m. 01 BUEIRO triplo na RS 715 com 3,00m X 2,00m X 19m,

Leia mais

MEMORIAL DESCRITIVO SINALIZAÇÃO

MEMORIAL DESCRITIVO SINALIZAÇÃO PROPRIETÁRIO: PREFEITURA MUNICIPAL DE PONTALINA OBRA: SINALIZAÇÃO HORIZONTAL E VERTICAL MEMORIAL DESCRITIVO SINALIZAÇÃO INTRODUÇÃO Devido ao pequeno tráfego de pessoas nos locais a serem pavimentados foi

Leia mais

Observando embalagens

Observando embalagens Observando embalagens A UUL AL A O leite integral é vendido em caixas de papelão laminado por dentro. Essas embalagens têm a forma de um paralelepípedo retângulo e a indicação de que contêm 1000 ml de

Leia mais

LABORATÓRIO DE CONTROLE I SINTONIA DE CONTROLADOR PID

LABORATÓRIO DE CONTROLE I SINTONIA DE CONTROLADOR PID UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 6: SINTONIA DE CONTROLADOR PID COLEGIADO DE ENGENHARIA ELÉTRICA DISCENTES: Lucas Pires

Leia mais

Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões

Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Prof. Carlos A. Heuser Dezembro de 2009 Duração: 2 horas Prova com consulta Questão 1 (Construção de modelo ER) Deseja-se projetar a base de

Leia mais

8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM

8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM 8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM Introdução: histórico; definições O Sistema de Projeção UTM é resultado de modificação da projeção Transversa de Mercator (TM) que também é

Leia mais

Prof. Michel Sadalla Filho

Prof. Michel Sadalla Filho MECÂNICA APLICADA Prof. Michel Sadalla Filho MOMENTO DE UMA FORÇA + EQUILÍBRIO DE UMA BARRA (No Plano XY) Referência HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo: Pearson Education do Brasil, 2005,

Leia mais

Mecânica dos Materiais

Mecânica dos Materiais Mecânica dos Materiais Esforços axiais Tensões e Deformações Esforços multiaxiais Lei de Hooke generalizada 2 Tradução e adaptação: Victor Franco Correia (versão 1/2013) Ref.: Mechanics of Materials, Beer,

Leia mais

DESENHO TÉCNICO ( AULA 03)

DESENHO TÉCNICO ( AULA 03) Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

Fau USP PEF 604. Estruturas em aço. Prof. Francisco Paulo Graziano. Baseado em anotações e apresentações do Prof. Waldir Pignata

Fau USP PEF 604. Estruturas em aço. Prof. Francisco Paulo Graziano. Baseado em anotações e apresentações do Prof. Waldir Pignata Fau USP PEF 604 Estruturas em aço Baseado em anotações e apresentações do Prof. Waldir Pignata Disponibilidade de produtos Tipo de Aço f y f u (MPa) (MPa) ASTM A-36 250 400 ASTM A-570 250 360 (Gr 36) COS-AR-COR

Leia mais

1331 Velocidade do som em líquidos Velocidade de fase e de grupo

1331 Velocidade do som em líquidos Velocidade de fase e de grupo 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Ondas longitudinais, velocidade do som em líquidos, comprimento de onda, freqüência,

Leia mais

Exemplo de Análise de Tabuleiro com duas Vigas

Exemplo de Análise de Tabuleiro com duas Vigas Exemplo de Análise de Tabuleiro com duas Vigas 1 Introdução Mostra-se no que segue um exemplo de determinação das solicitações permanentes e móveis das longarinas que formam juntamente com a laje e a transversina

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

Editorial Módulo: Física

Editorial Módulo: Física 1. No gráfico a seguir, está representado o comprimento L de duas barras e em função da temperatura θ. Sabendo-se que as retas que representam os comprimentos da barra e da barra são paralelas, pode-se

Leia mais

Vanessa Válvulas de Tripla Excentricidade, Série 30-RS*

Vanessa Válvulas de Tripla Excentricidade, Série 30-RS* Vanessa Válvulas de Tripla Excentricidade, Série 30-RS* As válvulas Vanessa Série 30-RS garantem o isolamento com segurança melhorada, quando comparadas com outras válvulas de borboleta de tripla excentricidade,

Leia mais

UNIVERSIDADE DE MARÍLIA

UNIVERSIDADE DE MARÍLIA UNIVERSIDADE DE MARÍLIA Faculdade de Engenharia, Arquitetura e Tecnologia SISTEMAS ESTRUTURAIS (NOTAS DE AULA) Professor Dr. Lívio Túlio Baraldi MARILIA, 2007 1. DEFINIÇÕES FUNDAMENTAIS Força: alguma causa

Leia mais

Transplante capilar Introdução

Transplante capilar Introdução Transplante Capilar Perda de cabelo e calvície são, muitas vezes, uma parte inesperada e indesejada da vida. Felizmente, com os recentes avanços na tecnologia, a perda de cabelo pode ser diminuída ou interrompida

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Capítulo 8 Dimensionamento de vigas

Capítulo 8 Dimensionamento de vigas Capítulo 8 Dimensionamento de vigas 8.1 Vigas prismáticas Nossa principal discussão será a de projetar vigas. Como escolher o material e as dimensões da seção transversal de uma dada viga, de modo que

Leia mais

Transformação de Tensão ou Análise de Tensão

Transformação de Tensão ou Análise de Tensão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Transformação de Tensão

Leia mais

Módulo 4 Vigas: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Segurança em Relação aos ELU e ELS

Módulo 4 Vigas: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Segurança em Relação aos ELU e ELS NBR 6118 : Estados Limites Últimos Estados Limites de Serviço Detalhamento P R O M O Ç Ã O Conteúdo Segurança em Relação aos ELU e ELS ELU Solicitações Normais ELU Elementos Lineares Sujeitos à Força Cortante

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Quanto ao efeito dos deslocamentos Em relação aos deslocamentos, a NBR 8800 usa a seguinte classificação:

Quanto ao efeito dos deslocamentos Em relação aos deslocamentos, a NBR 8800 usa a seguinte classificação: 3 Estabilidade e Análise Estrutural O objetivo da análise estrutural é determinar os efeitos das ações na estrutura (esforços normais, cortantes, fletores, torsores e deslocamentos), visando efetuar verificações

Leia mais

Módulo 5 Lajes: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Dimensionamento de Lajes à Punção

Módulo 5 Lajes: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Dimensionamento de Lajes à Punção NBR 6118 : Estados Limites Últimos Estados Limites de Serviço Detalhamento P R O M O Ç Ã O Conteúdo ELU e ELS Força Cortante em Dimensionamento de à Punção - Detalhamento - - Conclusões Estado Limite Último

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios O Método Intuitivo de elaboração de circuitos: As técnicas de elaboração de circuitos eletropneumáticos fazem parte

Leia mais

CÁLCULO DE ESTAQUEAMENTO PLANO POR MEIO DE

CÁLCULO DE ESTAQUEAMENTO PLANO POR MEIO DE CÁLCULO DE ESTAQUEAMENTO PLANO POR MEIO DE PLANILHAS ELETRÔNICAS T. R. Ferreira 1, B. C. S. Lopes 2, R. K. Q. Souza 3, R. G. Delalibera 4 Engenharia Civil Campus Catalão 1. tobias.trf@hotmail.com; 2. bcs_90@hotmail.com;

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

MEMORIAL DE CÁLCULO 071811 / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1

MEMORIAL DE CÁLCULO 071811 / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1 MEMORIAL DE CÁLCULO 071811 / 1-0 PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1 FABRICANTE: Metalúrgica Rodolfo Glaus Ltda ENDEREÇO: Av. Torquato Severo, 262 Bairro Anchieta 90200 210

Leia mais

Apresentamos o Lyptus em suas diferentes classes e especificações, para que você possa fazer a melhor escolha e alcançar grandes resultados em sua

Apresentamos o Lyptus em suas diferentes classes e especificações, para que você possa fazer a melhor escolha e alcançar grandes resultados em sua Apresentamos o Lyptus em suas diferentes classes e especificações, para que você possa fazer a melhor escolha e alcançar grandes resultados em sua aplicação. A madeira de reflorestamento é uma das formas

Leia mais

Introdução. 1. Generalidades. Para o aço estrutural. Definição

Introdução. 1. Generalidades. Para o aço estrutural. Definição Introdução Programa de Pós-Graduação em Engenharia Civil PGECIV - Mestrado Acadêmico Faculdade de Engenharia FEN/UERJ Disciplina: Tópicos Especiais em Estruturas (Chapa Dobrada) Professor: Luciano Rodrigues

Leia mais