e o programa espacial brasileiro

Tamanho: px
Começar a partir da página:

Download "e o programa espacial brasileiro"

Transcrição

1 e o programa espacial brasileiro

2 Todos os satélites atualmente entram em órbita carregados por um foguete ou no compartimento de carga de um ônibus espacial.

3 Para a maioria dos lançamentos de satélite, um foguete de lançamento programado é apontado diretamente para cima. Isso permite ao foguete alcançar a parte mais espessa da atmosfera mais rapidamente, minimizando o consumo de combustível.

4 Se atirarmos um objeto para cima, na vertical, observamos que esse objeto à medida que vai subindo. perde velocidade até atingir o seu ponto mais elevado, para depois cair à velocidade crescente até chegar ao solo.

5 Se atirarmos com mais força, fazendo com que sua velocidade seja maior, evidentemente que alcançará uma altura maior.

6 Podemos intuir daí que, se conseguíssemos lançar com muito mais força, poderíamos lançar o objeto de tal forma que ele já não voltaria mais.

7 Como a energia mecânica se conserva, temos: E i mec E f mec E c E p inicial E c E p final No início, a nave está em solo, portanto sua energia potencial é ZERO joule. No fim (ponto mais alto), a velocidade da nave é 0 m/s, portanto a energia cinética é ZERO joules. Assim: E c inicial 2 v m 2 E p mgh final Como vemos, a velocidade de escape de um corpo não depende da massa (m) desse corpo. 2 v 2 v 2 v 2 GM R 2 R GM R 2GM R

8 v Terra 2GM R T v Terra ,67x10 6,0x10 6 6,4x , m / s A velocidade de escape não é a mesma em todos os corpos celestes. Cada um deles tem a sua própria velocidade de escape.

9 Após o foguete ter sido lançado, o seu mecanismo de controle usa o sistema de orientação inercial para calcular os ajustes necessários nos bocais do foguete e incliná-lo em direção a um curso descrito no plano de vôo.

10 O centro de pressão é um ponto onde atua a resultante das forcas aerodinâmicas as quais o foguete esta sujeito. Um foguete precisa ser controlado muito precisamente para inserir um satélite dentro da órbita desejada. O Sistema de orientação inercial (IGS), dentro do foguete, torna possível este controle.

11 O IGS determina a exata localização e orientação do foguete, medindo precisamente todas as acelerações que ele experimenta, usando giroscópios e acelerômetros.

12 O giroscópio consiste essencialmente em uma roda livre, ou varias rodas, para girar em qualquer direção e com uma propriedade: opõe-se a qualquer tentativa de mudar sua direção original. Exemplo facilmente observável é que, ao girar a roda de uma bicicleta no ar e tentar mudar a direção de seu eixo bruscamente, percebe-se uma enorme reação.

13 Um acelerômetro nada mais é que um instrumento capaz de medir a aceleração sobre objetos.

14 Encha um copo até a metade e coloque-o sobre um objeto móvel, um skate ou algo parecido. Ao empurrá-lo para frente, uma das laterais do copo fica mais cheia que a outra devido à aceleração, se você puder calcular o ângulo de inclinação da água, é possível determinar a força aplicada.

15 Na maioria dos casos, o plano de vôo exige que o foguete siga em direção leste, porque a Terra, também girando nesse sentido, proporciona ao veículo um impulso livre.

16 A intensidade desse impulso depende da velocidade de rotação da Terra no local de lançamento. O impulso é maior no equador, onde a distância ao redor da Terra é maior e a rotação mais rápida.

17 Qual a intensidade do impulso de um lançamento equatorial? Para fazer uma ligeira estimativa, podemos determinar a circunferência da Terra multiplicando seu diâmetro por (3,1416). perímetro da circunferência = 2 R O diâmetro da Terra (2R) é de aproximadamente km. Multiplicando por temos uma circunferência de mais ou menos km.

18 Para percorrer essa distância em 24 horas, um ponto na Terra deve mover-se a km/h.

19 Um lançamento do Cabo Canaveral na Flórida não fornece um impulso tão grande a partir da velocidade rotacional da Terra.

20 Uma das instalações de lançamento do Centro Espacial Kennedy, o Complexo de Lançamento 39-A, está localizado a ,7014 de latitude norte. A velocidade de rotação da Terra naquele lugar é de quase km/h.

21 A diferença de velocidade na superfície da Terra entre o equador e o Centro Espacial Kennedy, é, então, de aproximadamente 229 km/h.

22 Observação: a Terra, na verdade, é achatada nos pólos e mais larga em torno do centro; por esta razão, nossa estimativa da circunferência da Terra é um pouco menor.

23 Considerando que os foguetes podem viajar a milhares de quilômetros por hora, você talvez imagine porque uma diferença de apenas 229 km/h fosse importar. A resposta é que os foguetes, com sua carga e combustível, são muito pesados.

24 A decolagem do ônibus espacial Endeavour em 11 de fevereiro de 2000, por exemplo, com a Missão de topografia por radar demandou o lançamento de uma massa total de kg.

25 É necessária uma quantidade enorme de energia para acelerar tal massa a 229 km/h, e também, uma quantidade grande de combustível. Lançamentos a partir do equador fazem uma significativa diferença.

26 A primeira base de lançamentos de foguetes do Brasil, foi criada em Está localizado na Rota do Sol, no município de Parnamirim, a 12km de Natal, capital do Rio Grande do Norte.

27 Nela se concentram operações de lançamento de foguetes de pequeno e de médio porte.

28 O Nike Apache, foi o primeiro foguete a ser lançado desta base, em dezembro de 1965 e era um foguete de sondagem de fabricação dos EUA.

29 Nesta base já foram lançados mais de 400 foguetes, desde os pequenos foguetes de sondagem meteorológica do tipo Loki, até veículos de alta performance da classe Castor-Lance, de quatro estágios.

30 Segunda base de lançamentos de foguetes do Brasil, foi criada em 1989 no município de Alcântara a 408 km de São Luísno estado do Maranhão.

31 A base é considerada uma das melhores do mundo pela sua localização geográfica. Proximidade da base com a linha do equador (2 18 latitude sul): a velocidade de rotação da Terra na altura do equador, auxilia o impulso dos lançadores e assim favorece a economia do propelente utilizado nos foguetes. Disposição da península de Alcântara: permite lançamentos em todos os tipos de órbita, desde as equatoriais (em faixas horizontais) às polares (em faixas verticais), e a segurança das áreas de impacto do mar que foguetes de vários estágios necessitam ter. Área do Centro: a baixa densidade demográfica possibilita a existência de diversos sítios para foguetes diferentes. Condições climáticas: o clima estável, o regime de chuvas bem definido e os ventos em limites aceitáveis tornam possível o lançamento de foguetes em praticamente todos os meses do ano.

32 O CLA destina-se a realizar missões de lançamentos de satélites e sedia os testes do Veículo Lançador de Satélites (VLS).

33 Uma vez que um foguete atinge ar extremamente rarefeito, o seu sistema de navegação detona pequenos foguetes, somente o necessário para alinhar o veículo na posição horizontal.

34 O satélite é então liberado. Neste momento, os foguetes são acionados mais uma vez, para garantir que haja uma separação entre o veículo de lançamento e o próprio satélite.

35 é a velocidade necessária para alcançar o equilíbrio entre a atração da gravidade, ocorrida sobre o satélite, e a inércia do seu movimento (a tendência de continuar se movendo). Esta é de aproximadamente km/h a uma altitude de 242 km.

36 Os planetas descrevem órbitas elípticas em torno do Sol, que ocupa um dos focos da elipse descrita.

37 O segmento imaginário que une o centro do Sol e o centro do planeta varre áreas iguais em intervalos de tempo iguais. A1 = A2

38

39 O ponto da órbita mais próximo ao Sol é chamado de periélio. O ponto mais afastado do Sol é denominado afélio.

40 2 3 O quadrado do período de revolução de cada planeta é proporcional ao cubo da distância média do planeta ao Sol. Sendo T o período do planeta, isto é, o intervalo de tempo para ele dar uma volta completa em torno do Sol, e r a medida do semi-eixo maior de sua órbita (denominado raio médio). A constante de proporcionalidade K só depende da massa do Sol.

41 Um corpo qualquer atrai outro exercendo sobre ele uma força gravitacional, dirigida ao longo da linha reta imaginária que une os dois corpos. O valor da força é diretamente proporcional às massas dos dois corpos e é inversamente proporcional ao quadrado da distância entre os corpos.

42 As forças aparecem aos pares: se um corpo atrai outro, é também atraído pelo outro. Exemplo: a Terra atrai um satélite e o satélite atrai a Terra com uma força de mesma intensidade, mesma direção e sentido contrário.

43 2 Gé uma constante, M é a massa do primeiro corpo, m é a massa do segundo corpo e d é a distância entre os centros dos dois corpos. A constante Gé a mesma em todo o universo chamando-se, por isso, constante de gravitação universal e tem o valor de 6,7 x10 11 Nm Kg 2 2

44

45 Quanto maior for o impulso com o qual atiramos uma pedra, menos encurvada será sua trajetória. Podemos imaginar que a pedra seja atirada com tanta violência que o encurvamento da trajetória seja exatamente igual à curvatura da superfície da Terra, que é praticamente esférica.

46 Nesse caso, a pedra nunca atingiria a superfície porque à medida que sua trajetória se encurvasse, a superfície da Terra se encurvaria da mesma maneira. Seria como se tivéssemos atirado a pedra além do horizonte. Se o ar não a retardasse, a pedra percorreria uma órbita em torno da Terra como um satélite.

47 Não havendo resistência do ar, a única força na pedra é a força de atração pelo planeta. Esta força atua como resultante centrípeta, não alterando o valor da velocidade em módulo e garantindo o Movimento Curvilíneo. F raio raio GM raio R GMm 2 GMm 2 c v ma 2 mv c 2 raio A distância na fórmula de Newton é o raio da órbita. A aceleração centrípeta pode ser calculada dividindo-se a velocidade constante da pedra em torno da órbita pelo raio da órbita.

48 GM raio v 2 É desta maneira que calculamos a velocidade orbital do satélite. 6, , v 2 No exemplo dado anteriormente, para uma altitude de 242 km, ao efetuarmos este cálculo obtemos a velocidade aproximada de km/h. Dados: G = 6, 67 x N. m 2 /kg 2 R T = 6370 km M T = 5, 98 x kg

49 GM raio v 2 A velocidade orbital de um satélite depende da sua altitude em relação à Terra. Quanto mais próximo da Terra, mais rápida a velocidade orbital precisa ser. 6, , v 2 É importante lembrar que devemos somar o raio da Terra à altitude e que esta distância deve estar em metros. Assim obteremos a velocidade da órbita em metros por segundo. Basta multiplicarmos este valor por 3,6 para obtermos a velocidade em km/h.

50 GM raio GM r v 2 S t 2 Como a velocidade orbital é constante, pode ser calculada dividindo-se o deslocamento pelo intervalo de tempo necessário para completar a volta. GM r T 2 GM r 3 2 T r 2 O deslocamento S é o perímetro da circunferência que pode ser calculado por 2 r. Isolando em um lado da igualdade o quadrado do período dividido pelo cubo do raio, encontramos a constante 3ª lei de Kepler. T r 3 GM

51 Uma órbita é considerada geoestacionária quando é circular e se processa exatamente sobre o equador da Terra. Sua rotação acompanha exatamente a rotação da Terra.

52 Desta forma para um observador que estiver situado sobre a superfície, verá que um satélite pertencente a uma órbita geoestacionária, permanece sempre na mesma posição.

53 Éo caso da maioria dos satélites artificiais de comunicações e de televisão que ficam em órbitas geoestacionárias a fim de permanecerem sempre sobre a mesma posição aparente e desta forma sempre poder receber e transmitir dados para uma mesma região o tempo todo. Assim uma antena terrestre pode permanecer fixa apontando sempre uma dada direção do céu, sem necessitar ser redirecionada periódicamente.

54 Para que um satélite permaneça sempre sobre um determinado ponto da superfície da Terra, ele deve orbitar sempre a uma distancia fixa de km acima do nível do mar, no plano do equador da Terra. Isso independente da massa do satélite.

55 F resultante = F centripeta Observe que a massa do satélite, m sat, aparece em cada lado da igualdade, indicando que podem ser canceladas. a g = a c Isso significa que um satélite em órbita geoestacionária não depende de sua massa. G. M t 2 v 2 R R

56 Como a velocidade escalar v é igual à velocidade angular v = R multiplicada pelo raio: Temos G. M 2 R G. M 2 R G. M t t t 2 2. R R. R. R 3 2 Isolamos o raio na conta pois queremos saber a distância na qual ocorre a órbita geoestacionária R G M 3. t 2

57 O segredo está em calcular a velocidade angular do satélite, utilizando como t o tempo de rotação da Terra (aproximadamente 24 horas) 2 3, t 7, rad / s OBS.: O tempo que se leva para completar uma revolução de um dia sideral, vale: segundos. R 3 G. M 2 t R 3 6, ,29 5, km

58 Subtraindo o raio da Terra do valor encontrado, temos: Altitude: = km

59 Exemplo: (ITA-91) Um satélite artificial geo-estacionário permanece acima de um mesmo ponto da superfície da Terra em uma órbita de raio R. Usando um valor de RT = 6400 km para o raio da Terra e g = 9,8 m/s², a razão R/RT é aproximadamente igual a: R 3 Como g G. M G. M G. M superfície t t Então 2 t 9,8 G. M 2 R 4,01 e t R t 2 t ,8 9, , rad / s R 3 4,01 7, km R R t ,6

60 A primeira atividade espacial no Brasil ocorreu em 1956, quando os Americanos instalaram e operaram por 4 anos uma estação, em Fernando de Noronha, para rastreio de foguetes lançados do Cabo Canaveral.

61 Algum tempo depois, dois alunos do ITA construíram uma estação para a recepção de sinais de satélites, capturando sinais do satélite russo Sputinik e do americano Explorer I.

62 A primeira iniciativa do Brasil em relação a tecnologia espacial foi em 3 de Agosto de 1961, com a criação do Grupo de Organização da Comissão Nacional de Atividades Espaciais (GOCNAE), que foi instalada em uma sala emprestada no CTA, e alguns anos depois se instalou definitivamente naquele Centro.

63 Em 1964, foi criado o Grupo Executivo de Trabalhos de Estudos de Projetos Espaciais (GETEPE), subordinado ao Comando da Aeronáutica. Esse foi o Grupo que criou os primeiros objetivos a serem alcançados pelo Brasil no ramo espacial.

64 Esses objetivos eram tímidos, mas lógicos para um país em desenvolvimento e sem dinheiro, como o Brasil. Eles se resumiam a acabar com a dependência estrangeira para lançamento de foguetes meteorológicos. O Brasil não fabricava esses foguetes e, também, não tinha instalações em seu vasto território para realizar esses lançamentos.

65 Os objetivos traçados buscavam criar uma base para lançamento de foguetes de sondagem no Brasil, estabelecer programas para foguetes de sondagem em parceria com os estrangeiros (não havia condições, na época, de uma empreitada 100% nacional) e, por fim, incentivar a indústria privada brasileira a investir em projetos e pesquisas espaciais.

66 Em 1965, foi inaugurado, próximo a cidade de Natal-RN, o Centro de Lançamento da Barreira do Inferno (CLBI). O seu primeiro lançamento foi um Foguete Americano Nike-Apache.

67 Na década de 60, foi iniciado o desenvolvimento dos foguetes de sondagem brasileiros, chamados de Série SONDA, que em sua totalidade foi composta de 4 modelos.

68 O primeiro foguete brasileiro foi o SONDA I. Era um foguete de cerca de 3,9 m de altura e pesava apenas 59Kg. Tinha dois estágios e seu apogeu era de 65Km. Parte dos componentes foram encomendados à Avibras, e por ser o primeiro projeto do país, muitas tecnologias tiveram que ser pesquisadas aqui. A principal delas foi a produção de tubos de alumínio sem costura, conseguida com a ajuda da empresa Termomecânica, de São Paulo.

69 Essa tecnologia não foi aplicada apenas aos foguetes SONDA. Esse composto nacional era muito mais barato que o importado. Só com a substituição de importações desse composto, o Brasil economizou cerca de 1 milhão de dólares mensais. Estima-se que só essa economia representou todo o gasto do programa espacial Brasileiro até Foram lançados 225 SONDA I dentre 1967 e 1977.

70 O SONDA II tinha 4,1 m de altura e foi construído em várias versões. A atual tem 310 kg de massa, apogeu entre 50 e 100km e pode levar uma carga de 20 a 70kg.

71 O SONDA III, foi desenvolvido a partir de Composto de 2 estágios, sendo o segundo uma modificação do SONDA II. Tinha características e desempenho muito superior ao anterior. Sua massa chegava a 1570 kg, tinha 8 m de altura e seu apogeu alcançava 500 km, podendo levar até 150kg de carga útil. Foram realizados até hoje 31 lançamentos.

72 Em 1971, a Comissão Brasileira de Atividades Espaciais (COBAE) foi criada com o objetivo de assessorar o Presidente da República na consecução da Política Nacional de Atividades Espaciais. Esse processo deu origem ao atual Instituto Nacional de Pesquisas Espaciais (INPE).

73 O SONDA IV tinha 2 estágios e mais que o dobro de peças mecânicas que o seu antecessor. Tinha 7 toneladas de massa e exigiu um grande esforço tecnológico. Foi o primeiro (e único) foguete da série SONDA a ter um sistema de controle de direção, através de um sistema de gases.

74 Devido às características do SONDA IV, o seu propulsor tinha que ser mais avançado que os demais anteriormente usados. Um dos requerimentos desse propulsor era que fosse feito de um tipo especial de aço com uma enorme resistência, cerca de 200 kgf/mm², algo que requeria um avanço tecnológico no tratamento do aço comum. Chamado de Programa 300M (o nome do aço ultra-resistente) ele contou com a participação de três empresas que já vinham dando contribuições ao Programa Espacial: Acesita, Usiminas e Eletrometal.

75 Atestando a qualidade do aço, o mesmo foi selecionado pela BOEING para equipar os trens de pouso de seus jatos 747. Ou seja, não só o país economizou ao comprar um composto mais barato aqui, como também lucrou ao poder vendê-lo ao exterior.

76 Após o SONDA IV, o país já havia desenvolvido uma grande parte da tecnologia espacial para construção de seu VLS-1. Os estudos, feitos pelo INPE e o CTA/IAE, revelaram o programa de envergadura máxima chamado de Missão Completa Espacial Brasileira (MCEB).

77 Em termos gerais o MCEB vislumbra o lançamento de satélites brasileiros, a partir de veículos lançadores brasileiros, estabelecidos em uma base igualmente brasileira. Dentro do MCEB, idealizado em 1979, caberia ao INPE o desenvolvimento dos satélites enquanto ao CTA seria destinada a missão de construir os lançadores e a base de lançamento.

78 Após uma série de estudos chegou-se a configuração atual do VLS, com quatro propulsores distribuídos ao redor de um corpo central. Essa configuração é usada internacionalmente em lançadores consagrados como o Ariane V, Próton SL, Longa Marcha 2E e Delta II.

79 Infelizmente o VLS não teve sucesso até o momento. Foram feitos três testes com o mesmo, em 1997, 1999 e No último um desastre ocorreu: o VLS-1 V03 explodiu na plataforma de lançamento 3 dias antes da missão, jogando pelos ares toda a plataforma e ceifando a vida de 21 técnicos e engenheiros, na maior tragédia de todo o Programa Espacial Brasileiro.

80 É notório que todos os países do mundo que detêm a tecnologia espacial já sofreram episódios parecidos, infelizmente o Brasil não foi a exceção.

81

82

83

84 No final de outubro de 2005, foi anunciado pelo Governo Brasileiro um audacioso plano de US$ 700 milhões para literalmente impulsionar o Programa Espacial Brasileiro.

85 O chamado Programa Cruzeiro do Sul prevê o desenvolvimento até 2022 de 5 tipos de veículos lançadores de satélites no país. Em 2022 se comemoram 200 anos da Independência do Brasil e, pelo plano, o Brasil estará apto a lançar um satélite geoestacionário a partir de um lançador nacional de grande porte.

86 A família de 5 veículos lançadores será composta pelos foguetes: Alfa, Beta, Gama, Delta e Epsilon. Os nomes são em referência às cinco estrelas da constelação Cruzeiro do Sul.

87

88

89 This document was created with Win2PDF available at The unregistered version of Win2PDF is for evaluation or non-commercial use only.

Universidade Estadual do Sudoeste da Bahia. 1- Gravitação Física II

Universidade Estadual do Sudoeste da Bahia. 1- Gravitação Física II Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Naturais 1- Gravitação Física II Ferreira ÍNDICE 1) - Introdução; 2) - Força Gravitacional; 3) - Aceleração Gravitacional; 4)

Leia mais

Universidade do Estado do Rio de Janeiro CAp/UERJ - Instituto de Aplicação Fernando Rodrigues da Silveira

Universidade do Estado do Rio de Janeiro CAp/UERJ - Instituto de Aplicação Fernando Rodrigues da Silveira Universidade do Estado do Rio de Janeiro CAp/UERJ - Instituto de Aplicação Fernando Rodrigues da Silveira Disciplina: Física / 3º Ano - E.M. Estagiária: Tainá Carvalho Lista de exercícios de mecânica Gravitação

Leia mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais evidente entre objetos com grandes massas, ocasionada

Leia mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que se torna mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que se torna mais Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que se torna mais evidente entre objetos com grandes massas, ocasionada

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

FÍSICA. A resultante das forças que atuam num corpo em equilíbrio é igual a zero.

FÍSICA. A resultante das forças que atuam num corpo em equilíbrio é igual a zero. FÍSICA Leis de Newton 1ª Lei de Newton (lei da inércia) A resultante das forças que atuam num corpo em equilíbrio é igual a zero. R=0 2ª Lei de Newton (lei fundamental da dinâmica) A aceleração adquirida

Leia mais

IFRS Câmpus Rio Grande Física IV LISTA I - GRAVITAÇÃO UNIVERSAL

IFRS Câmpus Rio Grande Física IV LISTA I - GRAVITAÇÃO UNIVERSAL IFRS Câmpus Rio Grande Física IV LISTA I - GRAVITAÇÃO UNIVERSAL - 2018 1. (FUNREI-97) Duas, entre as luas de Júpiter, Têm raios de órbitas que diferem por um fator de 2. Qual a razão entre os seus períodos

Leia mais

Estudo da Física. Prof. Railander Borges

Estudo da Física. Prof. Railander Borges Estudo da Física Prof. Railander Borges Fale com o Professor: Email: rayllander.silva.borges@gmail.com Instagram: @rayllanderborges Facebook: Raylander Borges ASSUNTO: GRAVITAÇÃO 1. Ao ser examinado sobre

Leia mais

Lista 13: Gravitação NOME:

Lista 13: Gravitação NOME: Lista 13: Gravitação NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Curso de aprofundamento em Física Assunto: Gravitação Universal; Leis de Kepler Prof: Marcelo Caldas Chaves

Curso de aprofundamento em Física Assunto: Gravitação Universal; Leis de Kepler Prof: Marcelo Caldas Chaves Curso de aprofundamento em Física Assunto: Gravitação Universal; Leis de Kepler Prof: Marcelo Caldas Chaves 01- (Enem 2002) Nas discussões sobre a existência de vida fora da Terra, Marte tem sido um forte

Leia mais

Atividades de Lei de Kepler e Gravitação Universal

Atividades de Lei de Kepler e Gravitação Universal DISCIPLINA: Física DATA: 30/08/2017 Atividades de Lei de Kepler e Gravitação Universal 01 - A figura ilustra o movimento de um planeta em torno do sol. 04 - A sonda Galileu terminou sua tarefa de capturar

Leia mais

Redes de Comunicações Via Satélite. Prof. Gilson Alves de Alencar

Redes de Comunicações Via Satélite. Prof. Gilson Alves de Alencar Redes de Comunicações Via Satélite Prof. Gilson Alves de Alencar Mercado de Comunicações Via Satélite Fonte: Satellite Communications Timothi Pratt Charles Bostian Jeremy Allnutt Potencial Mercadológico

Leia mais

o módulo da quantidade de movimento do satélite, em kg m s, é, aproximadamente, igual a: a) b) c) d) e)

o módulo da quantidade de movimento do satélite, em kg m s, é, aproximadamente, igual a: a) b) c) d) e) 1. Considere que um satélite de massa m 5,0 kg seja colocado em órbita circular ao redor da Terra, a uma altitude h 650 km. Sendo o raio da Terra igual a 6.350 km, sua massa igual a 4 5,98 10 kg e a constante

Leia mais

Gravitação. Escreva a expressão da massa M 1 da estrela E 1, em função de T, D e da constante universal da gravitação G.

Gravitação. Escreva a expressão da massa M 1 da estrela E 1, em função de T, D e da constante universal da gravitação G. Gravitação 1) (FP) Considere as seguintes informações: 1. A Terra é uma esfera homogênea de massa M e raio R cuja aceleração da gravidade na superfície é 10 m/s 2. 2. Um satélite artificial orbita em torno

Leia mais

Fís. Monitor: Arthur Vieira

Fís. Monitor: Arthur Vieira Fís. Professor: Beto Mafra Monitor: Arthur Vieira Gravitação universal 25 set RESUMO 1ª Lei de Kepler (Leis das Órbitas) A trajetória dos corpos celestes ao redor do Sol são elipses 2ª Lei de Kepler rvalos

Leia mais

FQA - Exercícios variados

FQA - Exercícios variados ESCOLA SECUNDÁRIA DE CASQUILHOS FQA - Exercícios variados 11.º Ano Turma A e B 11 novembro 2014 NOME Nº Turma 1. Um esquiador de 60 kg desliza por uma montanha gelada (ver figura). Na posição A o módulo

Leia mais

Assistir aos vídeos aulas Kepler e Gravitação (resolução de exercícios)

Assistir aos vídeos aulas Kepler e Gravitação (resolução de exercícios) Lição de Casa Para a próxima aula (após o feriado) 1 Assistir aos vídeos aulas Kepler e Gravitação (resolução de exercícios) Próxima semana: Fábio (multiuso) Laboratório *trazer lixo eletrônico* Msg boletim

Leia mais

FEP2195-Física Geral e Exp. para a Engenharia I - 1 a Prova - Gabarito 11/04/2013

FEP2195-Física Geral e Exp. para a Engenharia I - 1 a Prova - Gabarito 11/04/2013 FEP2195-Física Geral e Exp. para a Engenharia I - 1 a Prova - Gabarito 11/04/2013 1) Sabendo-se que a posição de uma partícula, em relação à origem O do plano xy, é determinada pelo vetor: ( ) 1 m r (t)

Leia mais

GRAVITAÇÃO O QUE É A GRAVIDADE? 09/08/16

GRAVITAÇÃO O QUE É A GRAVIDADE? 09/08/16 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL DE MINAS GERAIS Câmpus Inconfidentes GRAVITAÇÃO Aula 02 O QUE É A GRAVIDADE? Embora os estudos empíricos sobre o movimento de queda livre tenham

Leia mais

Física 1 Mecânica. Instituto de Física - UFRJ

Física 1 Mecânica. Instituto de Física - UFRJ Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Lei da Gravitação de Newton 1/ 33 (Vetores) Física 1 1/33 Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Lei da Gravitação de Newton

Leia mais

Exercícios Gravitação Universal

Exercícios Gravitação Universal Exercícios Gravitação Universal DISCIPLINA: FÍSICA SÉRIE: 9ª EF PROFESSOR: PATRICK DE ALMEIDA 01) Assinale com V as afirmações verdadeiras e com F as afirmações falsas. ( ) 1. Os planetas ao descreverem

Leia mais

Disciplina: FÍSICA Série: 2º ANO ATIVIDADES DE REVISÃO PARA A BIMESTRAL (4º BIMESTRE) ENSINO MÉDIO

Disciplina: FÍSICA Série: 2º ANO ATIVIDADES DE REVISÃO PARA A BIMESTRAL (4º BIMESTRE) ENSINO MÉDIO Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: FÍSICA Série: º ANO ATIVIDADES DE REVISÃO PARA A BIMESTRAL (4º BIMESTRE) ENSINO MÉDIO Data: /11/017. Questão 01) A figura mostra como a força

Leia mais

Grupo I. 4. Determine a distância percorrida pela bola desde o instante em que foi lançada até chegar ao solo. Apresente todas as etapas de resolução.

Grupo I. 4. Determine a distância percorrida pela bola desde o instante em que foi lançada até chegar ao solo. Apresente todas as etapas de resolução. Ficha 3 Forças e movimentos Considere g = 10 m s -2 Grupo I De uma janela a 6,0 m de altura do solo, uma bola, de massa 100 g, é lançada verticalmente para cima, com velocidade de módulo A força de resistência

Leia mais

FEP-111 Fisica I para Oceanograa. Márcio Katsumi Yamashita. Lista de Exercícios 6 Gravitação

FEP-111 Fisica I para Oceanograa. Márcio Katsumi Yamashita. Lista de Exercícios 6 Gravitação FEP- Fisica I para Oceanograa Márcio Katsumi Yamashita Lista de Exercícios 6 Gravitação . Kepler determinou distâncias no sistema solar, a partir de suas observações. Por exemplo, ele encontrou a distância

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 9 (pág. 92) AD TM TC. Aula 10 (pág. 92) AD TM TC. Aula 11 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 9 (pág. 92) AD TM TC. Aula 10 (pág. 92) AD TM TC. Aula 11 (pág. Física Setor Prof.: Índice-controle de Estudo ula 9 (pág. 9) D TM TC ula 0 (pág. 9) D TM TC ula (pág. 94) D TM TC ula (pág. 95) D TM TC ula 3 (pág. 95) D TM TC ula 4 (pág. 97) D TM TC ula 5 (pág. 98) D

Leia mais

Física 1. 3 a prova 30/06/2018. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 3 a prova 30/06/2018. Atenção: Leia as recomendações antes de fazer a prova. Física 1 3 a prova 30/06/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

1. GRAVITAÇÃO PARTE I

1. GRAVITAÇÃO PARTE I 1. GRAVITAÇÃO PARTE I CONTEÚDO PROGRAMÁTICO: 1- GRAVITAÇÃO 1.1. Lei da Gravitação de Newton; 1.. Energia potencial gravitacional; 1.3. Leis de Kepler; Modelo Geocêntrico Vs Modelo Heliocêntrico Modelo

Leia mais

t RESOLUÇÃO COMECE DO BÁSICO = 0,1 cm/min . Para as frequências temos: v v 2 f r 2 f r f 1,5 r f r f 1,5 f.

t RESOLUÇÃO COMECE DO BÁSICO = 0,1 cm/min . Para as frequências temos: v v 2 f r 2 f r f 1,5 r f r f 1,5 f. t ESOLUÇÃO COMECE DO ÁSICO [] Dados: n = 4; t = s. Substituindo esses valores na fórmula dada: 4 (360 ) = 70 /s. [D] Dados: = 3,14 e raio da Terra: T = 6.000 km. O período de rotação da Terra é T = 4 h.

Leia mais

2. Órbitas e Navegação de Satélites

2. Órbitas e Navegação de Satélites IFRS - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul Câmpus Rio Grande Rio Grande/RS Disciplina: Física IV - 018 Conteúdo: Satelização. Órbitas e Navegação de Satélites Para

Leia mais

10 m s. d) A ordem de grandeza da distância entre a Próxima Centauri e o sistema solar é igual a 12

10 m s. d) A ordem de grandeza da distância entre a Próxima Centauri e o sistema solar é igual a 12 1. Cientistas descobrem planeta parecido com a Terra que orbita estrela vizinha do Sol, nomeado de Próxima B. O planeta é pequeno, rochoso e pode ter água líquida. Ele orbita ao redor da Próxima Centauri,

Leia mais

Lista de exercícios- Leis de Newton

Lista de exercícios- Leis de Newton Componente Curricular: Física Professora: Cínthia Helena. Série: 1 o ano - Ensino Médio. Lista de exercícios- Leis de Newton 1 - (Vunesp-SP) Assinale a alternativa que apresenta o enunciado da Lei de Inércia,

Leia mais

UNIDADE GRAVITAÇÃO

UNIDADE GRAVITAÇÃO UNIDADE 1.5 - GRAVITAÇÃO 1 MARÍLIA PERES 010 DA GRAVITAÇÃO UNIVERSAL DE NEWTON Cada partícula no Universo atraí qualquer outra partícula com uma força que é directamente proporcional ao produto das suas

Leia mais

HISTÓRICO GEOCÊNTRICO MODELOS: HELIOCÊNTRICO

HISTÓRICO GEOCÊNTRICO MODELOS: HELIOCÊNTRICO HISTÓRICO MODELOS: GEOCÊNTRICO HELIOCÊNTRICO Modelo geocêntrico Cláudio Ptolomeu, no século II d.c. formulou o universo com a terra ao centro. Modelo que duraria até o século XVI, com discussões de Galileu

Leia mais

Lista 14: Gravitação

Lista 14: Gravitação 1. Durante um eclipse solar, a lua, a Terra e o sol alinham-se. (a) Qual a força exercida pelo sol sobre a Terra? ; (b) Qual a força exercida pela Terra sobre a lua?; (c) Qual a força exercida pelo sol

Leia mais

Lista de exercícios Gravitação

Lista de exercícios Gravitação Lista de exercícios Gravitação Aron Maciel Problema 1 (Curso de Física Básica 1 Mecânica - Nussenzveig) Em 1968, a nave espacial Apollo 8 foi colocada numa orbita circular em torno da Lua, a uma altitude

Leia mais

Gravitação Universal, Trabalho e Energia. COLÉGIO SÃO JOSÉ FÍSICA - 3º ano Livro Revisional Capítulos 5 e 6

Gravitação Universal, Trabalho e Energia. COLÉGIO SÃO JOSÉ FÍSICA - 3º ano Livro Revisional Capítulos 5 e 6 Gravitação Universal, Trabalho e Energia COLÉGIO SÃO JOSÉ FÍSICA - 3º ano Livro Revisional Capítulos 5 e 6 UNIVERSO Andrômeda - M31. Galáxia espiral distante cerca de 2,2 milhões de anos-luz, vizinha da

Leia mais

estudos 3º trimestre. Matemática-Física-Química Orientação de estudos

estudos 3º trimestre. Matemática-Física-Química Orientação de estudos estudos 3º trimestre. Roteiro de Matemática-Física-Química O roteiro foi montado especialmente para reforçar os conceitos dados em aula. Com os exercícios você deve fixar os seus conhecimentos e encontrar

Leia mais

Processo Avaliativo AVP - 4º Bimestre/2016 Disciplina: Física 1ª série EM A Data: Nome do aluno Nº Turma

Processo Avaliativo AVP - 4º Bimestre/2016 Disciplina: Física 1ª série EM A Data: Nome do aluno Nº Turma Processo Avaliativo AVP - 4º Bimestre/016 Disciplina: Física 1ª série EM A Data: Nome do aluno Nº Turma Atividade Avaliativa: entregar a resolução de todas as questões. 1. (Ita 016) A partir do repouso,

Leia mais

FÍSICA LEI DA GRAVITAÇÃO DE NEWTON ENGENHARIA

FÍSICA LEI DA GRAVITAÇÃO DE NEWTON ENGENHARIA LEI DA GRAVITAÇÃO DE NEWTON ENGENHARIA 1 INTRODUÇÃO À LEI DE NEWTON DA GRAVITAÇÃO Por quê não caímos da Terra? Por que a Terra orbita o Sol? Por que quando soltamos um objeto ele cai em direção ao chão?

Leia mais

Apresentação Outras Coordenadas... 39

Apresentação Outras Coordenadas... 39 Sumário Apresentação... 15 1. Referenciais e Coordenadas Cartesianas... 17 1.1 Introdução... 17 1.2 O Espaço Físico... 18 1.3 Tempo... 19 1.3.1 Mas o Tempo é Finito ou Infinito?... 21 1.3.2 Pode-se Viajar

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 2º teste sumativo de FQA 24. novembro. 2014 Versão 1 11º Ano Turma A Professor: Maria do Anjo Albuquerque Duração da prova: 90 minutos. Este teste é constituído por 11 páginas

Leia mais

GRAVITAÇÃO. I) GRAVITAÇÃO UNIVERSAL A) INTRODUÇÃO:

GRAVITAÇÃO.  I) GRAVITAÇÃO UNIVERSAL A) INTRODUÇÃO: GRAVITAÇÃO www.nilsong.com.br I) GRAVITAÇÃO UNIVERSAL A) INTRODUÇÃO: Desde os tempos mais remotos os seres humanos já tinha uma certa atensão voltada para tentar entender o movimento dos corpos celestes.

Leia mais

Gravitação IME. Lista de Exercícios 3

Gravitação IME. Lista de Exercícios 3 Gravitação 4300156 IME Lista de Exercícios 3 Q1 Considere as afimações abaixo e considere se são corretas ou incorretas, justificando. a) A segunda Lei de Kepler implica que velocidade dos planetas ao

Leia mais

A TERRA CARACTERÍSTICAS E MOVIMENTOS

A TERRA CARACTERÍSTICAS E MOVIMENTOS A TERRA CARACTERÍSTICAS E MOVIMENTOS PEQUENA FICHA TÉCNICA DA TERRA Diâmetro equatorial Diâmetro polar Círculo equatorial Círculo polar Superfície total Superfície emersa Superfície da água Volume 12756

Leia mais

TA Teste de Avaliação 1

TA Teste de Avaliação 1 TA Escola Data Nome N.º Turma Professor Classificação Utilize apenas caneta ou esferográfica de tinta indelével azul ou preta. Pode utilizar régua, esquadro, transferidor e máquina de calcular gráfica.

Leia mais

XX OBA Material de estudo. Fontes de Pesquisa

XX OBA Material de estudo. Fontes de Pesquisa XX OBA 2017 Conteúdos das Avaliações Material de estudo Fontes de Pesquisa Constituição da Avaliação 7 perguntas de Astronomia; 3 perguntas de Astronáutica. Perguntas Práticas e/ou Observacionais Poderá

Leia mais

Física 1. 3 a prova 09/12/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 3 a prova 09/12/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 3 a prova 09/12/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise a

Leia mais

PROPULSÃO II Motores Foguete Dinâmica

PROPULSÃO II Motores Foguete Dinâmica PROPULSÃO II Motores Foguete Dinâmica Prof. José Eduardo Mautone Barros mautone@demec.ufmg.br www.mautone.eng.br 2014 JEMB Prancha 1 Voo Horizontal Delta V, Ganho de Velocidade Ideal sem atrito (vácuo)

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-8)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-8) [3A33]-p1/10 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-8) ando necessário, use π = 3, 14 e g=10 m/s 2 (1) (0,75) Um giroscópio está montado sobre um suporte vertical conforme a figura. Assinale a afirmativa incorreta:

Leia mais

Física I Prova 3 7/06/2014

Física I Prova 3 7/06/2014 Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12

Leia mais

Questão 01) TEXTO: 1 - Comum à questão: 2

Questão 01) TEXTO: 1 - Comum à questão: 2 Questão 0) "Eu medi os céus, agora estou medindo as sombras. A mente rumo ao céu, o corpo descansa na terra." Com esta inscrição, Johannes Kepler encerra sua passagem pela vida, escrevendo seu próprio

Leia mais

~é a força normal do bloco de cima sobre o bloco de baixo É o peso do bloco de cima (baixo)

~é a força normal do bloco de cima sobre o bloco de baixo É o peso do bloco de cima (baixo) Q1. (2,0 pontos) O coeficiente de atrito estático entre os blocos da figura vale 0,60. O coeficiente de atrito cinético entre o bloco inferior e o piso é de 0,20. A força F, aplicada ao bloco superior,

Leia mais

Lista de Gravitação Universal

Lista de Gravitação Universal Lista de Gravitação Universal Prof. Ric Dúvidas e Resolução energiaquantizada.com Questão 1: Um homem na Terra pesa 1,00 10 3 N. Qual o seu peso em Júpiter sabendo-se que, comparado com a Terra, esse planeta

Leia mais

INSCREVA-SE: CANAL FISICA DIVERTIDA GRAVITAÇÃO UNIVERSAL

INSCREVA-SE: CANAL FISICA DIVERTIDA GRAVITAÇÃO UNIVERSAL GRAVITAÇÃO UNIVERSAL 1. I.E. Superior de Brasília-DF O Sistema solar é um grupo de corpos celestes (entre os quais inclui-se a Terra) que orbitam ao redor da estrela Sol, uma das centenas de milhões de

Leia mais

Questão 1. a) Q, pois as polias 1 e 3 giram com velocidades lineares iguais em pontos periféricos e a que tiver maior raio terá menor frequência.

Questão 1. a) Q, pois as polias 1 e 3 giram com velocidades lineares iguais em pontos periféricos e a que tiver maior raio terá menor frequência. SE18 - Física LFIS2A1 - Movimento circular Questão 1 Para serrar ossos e carnes congeladas, um açougueiro utiliza uma serra de fita que possui três polias e um motor. O equipamento pode ser montado de

Leia mais

FÍSICA MÓDULO 13 GRAVITAÇÃO I. Professor Ricardo Fagundes

FÍSICA MÓDULO 13 GRAVITAÇÃO I. Professor Ricardo Fagundes FÍSICA Professor Ricardo Fagundes MÓDULO 13 GRAVITAÇÃO I Vários estudiosos, ao longo da história, se dedicaram ao estudo da mecânica celeste. Por praticidade vamos começar com Kepler. Sua contribuição

Leia mais

Lista de Exercícios 3 ano Rec II TRIM 2017

Lista de Exercícios 3 ano Rec II TRIM 2017 Lista de Exercícios 3 ano Rec II TRIM 2017 1. (UFRRJ) O gráfico a seguir representa a curva de uma bateria de certa marca de automóvel. 4. (UFRJ) O gráfico a seguir representa a curva característica de

Leia mais

Física I Verificação Suplementar 06/08/2016a

Física I Verificação Suplementar 06/08/2016a Física I Verificação Suplementar 06/08/2016a NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 20 questões de múltipla escolha valendo 0,5 ponto cada. Utilize: g = 9,80 m/s 2, exceto se houver alguma

Leia mais

Movimento Orbital. Referenciais, Kepler, Leis de Newton, Campo gravitacional, Campo central, Quantidade de movimento angular, Taxa areolar, Trajetória

Movimento Orbital. Referenciais, Kepler, Leis de Newton, Campo gravitacional, Campo central, Quantidade de movimento angular, Taxa areolar, Trajetória Movimento Orbital Referenciais, Kepler, Leis de Newton, Campo gravitacional, Campo central, Quantidade de movimento angular, Taxa areolar, Trajetória CTEE 1 Ƹ Sistema de referencia Um referencial é representado

Leia mais

Física I Verificação Suplementar 06/08/2016b

Física I Verificação Suplementar 06/08/2016b Física I Verificação Suplementar 06/08/2016b NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 20 questões de múltipla escolha valendo 0,5 ponto cada. Utilize: g = 9,80 m/s 2, exceto se houver alguma

Leia mais

Tipos de forças fundamentais na Natureza

Tipos de forças fundamentais na Natureza Tipos de Forças Tipos de forças fundamentais na Natureza Existem quatro tipos de interações/forças fundamentais na Natureza que atuam entre partículas a uma certa distância umas das outras: Gravitacional

Leia mais

Exercícios Resolvidos FISICA D - Apostila 7 Extensivo

Exercícios Resolvidos FISICA D - Apostila 7 Extensivo Exercícios Resolvidos FISICA D - Apostila 7 Extensivo 0. D A força resultante atuante sobre o satélite é a força centrípeta, que representa as forças atuantes no satélite na trajetória circular. 0. C I.

Leia mais

PREPARAÇÃO PARA A PROVA DE AFERIÇÃO

PREPARAÇÃO PARA A PROVA DE AFERIÇÃO PREPARAÇÃO PARA A PROVA DE AFERIÇÃO 2016-17 CIÊNCIAS FÍSICO-QUÍMICAS PARTE 2: FÍSICA 7º ANO DE ESCOLARIDADE III O Planeta Terra Período de rotação da Terra - É o tempo que a Terra demora a dar uma volta

Leia mais

1.3. Forças e movimentos. Professora Paula Melo Silva

1.3. Forças e movimentos. Professora Paula Melo Silva 1.3. Forças e movimentos Professora Paula Melo Silva QUEDA LIVRE O filósofo grego Aristóteles acreditava que os corpos mais pesados, abandonados de uma mesma altura, alcançariam o solo antes dos mais leves.

Leia mais

Gab: Mm. a) F =G r. c) 1, kg

Gab: Mm. a) F =G r. c) 1, kg coerentes. A entrega do trabalho não garante a pontuação total (3,0 pontos), 1 pela entrega dentro dos padrões observados acima e pontos por uma avalição feita em sala no próximo dia 9 de setembro. Questão

Leia mais

AS LEIS DE KEPLER A LEI DA GRAVITAÇÃO UNIVERSAL

AS LEIS DE KEPLER A LEI DA GRAVITAÇÃO UNIVERSAL AS LEIS DE KEPLER A LEI DA GRAVITAÇÃO UNIVERSAL Um pouco de História Grécia antiga: Determinação da diferença entre as estrelas fixas e errantes (planetas) Primeiros modelos planetários explicando o movimento

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 6 de junho de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 6 de junho de 2013 GRAVITAÇÃO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 6 de junho de 2013 Roteiro 1 Roteiro 1 O problema gravitacional de 2 corpos pode ser estudado, de um modo mais fácil, como um problema

Leia mais

ROTEIRO PARA RECUPERAÇÃO PARALELA DO 3º TRIMESTRE 1º EM A e B Professor: Fernando Augusto Disciplina Física A

ROTEIRO PARA RECUPERAÇÃO PARALELA DO 3º TRIMESTRE 1º EM A e B Professor: Fernando Augusto Disciplina Física A 1. Conteúdo: ROTEIRO PARA RECUPERAÇÃO PARALELA DO 3º TRIMESTRE 1º EM A e B Professor: Fernando Augusto Disciplina Física A Aula 37 e 38 (Corpos apoiados em planos horizontais trocando forças normais) Aula

Leia mais

Movimento Circular Uniforme

Movimento Circular Uniforme Movimento Circular Uniforme Objeto em trajetória circular (raio R) a uma velocidade constante v. Período do movimento T: tempo de uma volta na circunferência comprimento da circunferência: Velocidade instantânea:

Leia mais

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade 1 DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade GRANDEZAS ESCALARES São grandezas que se caracterizam apenas por um valor acompanhado uma unidade

Leia mais

Esse planeta possui maior velocidade quando passa pela posição: a) ( ) I b) ( ) II c) ( ) III d) ( ) IV e) ( ) V

Esse planeta possui maior velocidade quando passa pela posição: a) ( ) I b) ( ) II c) ( ) III d) ( ) IV e) ( ) V 1. Desde a antiguidade, existiram teorias sobre a concepção do universo. Por exemplo, a teoria Aristotélica propunha que a Terra seria o centro do universo e todos os astros descreveriam órbitas circulares

Leia mais

INTRODUÇÃO GERAL. Capítulo 1 Introdução à Física, 2. Capítulo 2 Introdução ao estudo dos movimentos, 14. Capítulo 3 Estudo do movimento uniforme, 30

INTRODUÇÃO GERAL. Capítulo 1 Introdução à Física, 2. Capítulo 2 Introdução ao estudo dos movimentos, 14. Capítulo 3 Estudo do movimento uniforme, 30 Sumário Parte 1 Parte 2 INTRODUÇÃO GERAL Capítulo 1 Introdução à Física, 2 1. Introdução, 2 2. O que é a Física, 2 3. Ramos da Física, 3 4. O Universo, 3 5. Física e Matemática, 4 6. Método em Física,

Leia mais

FQA Ficha 9 Exercícios variados

FQA Ficha 9 Exercícios variados ESCOLA SECUNDÁRIA DE CASQUILHOS FQA Ficha 9 Exercícios variados 11.º Ano Turma A e B 10 novembro 2014 NOME Nº Turma 1. Um grupo de alunos realizou a atividade de laboratório AL-1.4 - Satélite geostacionário

Leia mais

Primeira Lei de Kepler: Lei das Órbitas Elípticas. Segunda Lei de Kepler: Lei das áreas

Primeira Lei de Kepler: Lei das Órbitas Elípticas. Segunda Lei de Kepler: Lei das áreas CONTEÚDOS DA PROVA DE RECUPERAÇÃO FINAL: Hidrostática, Velocidade Escalar Média, Gravitação Universal, 1ª e 2ª Leis de Kepler, Aceleração Escalar, Equações do Movimento Retilíneo Uniformemente Variado

Leia mais

Os Movimentos da Terra

Os Movimentos da Terra Os Movimentos da Terra Terra Diâmetro Não é uma esfera perfeita erra 12.756 km Na linha do Equador Achatada nos polos que são atravessados pelo eixo imaginário da Terra. Nas imagens de satélite, mal se

Leia mais

FIS-26 Prova 03 Maio/2011

FIS-26 Prova 03 Maio/2011 FIS-26 Prova 03 Maio/2011 Nome: Turma: Duração máxima: 120 min. As questões 1 e 5 valem 20 pontos cada, e as demais valem 15 pontos (cada). 1. Para os problemas (i) a (iii) desta questão, assinale a alternativa

Leia mais

PROCESSO DE INGRESSO NA UPE Sistema Seriado de Avaliação LÍNGUA PORTUGUESA MATEMÁTICA FÍSICA LÍNGUA ESTRANGEIRA FILOSOFIA

PROCESSO DE INGRESSO NA UPE Sistema Seriado de Avaliação LÍNGUA PORTUGUESA MATEMÁTICA FÍSICA LÍNGUA ESTRANGEIRA FILOSOFIA UNIVERSIDADE DE PERNAMBUCO PROCESSO DE INGRESSO NA UPE Sistema Seriado de Avaliação CADERNO DE PROVA 1º DIA LÍNGUA PORTUGUESA MATEMÁTICA FÍSICA LÍNGUA ESTRANGEIRA FILOSOFIA DADOS DE IDENTIFICAÇÃO DO CANDIDATO

Leia mais

Análises e alternativas para o Programa Espacial Brasileiro

Análises e alternativas para o Programa Espacial Brasileiro Análises e alternativas para o Programa Espacial Brasileiro José BEZERRA Pessoa Filho Filiado ao Sindicato Nacional dos Servidores Públicos Federais na Área de Ciência e Tecnologia do Setor Aeroespacial

Leia mais

Projeto de Recuperação Final 2ª Série (EM) FASCÍCULO CAPÍTULO TÍTULO PÁGINA DINÂMICA 03 SISTEMAS ISOLADOS

Projeto de Recuperação Final 2ª Série (EM) FASCÍCULO CAPÍTULO TÍTULO PÁGINA DINÂMICA 03 SISTEMAS ISOLADOS Projeto de Recuperação Final 2ª Série (EM) FÍSICA 1 MATÉRIA A SER ESTUDADA: FASCÍCULO CAPÍTULO TÍTULO PÁGINA 01 TEOREMA DO IMPULSO 32 33 34 35 DINÂMICA 03 SISTEMAS ISOLADOS 36 37 02 38 COLISÕES 39 40 GRAVITAÇÃO

Leia mais

Aula 07. ASSUNTOS: Gravitação; Movimento em um campo gravitacional uniforme; Movimento periódico; MHS; Sistema massa mola

Aula 07. ASSUNTOS: Gravitação; Movimento em um campo gravitacional uniforme; Movimento periódico; MHS; Sistema massa mola ASSUNTOS: Gravitação; Movimento em um campo gravitacional uniforme; Movimento periódico; MHS; Sistema massa mola 1. (UFC - 007) Uma partícula de massa m move-se sobre o eixo x, de modo que as equações

Leia mais

EAC-082: Geodésia Física. Aula 2: Introdução à Teoria do Potencial

EAC-082: Geodésia Física. Aula 2: Introdução à Teoria do Potencial EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 2: Introdução à Teoria do Potencial 1 https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1/18 Lei da Gravitação Universal Embora os

Leia mais

PROGRAD / COSEAC Padrão de Respostas Física Grupo 04

PROGRAD / COSEAC Padrão de Respostas Física Grupo 04 1 a QUESTÃO: Dois blocos estão em contato sobre uma mesa horizontal. Não há atrito entre os blocos e a mesa. Uma força horizontal é aplicada a um dos blocos, como mostra a figura. a) Qual é a aceleração

Leia mais

(a) a expressão para o ângulo da velocidade, no momento do lançamento, com o plano horizontal; R: θ = arctan voy

(a) a expressão para o ângulo da velocidade, no momento do lançamento, com o plano horizontal; R: θ = arctan voy II. 3. Trabalo e Energia (versão de 5 de Março, com respostas). Num corpo actua uma força dada pela expressão F = 3 e x +4 e y (N). Calcule o trabalo que essa força realiza no deslocamento desse corpo

Leia mais

Lista de exercícios 1 Mecânica Geral III

Lista de exercícios 1 Mecânica Geral III UNIVERSIDADE FEDERAL DO PARANÁ Setor de Tecnologia Departamento de Construção Civil TC027 Mecânica Geral III 1 0 Semestre de 2018 Ressalta-se que os testes serão baseados nas listas de exercícios. Portanto,

Leia mais

Lista 1_Gravitação - F 228 1S2010

Lista 1_Gravitação - F 228 1S2010 Lista 1_Gravitação - F 228 1S2010 1) a) Na figura a abaixo quatro esferas formam os vértices de um quadrado cujo lado tem 2,0 cm de comprimento. Qual é a intensidade, a direção e o sentido da força gravitacional

Leia mais

Física 1. 3 a prova 08/07/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 3 a prova 08/07/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 3 a prova 08/07/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

1 01 Mate t máti t c i a e Fí F s í ic i a Prof. Diego Pablo

1 01 Mate t máti t c i a e Fí F s í ic i a Prof. Diego Pablo 1 01 Matemática e Prof. Diego Pablo 2 Matemática - Produto: 2 x 4 = 8 - Quociente ou Razão: 18 / 2 = 9 - Quadrado: 7² = 7 x 7 = 49 - Cubo: 4³ = 4 x 4 x 4 = 64 - Raiz Quadrada: 81 = 9 3 Matemática Grandezas

Leia mais

Lista de exercícios Mecânica Geral III

Lista de exercícios Mecânica Geral III Lista de exercícios Mecânica Geral III 12.5 Uma partícula está se movendo ao longo de uma linha reta com uma aceleração de a = (12t 3t 1/2 ) m/s 2, onde t é dado em segundos. Determine a velocidade e a

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: FÍSICA CIOS DE RECUPERAÇÃO FINAL

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: FÍSICA CIOS DE RECUPERAÇÃO FINAL INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 1º Ano: C11 Nº Professora: Saionara Chagas Data: / /2016 COMPONENTE

Leia mais

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion,

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion, Mecânica e Ondas Série 3 Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion, Instituto Superior Técnico, Av. & 1049-001 Lisboa,

Leia mais

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 1º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Gravitação

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 1º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Gravitação Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 1º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Gravitação 1. (Unicamp 015) A primeira lei de Kepler demonstrou que os planetas se movem em órbitas

Leia mais

Fís. Leonardo Gomes (Caio Rodrigues)

Fís. Leonardo Gomes (Caio Rodrigues) Semana 17 Leonardo Gomes (Caio Rodrigues) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. Gravitação universal

Leia mais

GUIA DE REVISÃO DO 4º BIMESTRE 1º ANO DO ENSINO MÉDIO / 2013 Semana de 11/11 a 22/11. Para: 21/11

GUIA DE REVISÃO DO 4º BIMESTRE 1º ANO DO ENSINO MÉDIO / 2013 Semana de 11/11 a 22/11. Para: 21/11 GUIA DE REVISÃO DO 4º BIMESTRE 1º ANO DO ENSINO MÉDIO / 2013 Semana de 11/11 a 22/11 Literatura Tema: Romantismo Para casa: Resolução dos exercícios das páginas 254, 255, 256, 257 e 258. Para 22/11, 6ª

Leia mais

Tarefa 23 Professor William TRABALHO E ENERGIA

Tarefa 23 Professor William TRABALHO E ENERGIA 9º ano Física Tarefa 23 Professor William TRABALHO E ENERGIA 01. Um objeto de massa igual a 10 kg movimenta-se com velocidade de 2 m/s. Por causa da ação de uma força constante, esse objeto tem a sua velocidade

Leia mais

Fís. Leonardo Gomes (Arthur Ferreira Vieira)

Fís. Leonardo Gomes (Arthur Ferreira Vieira) Semana 12 Leonardo Gomes (Arthur Ferreira Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

IDEIAS - CHAVE. A massa de um corpo é uma medida da sua inércia.

IDEIAS - CHAVE. A massa de um corpo é uma medida da sua inércia. IDEIAS - CHAVE Os corpos interatuam por ação de forças. As interações são devidas ao contacto entre os corpos ou podem ocorrer à distância. Por exemplo, a força gravitacional é uma força de ação à distância.

Leia mais

SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS

SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein # Ler todas as teorias # Refazer todos os exercícios dados em aula. # Refazer todos os exercícios feitos do livro. # Refazer

Leia mais

Física - 1. Dados numéricos

Física - 1. Dados numéricos Física - 1 Dados numéricos celeração da gravidade: 1 m/s Densidade da água: 1, g/cm 3 Velocidade da luz no vácuo: 3, x 1 8 m/s 1 atm = 1, x 1 5 N/m = 1 4 π o = 9, x 1 9 N.m C 1. O gráfico da velocidade

Leia mais

GRAVITAÇÃO UNIVERSAL

GRAVITAÇÃO UNIVERSAL GAVIAÇÃO UNIVESAL Histórico: Astronomia Uma das ciências mais antigas de que se tem registro. Geocentrismo A erra é o centro do Universo Hiparco ( sec II a.c ) Defensores Cláudio Ptolomeu ( sec II d.c

Leia mais