Tópicos de Mecânica Quântica II

Tamanho: px
Começar a partir da página:

Download "Tópicos de Mecânica Quântica II"

Transcrição

1 Tópicos de Mecânica Quântica II Aplicações: Partícula numa caia unidimensional com paredes rígidas. Partícula livre. Generalização para caias bi e tridimensionais. Problemas propostos e resolvidos. Fernando Fernandes Centro de Ciências Moleculares e Materiais, DQBFCUL Notas para as aulas de Química-Física II, 010/11 Uma equação diferencial geral muito importante para as aplicações que se seguem é: d d k (1.1) onde k é uma constante qualquer. Trata-se duma equação de valores próprios para o d operador d, na qual Ψ() representa as funções próprias e k os valores próprios do operador. Note-se que, mesmo sem resolver a equação, pode antecipar-se que as suas soluções têm sempre uma forma ondulatória. De facto, nos intervalos de onde a função for positiva, a ª derivada é negativa. Mas a segunda derivada não é mais do que a variação da 1ª derivada da função, a qual se visualiza geometricamente através das tangentes à curva da função em cada ponto. Logo, nesse intervalo, a função é côncava: Nos intervalos de onde a função for negativa, então a segunda derivada é positiva e a função será convea: Donde: 1

2 Pode então afirmar-se que a equação gera sempre ondas. É fácil verificar que as funções: c 1 ep(ik), c ep(-ik), a 1 cos(k) e a sen(k), assim como qualquer combinção linear (c 1, c, a 1 e a são constantes a especificar): c1 ep(ik) + c ep(-ik) a1 cos(k) + a sen(k) (1.) são soluções da equação, todas representando ondas. Por eemplo, d c epik d c1ep ik d 1 d cikep 1 ik d d d d depik c1ik c1i k epikk c1epik d (1.3) o que mostra que a função c 1 ep(ik) é uma solução da equação. Problema proposto: Verifique que as outras funções são soluções da equação. Como vimos no teto T5 sobre números compleos, às funções ep(ik) e ep(-ik) correspondem ondas harmónicas sinusoidais a moverem-se segundo o eio dos, respectivamente, da esquerda para a direita e vice-versa. A infinidade de soluções para a equação pode dar a sensação de arbitrariedade. Qual a solução que devemos escolher? Ora bem, podemos escolher a mais conveniente para o problema concreto em estudo. De facto, qualquer problema físico é caracterizado por condições iniciais e/ou condições de fronteira bem como pela condição de normalização das funções de onda. São estas, precisamente, as condições que determinam os valores efectivos das constantes. Por outro lado, recorde-se que: ep (ik) = cos(k) + i sen(k) ep (-ik) = cos(k) - i sen(k) (1.4) significando que, afinal, as soluções anteriores estão todas directamente relacionadas. Partícula numa caia unidimensional com paredes rígidas

3 U = U = 0 U = I II III = 0 = L Figura 1. Modelo para uma partícula numa caia unidimensional com paredes rígidas Como o potencial é nas regiões I e III, as respectivas funções de onda Ψ I = Ψ II = 0, uma vez que a partícula não penetra nessas regiões. Relativamente à região II, a equação de Schrödinger é: d m d E (1.5) pois U() = 0. Isto é, a partícula só possui energia cinética. Rearranjando a equação: d me d (1.6) Comparando esta forma com a equação geral (1) é óbvio que as podemos identificar considerando k = (me) 1/ /. Como tal, pode escolher-se uma das soluções possíveis que vimos acima. Qual? Ora a partícula move-se na caia, mas não penetra nas paredes rígidas. Logo, terá de sofrer refleões nas paredes, ou seja, deverá ser traduzida por uma função de onda que contenha as possibilidades de movimentos da esquerda para a direita ou vice-versa. Então, a solução apropriada que traduz a situação física deve ser: () = c1 ep(ik) + c ep(-ik) (1.7) com k = (me) 1/ /. Todavia, esta solução tem de obedecer às condições de fronteira, isto é, Ψ(0) = Ψ(L) = 0, pois as funções de onda para qualquer sistema são contínuas. Estas condições deverão determinar os valores efectivos de c 1 e de c. Introduzindo as condições de fronteira na função anterior obtém-se: (0) = c1 + c = 0 (L) = c1 ep(ikl) + c ep(-ikl) = 0 (1.8) cujas formas são aparentemente insolúveis para a determinação das constantes. Contudo, considerando as fórmulas (1.4) é fácil deduzir que (1.7) é equivalente a: () = A cos(k) + B sen(k) (1.9) 3

4 com k = (me) 1/ /. Nesta forma, torna-se imediata a imposição das condições de fronteira. Veja-se que cos (0) = 1, logo A = 0, e como sen(0) = 0, então Ψ(0) = 0. Resta: que terá de verificar: () = B sen(k) (1.10) (L) = B sen(kl) = 0 (1.11) Atendendo à periodicidade da função seno, tal só será possível se: kl = n k = n /L, com n = 0, 1,,... (1.1) donde: n B sen ; n 1,,3,... L (1.13) pois que n = 0 implicaria Ψ() = 0, ou seja, a ineistência da partícula entre 0 e L. O número n designa-se por número quântico. Impostas as condições de fronteira, deduz-se de k = (me) 1/ / = n π / L : nh E ; n 1,,3,... (1.14) 8mL Como n não pode ser igual a zero, o nível fundamental (n = 1) tem sempre uma energia diferente de zero, a qual se designa por energia do ponto zero. O valor da constante B, determina-se pela condição de normalização das funções de onda: L L L n d d B sen d 1 L (1.15) Da resolução do integral obtém-se B / L, donde: n sen ; n 1,,3,... L L (1.16) Problema proposto: Resolva o integral anterior recorrendo ao programa Matemática disponível em: Note-se que a quantização da energia do sistema é uma consequência directa da imposição das condições de fronteira, ou seja, dos constrangimentos a que o sistema está sujeito. Na ausência destes constrangimentos a energia poderá adquirir qualquer valor, isto é, será uma grandeza contínua. Esta é uma característica essencial da 4

5 mecânica quântica: sempre que um sistema esteja constrangido verifica-se quantização, de acordo com o que se observa eperimentalmente. No caso unidimensional que acabámos de estudar uma única dimensão está constrangida. A ela corresponde um número quântico com valores discretos. No que se segue, veremos que por cada dimensão constrangida surge um novo número quântico com valores discretos. Na figura representam-se as funções de onda para os três primeiros níveis quânticos e as respectivas densidades de probabilidade. A diferença de energias entre o nível n+1 e n é: nh n 1 h n 1 h E (1.17) 8mL 8mL 8mL Desta epressão conclui-se que a separação entre os níveis de energia aumenta com o valor do número quântico, n, o que se representa na figura 3. Figura. Funções de onda e densidades de probabilidade para os primeiros níveis 5

6 Figura 3. Níveis de energia para a caia unidimensional A outra conclusão que se tira da epressão anterior é que a diferença entre os níveis diminui com o aumento da massa e/ou do comprimento da caia. Isto significa que para massas e/ou comprimentos suficientemente grandes essa diferença aproima-se de zero, ou seja, a energia tende para valores contínuos. Partícula livre Note-se que numa caia de comprimento muito grande (L ), a partícula passa a maior parte do tempo a mover-se livremente da esquerda para a direita, ou vice-versa, e só muito esporadicamente sofrerá refleões nas paredes, as quais, nesse limite, se podem considerar ausentes. Qual a descrição quântica de uma partícula livre (não constrangida)? A equação de Schrödinger é a mesma do que a da partícula na caia (1.5): d E (1.18) m d mas neste caso não há condições de fronteira. Suponhamos que a partícula se move da esquerda para a direita. Então, a solução apropriada para a equação deve ser: c ep (ik) com k = (me) 1/ /, e c uma constante Uma vez que não há condições de fronteira, a energia não está quantizada, isto é, pode tomar qualquer valor. Para uma partícula livre, U() = 0, e a energia é inteiramente cinética, p E. Substituindo este valor em k, a função de onda é: m 6

7 ip i cep cep h h/p (1.19) a qual representa uma onda sinusoidal harmónica (ver teto T5) de comprimento de onda λ = h/p, ou seja, a relação de de Broglie, que como sabemos é bem comprovada eperimentalmente. Este caso, mostra que, de facto, a equação de Schrödinger contém implícita na sua estrutura a base eperimental da mecânica quântica. A energia da partícula livre está eactamente definida assim como o seu momento linear. Ora isto significa que a função de onda para além de ser uma função própria do hamiltoniano terá também de ser uma função própria do operador momento linear, i, com valor próprio p. Vejamos que assim é: ip ip ip ip i cep i cep p cep h h h h (1.0) A energia e momento estão eactamente definidos, isto é, as respectivas incertezas são: ΔE = 0 e Δp = 0. O que dizer acerca da posição da partícula? A respectiva densidade de probabilidade é: ip i cep cep c h h (1.1) ou seja, a probabilidade de encontrar a partícula em qualquer intervalo d é constante. Por outras palavras, a incerteza da posição é Δ =, de acordo com o princípio da incerteza de Heisenberg. Problema proposto: Verificar se as funções próprias referentes à partícula numa caia unidimensional com paredes rígidas, estudado anteriormente, são ou não funções próprias do operador momento linear. Interpretar o resultado. Problema resolvido Determinar as funções de onda e energias para uma partícula de massa m a mover-se numa caia quadrada, de lado L, com paredes rígidas. No interior da caia a energia potencial é U(,y) = 0 e no eterior U(, y) =. Como tal, o movimento da partícula está limitado aos intervalos 0 L e 0 y L. Generalizar para uma caia tridimensional cúbica de lado L. E se os lados tiverem comprimentos diferentes, L = a L y = b e L z = b? Resolução No eterior da caia, as funções de onda são nulas pela mesma razão invocada no caso unidimensional. No interior, e supondo que a caia se encontra no plano -y as funções de onda dependem das variáveis e y, Ψ (, y). A equação de Schrödinger é:, y, y E,y (1.) m y 7

8 Para resolver a equação utiliza-se a técnica da separação de variáveis, isto é, admitese que a solução é da forma: (, y) = X() Y(y) (1.3) Se a solução nesta forma conseguir traduzir as condições do sistema, então teremos o problema resolvido. Note-se que já se utilizou esta técnica na equação de Schrödinger dependente do tempo (ver teto T6). Introduzindo a forma anterior na equação de Schrödinger: dx dy y Yy X EX Y y m d dy (1.4) Dividindo ambos os membros por X()Y(y): 1 dx 1 dy y m X d Yy dy E (1.5) Através de considerações semelhantes às que utilizámos no teto T6: dx dy y E X ; E yy(y); E E E m d m dy (1.6) y As equações anteriores têm eactamente a mesma forma da equação para a caia unidimensional. Assim, impondo as condições de fronteira para cada dimensão e a normalização das funções, não é difícil obter: n n y L L L L y, y sen sen ; n 1,,...;n y 1,,3... nh nh n y ny h E 8mL 8mL 8mL (1.7) (1.8) Neste caso, onde eistem duas dimensões constrangidas, surgem dois números quânticos: n e n y que podem tomar, independentemente, valores inteiros. Para visualizar as funções de onda tem de recorrer-se ao grafismo tridimensional. Por eemplo, no programa Mathematica já referido, podem obter-se diferentes representações para a função com n = 4 e n y = (ver figura 4). 8

9 Figura 4. Gráficos tridimensional e de contorno para o estado n = 4 e n y =. Como os valores dos números quânticos são independentes é evidente que eistem níveis de energia degenerados (com a mesma energia), por eemplo, o nível anterior terá a mesma energia do nível com n = e n y = 4. Na figura 5, representam-se os níveis de energia. 9

10 Figura 5. Níveis de energia para a caia bidimensional Por analogia, pode inferir-se que, para o caso da caia tridimensional, as funções de onda e energias são: n n yy nzz, y, z sen sen sen LLL L L L (1.9) n 1,,...;n 1,,3...;n 1,,3,... y z nh nh y n n z ny nz h E 8mL 8mL 8mL 8mL (1.30) Mais uma dimensão constrangida, como tal, um novo número quântico, n z. É óbvio que neste caso também eistem degenerescências dos níveis de energia como se mostra na figura 6. Figura 6. Níveis de energia para a caia tridimensional com lados iguais (caia cúbica) 10

11 Uma vez mais, não é difícil inferir a situação no caso dos lados da caia terem comprimentos diferentes: a, b e c: n n yy nzz,y,z sen sen sen ; abc a b c (1.31) n 1,,...;n 1,,3...;n 1,,3,... y z nh nh y nh z h n n n y z E 8ma 8mb 8mc 8m a b c (1.3) Neste caso, não devem eistir degenerescências dos níveis de energia, pois a, b e c são diferentes. Butadieno O modelo da partícula material numa caia, pode ser utilizado para racionalizar, de modo aproimado, algumas propriedades de substâncias químicas. Um eemplo típico é o butadieno (CH =CH-CH=CH ), onde eistem ligações duplas conjugadas entre os átomos de carbono, ou seja, duas ligações duplas intervaladas por uma ligação simples. A estrutura deste composto pode compreender-se, com base nas orbitais de valência do carbono e hidrogénio, através da hibridação das orbitais s, p e p y dos átomos de carbono (originando três orbitais híbridas sp, em cada átomo de carbono, dispostas com simetria triangular e planar) ficando as orbitais p z, de cada átomo de carbono, perpendiculares ao plano de hibridação. As orbitais híbridas dos átomos de carbono formam ligações moleculares σ entre eles e as orbitais 1s dos átomos de hidrogénio. Restam as 4 orbitais p z, de cada átomo de carbono, cada uma com 1 electrão, perpendiculares à estrutura molecular σ, as quais dão lugar, por sobreposição, a orbitais moleculares π deslocalizadas conforme os diagramas da figura 7. Figura 7. Estrutura electrónica da molécula de butadieno. 11

12 Suponhamos, agora, que os 4 electrões π se movem numa caia unidimensional de paredes rígidas, e potencial V() = 0, não interactuando entre eles. Trata-se, obviamente, de uma aproimação grosseira. Por um lado os electrões π sentir a influência dos átomos de carbono como esquematizado na figura 8, donde V() não é eactamente zero ou infinito. Por outro lado, os electrões interactuam entre si. Figura 8. Potencial real versus modelo. Contudo, assumindo o modelo, pode ver-se até que ponto as conclusões que dele se retiram apresentam alguma realidade. Assim, supondo os níveis de energia da partícula numa caia unidimensional com paredes rígidas, estudado acima, a distribuição electrónica dos electrões π, no estado fundamental, representa-se na figura 9, juntamente com uma hipotética transição dum electrão da orbital molecular HOMO para a orbital LUMO. Figura 9. Distribuição electrónica do estado fundamental e transição de HOMO para LUMO. Considere-se o comprimento da ligação carbono - carbono como o valor médio da ligação simples e dupla (d (C-C) = 154 pm ; d (C=C) = 135 pm), e o comprimento da caia igual a 4 ligações médias carbono carbono (metade duma ligação para além dos carbonos terminais, para evitar que nas posições destes as funções de onda se anulem, devido às condições de fronteira do modelo). Com estes dados, e os valores da massa do electrão ( kg) e da constante de Planck (h = J s) pode calcular-se o comprimento de onda da radiação (λ) necessária para promover um electrão do HOMO para o LUMO, a partir da equação (1.17): nh n 1 h n 1 h E 8mL 8mL 8mL com n =, e sabendo que E h hc/,onde c é a velocidade da luz (310 8 m s -1 ). O valor calculado é λ = 0 nm, o qual compara ecelentemente com o valor eperimental determinado espectroscopicamente, λ = 17 nm. Adicionalmente, as funções de onda são dadas pela equação (1.16): 1

13 n sen ; n 1,,3,... L L introduzindo o valor do comprimento da caia calculado anteriormente. As respectivas densidades de probabilidade e interpretações para os três primeiros níveis estão na figura 10. Figura 10. Densidades de probabilidade e interpretações para os três primeiros níveis de energia. Embora para o caso do butadieno o resultado teórico esteja em ecelente concordância com o eperimental, uma vez que o modelo é muito grosseiro não deve esperar-se que ele conduza ao mesmo grau de concordância para outras moléculas e propriedades. No entanto, como uma primeira aproimação, o modelo da partícula na caia pode ser muito útil, pelo menos para estimar as ordens de grandeza de algumas propriedades moleculares. 13

Equação de Schrödinger

Equação de Schrödinger Maria Inês Barbosa de Carvalho Equação de Schrödinger Apontamentos para a disciplina Física dos Estados da Matéria 00/0 Licenciatura em Engenharia Electrotécnica e de Computadores Faculdade de Engenharia

Leia mais

Química Teórica e Estrutural: Aula 4a

Química Teórica e Estrutural: Aula 4a Química Teórica e Estrutural: Aula 4a P.J.S.B. Caridade & U. Miranda October 16, 2012 Partícula na caixa de potencial: Exemplos práticos Caridade & Miranda TP: aula 4a 2 Postulados da Mecânica Quântica

Leia mais

4 e 6/Maio/2016 Aulas 17 e 18

4 e 6/Maio/2016 Aulas 17 e 18 9/Abril/016 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Partícula na Caixa. Química Quântica Prof a. Dr a. Carla Dalmolin

Partícula na Caixa. Química Quântica Prof a. Dr a. Carla Dalmolin Partícula na Caixa Química Quântica Prof a. Dr a. Carla Dalmolin Caixa unidimensional Caixa tridimensional Degenerescência Partícula no anel (mov. de rotação) Partícula na Caixa Partícula numa caixa unidimensional

Leia mais

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2 Mecânica Quântica Quantização e o modelo de Bohr (revisão) Dualidade Onda-Partícula Princípio da Incerteza Equação de Schrödinger Partícula na Caixa Átomo de Hidrogênio Orbitais Atômicos Números Quânticos

Leia mais

24/Abr/2014 Aula /Abr/2014 Aula 15

24/Abr/2014 Aula /Abr/2014 Aula 15 /Abr/014 Aula 15 Ondas de matéria; comprimento de onda de de Broglie. Quantização do momento angular no modelo de Bohr. Difracção e interferência. Função de onda; representação matemática do pacote de

Leia mais

= 1, kg. m protão. ħ = 1, J s

= 1, kg. m protão. ħ = 1, J s Oscilador harmónico O conceito de oscilador harmónico pode ser usado para descrever moléculas. Por exemplo, a molécula de H apresenta níveis de energia igualmente espaçados, separados por 8,7.10-0 J. Admitindo

Leia mais

O poço de potencial finito

O poço de potencial finito O poço de potencial finito A U L A 13 Meta da aula Aplicar o formalismo quântico ao caso de um potencial V(x) que tem a forma de um poço (tem um valor V 0 para x < -a/ e para x > a/, e um valor 0 para

Leia mais

Mecânica Quântica I. Slides 1. Ano lectivo 2008/2009 Semestre ímpar Docente: Alfred Stadler. Departamento de Física da Universidade de Évora

Mecânica Quântica I. Slides 1. Ano lectivo 2008/2009 Semestre ímpar Docente: Alfred Stadler. Departamento de Física da Universidade de Évora Mecânica Quântica I Ano lectivo 2008/2009 Semestre ímpar Docente: Alfred Stadler Slides 1 Departamento de Física da Universidade de Évora A equação de Schrödinger Comparação de descrição clássica e quântica:

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 9. Soluções da equação de Schrödinger: partícula numa caixa infinita

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 9. Soluções da equação de Schrödinger: partícula numa caixa infinita UFAB - Física Quântica - urso 017.3 Prof. Germán Lugones Aula 9 Soluções da equação de Schrödinger: partícula numa caixa infinita 1 Dada uma função de energia potencial V(x) que representa um certo sistema,

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva Uma outra vez a experiência da dupla fenda 18/11/015 Prof. Dr. Lucas Barboza Sarno da Silva Probabilidade de chegada do elétron, com a fenda fechada: * 1 1 1 * Probabilidade

Leia mais

Mecânica Quântica. Veremos hoje: Dualidade onda partícula Princípio da Incerteza Formulações da MQ Equação de Schrodinger Partícula numa caixa

Mecânica Quântica. Veremos hoje: Dualidade onda partícula Princípio da Incerteza Formulações da MQ Equação de Schrodinger Partícula numa caixa Mecânica Quântica Veremos hoje: Dualidade onda partícula Princípio da Incerteza Formulações da MQ Equação de Schrodinger Partícula numa caixa Limitações do modelo de Bohr A teoria de Bohr não era capaz

Leia mais

Aula-9 Mais Ondas de Matéria I

Aula-9 Mais Ondas de Matéria I Aula-9 Mais Ondas de Matéria I Estados ligados Vimos, até agora, 3 postulados da Mecânica Quântica: a) Toda partícula possui uma função de onda associada a ela. b) A forma e a evolução temporal desta é

Leia mais

6. Mecânica Quântica

6. Mecânica Quântica 6. Mecânica Quântica Sumário A função de onda A equação de Schrödinger Partícula em uma caixa Poço de potencial Barreira de potencial e o efeito túnel Oscilador harmônico A função de onda Ψ descreve uma

Leia mais

Equação de Schrödinger em 3D

Equação de Schrödinger em 3D Equação de Schrödinger em 3D Conteúdo básico: extensão do que foi feito em 1D: p 2 /2m + V(x,y,z) = E; Equação independente do tempo: 2m 2 ψ +V(x, y, z)ψ = Eψ A interpretação probabilística envolve a integração

Leia mais

Física IV Escola Politécnica P3 7 de dezembro de 2017

Física IV Escola Politécnica P3 7 de dezembro de 2017 Física IV - 4323204 Escola Politécnica - 2017 P3 7 de dezembro de 2017 Questão 1 Uma partícula de massa m que se move em uma dimensão possui energia potencial que varia com a posição como mostra a figura.

Leia mais

Resolução do Exame de Química Geral (1ª Data, 18/1/08) 1ª Questão

Resolução do Exame de Química Geral (1ª Data, 18/1/08) 1ª Questão Resolução do Exame de Química Geral (1ª Data, 18/1/8) 1ª Questão a) O princípio da incerteza de Heisenberg afirma que não é possível conhecer simultâneamente, com precisão arbitrária, a posição e o momento

Leia mais

Fundamentos de Química Quântica

Fundamentos de Química Quântica Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Fundamentos de Química Quântica Professora: Melissa Soares Caetano Partícula na caixa Sistema ideal

Leia mais

Aula 9 Mais ondas de matéria I. Física Geral F-428

Aula 9 Mais ondas de matéria I. Física Geral F-428 Aula 9 Mais ondas de matéria I Física Geral F-48 Resumo da aula passada: Dualidade onda-partícula e o princípio da complementaridade; Comprimento de onda de de Broglie: = h/p Função de onda (x,y,z,t A

Leia mais

pessoal.utfpr.edu.br/renan

pessoal.utfpr.edu.br/renan Aula 2: Espectro de emissão do hidrogênio: Balmer e Rydberg O átomo de Bohr Princípio da incerteza Partícula na caixa Prof. Renan Borsoi Campos pessoal.utfpr.edu.br/renan O espectro eletromagnético da

Leia mais

Física Quântica. Aula 7: Equação de Schrödinger, Potenciais Simples I, Transições. Pieter Westera

Física Quântica. Aula 7: Equação de Schrödinger, Potenciais Simples I, Transições. Pieter Westera Física Quântica Aula 7: Equação de Schrödinger, Potenciais Simples I, Transições Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/quantica.html A Equação de Schrödinger

Leia mais

A Estrutura Eletrônica dos Átomos. Prof. Fernando R. Xavier

A Estrutura Eletrônica dos Átomos. Prof. Fernando R. Xavier A Estrutura Eletrônica dos Átomos Prof. Fernando R. Xavier UDESC 2015 Estrutura Atômica, Antencedentes... Modelos de Demócrito, Dalton, Thomson, etc 400 a.c. até 1897 d.c. Nascimento da Mecânica Quântica

Leia mais

Estrutura atômica. Modelo quântico do átomo

Estrutura atômica. Modelo quântico do átomo Estrutura atômica Modelo quântico do átomo Um bom modelo deve ser capaz de explicar propriedades atômicas, propriedades periódicas, ligação química Mecânica quântica - mecânica ondulatória Elétrons como

Leia mais

Função de Onda e Equação de Schrödinger

Função de Onda e Equação de Schrödinger 14/08/013 Função de Onda e Equação de Schrödinger Prof. Alex Fabiano C. Campos, Dr A Função de Onda (ψ) A primeira formulação para esta nova interpretação da Mecânica, a Mecânica Quântica, teoria foi proposta

Leia mais

Teoria da Ligação Química. Radiação electromagnética. ν =

Teoria da Ligação Química. Radiação electromagnética. ν = Teoria da Ligação Química Radiação electromagnética λxν=c ν = 1 λ Mecânica clássica : 1. Uma partícula move-se numa trajectória com um caminho e uma velocidade precisos em cada instante.. A uma partícula

Leia mais

Mecânica Quântica. Química Quântica Prof a. Dr a. Carla Dalmolin. A Equação de Schrödinger Postulados da Mecânica Quântica

Mecânica Quântica. Química Quântica Prof a. Dr a. Carla Dalmolin. A Equação de Schrödinger Postulados da Mecânica Quântica Mecânica Quântica Química Quântica Prof a. Dr a. Carla Dalmolin A Equação de Schrödinger Postulados da Mecânica Quântica Mecânica Clássica O movimento de uma partícula é governado pela Segunda Lei de Newton:

Leia mais

6/Maio/2013 Aula 21. Átomo de hidrogénio Modelo de Bohr Modelo quântico. Números quânticos. 29/Abr/2013 Aula 20

6/Maio/2013 Aula 21. Átomo de hidrogénio Modelo de Bohr Modelo quântico. Números quânticos. 29/Abr/2013 Aula 20 29/Abr/2013 Aula 20 Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial 2º partícula num poço de potencial finito 3º oscilador harmónico simples 4º barreira de potencial, probabilidade

Leia mais

PROPRIEDADES ONDULATÓRIAS DO ELÉTRON

PROPRIEDADES ONDULATÓRIAS DO ELÉTRON MODELO QUÂNTICO PROPRIEDADES ONDULATÓRIAS DO ELÉTRON EINSTEIN: usou o efeito fotoelétrico para demonstrar que a luz, geralmente imaginada como tendo propriedades de onda, pode também ter propriedades de

Leia mais

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 1

Universidade de São Paulo em São Carlos Mecânica Quântica Aplicada Prova 1 Universidade de São Paulo em São Carlos 9514 Mecânica Quântica Aplicada Prova 1 Nome: Questão 1: Sistema de dois níveis (3 pontos) Considere um sistema de dois estados 1 e ortonormais H do sistema seja

Leia mais

PPGQTA. Prof. MGM D Oca

PPGQTA. Prof. MGM D Oca PPGQTA Prof. Polarizabilidade: Dureza e Moleza A polarizabilidade está relacionada ao tamanho do átomo e da capacidade deste estabilizar elétrons na nuvem eletrônica, esta matematicamente correlacionada

Leia mais

Parte II. Interacção Radiação-Matéria: Espectroscopia Molecular. Cap. 4 Introdução à Mecânica Quântica. Estrutura Molecular

Parte II. Interacção Radiação-Matéria: Espectroscopia Molecular. Cap. 4 Introdução à Mecânica Quântica. Estrutura Molecular Parte II Interacção Radiação-Matéria: Espectroscopia Molecular Cap. 4 Introdução à Mecânica Quântica. Estrutura Molecular E z Onda Electromagnética (onda progressiva) onda estacionária H x Velocidade da

Leia mais

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por:

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por: Rotor quântico Vamos tratar o caso da rotação de um corpo rígido, que corresponde a 2 massas pontuais, ligadas por uma barra rígida e sem massa. Consideremos rotação livre em torno de um eixo perpendicular

Leia mais

O poço quadrado finito

O poço quadrado finito O poço quadrado infinito FNC375N: ista 8 5//4. Um próton se encontra num poço infinito de largura. Compute a energia do estado fundamental para (a), nm, o tamanho aproximado de uma molécula, e (b) fm,

Leia mais

Problemas de Mecânica Quântica Ano lectivo 2007/2008 Engenharia Biomédica, IST

Problemas de Mecânica Quântica Ano lectivo 2007/2008 Engenharia Biomédica, IST Problemas de Mecânica Quântica Ano lectivo 2007/2008 Engenharia Biomédica, IST Potenciais unidimensionais, poço de potencial, efeito de túnel, oscilador linear harmónico 1. Gasiorowicz 4.8 Ajudas: (a)

Leia mais

QUÍMICA A Ciência Central 9ª Edição Capítulo 6 Estrutura eletrônica dos átomos David P. White

QUÍMICA A Ciência Central 9ª Edição Capítulo 6 Estrutura eletrônica dos átomos David P. White QUÍMICA A Ciência Central 9ª Edição Capítulo 6 Estrutura eletrônica dos átomos David P. White Natureza ondulatória da luz Todas as ondas têm um comprimento de onda característico, λ, e uma amplitude, A.

Leia mais

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change Físico-Química 01 Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 2014 Prof. Dr. Anselmo E

Leia mais

Comportamento ondulatório da matéria

Comportamento ondulatório da matéria Louis de Broglie investigou as propriedades ondulatórias da na década de 30. Ele supôs que o e-, em seu movimento ao redor do núcleo, tina associado a ele um λ. Ele igualou as duas expressões conecidas

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 4 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Edição de junho de 2014 CAPÍTULO 4 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 4.1- Postulados de

Leia mais

Teoremas e Postulados da Mecânica Quântica

Teoremas e Postulados da Mecânica Quântica Teoremas e Postulados da Mecânica Quântica Química Teórica e Estrutural P.J.S.B. Caridade & U. Miranda 28/10/2013 31/10/2013, Aula 5 Química Teórica & Estrutural (2013) Caridade & Ulises 1 O problema de

Leia mais

QUÍMICA I. Teoria atômica Capítulo 6. Aula 2

QUÍMICA I. Teoria atômica Capítulo 6. Aula 2 QUÍMICA I Teoria atômica Capítulo 6 Aula 2 Natureza ondulatória da luz A teoria atômica moderna surgiu a partir de estudos sobre a interação da radiação com a matéria. A radiação eletromagnética se movimenta

Leia mais

Programa da Disciplina: Física Moderna Modalidade EAD

Programa da Disciplina: Física Moderna Modalidade EAD Programa da Disciplina: Física Moderna Modalidade EAD Profa. Ana Paula Andrade Conteúdo: Unidade 1 Aula 1 Introdução - Aula introdutória onde discutiremos as questões centrais que levaram ao desenvolvimento

Leia mais

8/Maio/2015 Aula 19. Aplicações: - nanotecnologias; - microscópio por efeito de túnel. Equação de Schrödinger a 3 dimensões. 6/Maio/2015 Aula 18

8/Maio/2015 Aula 19. Aplicações: - nanotecnologias; - microscópio por efeito de túnel. Equação de Schrödinger a 3 dimensões. 6/Maio/2015 Aula 18 6/Maio/2015 Aula 18 Conclusão da aula anterior 3º oscilador harmónico simples 4º barreira de potencial, probabilidade de transmissão. Efeito de túnel quântico: decaimento alfa. 8/Maio/2015 Aula 19 Aplicações:

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 8. A equação de Schrödinger

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 8. A equação de Schrödinger UFABC - Física Quântica - Curso 2017.3 Prof. Germán Lugones Aula 8 A equação de Schrödinger 1 A equação de Schrödinger Na primeira parte do curso, introduzimos a dualidade onda-partícula. Usando as relações

Leia mais

Interações Atômicas e Moleculares

Interações Atômicas e Moleculares Interações Atômicas e Moleculares 6. O Princípio Variacional Prof. Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/iam.html Na aula anterior, tratando de moléculas

Leia mais

h mc 2 =hν mc 2 =hc/ λ

h mc 2 =hν mc 2 =hc/ λ Louis de Broglie investigou as propriedades ondulatórias da matéria na década de 30. Ele supôs que o e-, em seu movimento ao redor do núcleo, tinha associado a ele um λ. Ele igualou as duas expressões

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Atomística. Prof. Fernando R. Xavier

Atomística. Prof. Fernando R. Xavier Atomística Prof. Fernando R. Xavier UDESC 2013 Nem sempre foi tão fácil observar um átomo... Estrutura Atômica, Antencedentes... Modelos de Demócrito, Dalton, Thomson 400 a.c. até 1897 d.c. O Modelo de

Leia mais

Problemas de Duas Partículas

Problemas de Duas Partículas Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,

Leia mais

Aula anterior. Equação de Schrödinger a 3 dimensões. d x 2m - E -U. 2m - E -U x, y, z. x y z x py pz cin cin. E E ( x, y,z ) - 2m 2m x y z

Aula anterior. Equação de Schrödinger a 3 dimensões. d x 2m - E -U. 2m - E -U x, y, z. x y z x py pz cin cin. E E ( x, y,z ) - 2m 2m x y z 6/Maio/2013 Aula 21 Efeito de túnel quântico: decaimento alfa. Aplicações: nanotecnologias; microscópio por efeito de túnel. Equação de Schrödinger a 3 dimensões. Átomo de hidrogénio Modelo de Bohr 8/Maio/2013

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 11. Soluções da equação de Schrödinger: potencial degrau

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 11. Soluções da equação de Schrödinger: potencial degrau UFABC - Física Quântica - Curso 2017.3 Prof. Germán Lugones Aula 11 Soluções da equação de Schrödinger: potencial degrau 1 Partícula em presença de um potencial degrau Imaginemos um potencial com o perfil

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de junho de 2014 CAPÍTULO 5 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 5.1- Introdução 5.2- Equação

Leia mais

Física IV - FAP2204 Escola Politécnica GABARITO DA P3 8 de dezembro de 2009

Física IV - FAP2204 Escola Politécnica GABARITO DA P3 8 de dezembro de 2009 P3 Física IV - FAP2204 Escola Politécnica - 2009 GABARITO DA P3 8 de dezembro de 2009 Questão 1 Numaexperiência deespalhamentocompton, umelétrondemassam 0 emrepousoespalha um fóton de comprimento de onda

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Edição de janeiro de 2009 CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 5.1- Postulados

Leia mais

Fundamentos de Química Quântica

Fundamentos de Química Quântica Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Fundamentos de Química Quântica Aula 1 Professora: Melissa Soares Caetano Origem da teoria quântica

Leia mais

SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO

SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO FÍSICA IV PROF. DR. DURVAL RODRIGUES JUNIOR SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO Como na Biblioteca do Campus I e do Campus II temos bom número de cópias do Halliday e poucas do Serway, os

Leia mais

Mecânica Quântica:

Mecânica Quântica: Mecânica Quântica: 206-207 a Série. Considere o modelo de Bohr para o átomo de hidrogénio. (vide le Bellac, ex..5.2).. Mostre que o raio de Bohr, o menor raio que verica a condição 2πr = nλ, é dado por

Leia mais

Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido

Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido ÁTOMO DE HIDROGÊNIO Primeiro sistema tratado quanticamente por Schrödinger Modelo de Bohr Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento

Leia mais

Física IV Poli Engenharia Elétrica: 14ª Aula (02/10/2014)

Física IV Poli Engenharia Elétrica: 14ª Aula (02/10/2014) Física IV Poli Engenharia Elétrica: 14ª Aula (/1/14) Prof Alvaro Vannucci Na última aula vimos: xp / Princípio de Incerteza de Heisenberg: E t / d Equação de Schrödinger: U E mdx Propriedades de : (i)

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de agosto de 2011 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução 6.2- Equação

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de janeiro de 2009 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução 6.2- Equação

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas Equação de Schrödinger em 3D: 2 = 1 r 2 # % r $ r2 r & (+ ' 1 r 2 senθ # θ senθ & % (+ $ θ ' 1 r 2 sen 2 θ 2 φ 2 Podemos, então, escrever a eq. de Schrödinger

Leia mais

Fundamentos de Química 1ª parte

Fundamentos de Química 1ª parte Fundamentos de Química 1ª parte Tabela Periódica dos Elementos Metais Metalóides Não-Metais Modelo do Átomo de Bohr (1913) 1. Os e apenas podem ter valores específicos (quantizados) de energia. Fotão 2.

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9. Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 5 Ref. Butkov, caps. 8 e 9, seções 8.8 e 9.1 Vibrações de uma membrana Como mencionado na aula passada, pode-se deduzir

Leia mais

Teoria de bandas nos sólidos

Teoria de bandas nos sólidos Teoria de bandas nos sólidos Situação: átomos idênticos, distantes níveis de energia desse sistema têm degenerescência de troca dupla. A parte espacial da autofunção eletrônica pode ser uma combinação

Leia mais

UNIVERSIDADE DE SÃO PAULO

UNIVERSIDADE DE SÃO PAULO UNIVERSIDADE DE SÃO PAULO - Instituto de Química - Estrutura Atômica As propriedades ondulatórias do elétron Hermi F. Brito hefbrito@iq.usp.br QFL 1101 Química Geral I, -03-2017 Dualidade onda-partícula

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE DE SCHRÖDINGER Primeira Edição junho de 2005 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 8 ÁTOMOS MONOELETRÔNICOS Edição de agosto de 2008 CAPÍTULO 8 ÁTOMOS MONOELETRÔNICOS ÍNDICE 8.1- Introdução 8.2- Problema da Força Central

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES Na disciplina de Análise Matemática, logo ao início de certos cursos de licenciatura, é usual tratar, entre outros temas, o das equações diferenciais, sejam ordinárias

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva

Leia mais

POSTULADOS DA MECÂNICA QUÂNTICA

POSTULADOS DA MECÂNICA QUÂNTICA UNIVERSIDADE FEDERAL DO ABC POSTULADOS DA MECÂNICA QUÂNTICA FERNANDA MARIA RODRIGUEZ ABRIL/2015 Resumo da Apresentação O que é Mecânica Quântica? Cenário no fim do século XIX; Radiação do corpo negro;

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Escola Politécnica FAP GABARITO DA P3 25 de novembro de 2008

Escola Politécnica FAP GABARITO DA P3 25 de novembro de 2008 P3 Física IV Escola Politécnica - 2008 FAP 2204 - GABARITO DA P3 25 de novembro de 2008 Questão 1 É realizado um experimento onde fótons são espalhados por elétrons livres inicialmente em repouso. São

Leia mais

O degrau de potencial. Caso I: energia menor que o degrau

O degrau de potencial. Caso I: energia menor que o degrau O degrau de potencial. Caso I: energia menor que o degrau A U L A 8 Meta da aula Aplicar o formalismo quântico ao caso de uma partícula quântica que incide sobre um potencial V(x) que tem a forma de um

Leia mais

Física IV. Escola Politécnica FGE GABARITO DA PS 11 de dezembro de 2007

Física IV. Escola Politécnica FGE GABARITO DA PS 11 de dezembro de 2007 PS Física IV Escola Politécnica - 2007 FGE 2203 - GABARITO DA PS 11 de dezembro de 2007 Questão 1 Um capacitor de placas paralelas é formado por dois discos circulares de raio a separados por uma distância

Leia mais

Ligações covalentes múltiplas

Ligações covalentes múltiplas Formação de ligações covalentes por sobreposição de orbitais atômicos Sobreposição frontal de orbitais Ligação covalente σ (sigma) Sobreposição lateral de orbitais Ligação covalente π (pi) A molécula do

Leia mais

Propriedades Ondulatórias da matéria

Propriedades Ondulatórias da matéria Propriedades Ondulatórias da matéria 184 Postulado de de Broglie: A luz que apresenta fenômenos como difração e interferência tem também propriedades que só podem ser interpretadas como se ela fosse tratada

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 8 ÁTOMOS DE UM ELÉTRON Primeira Edição junho de 2005 CAPÍTULO 08 ÁTOMOS DE UM ELÉTRON ÍNDICE 8.1- Introdução 8.2- Força Central 8.3- Equação

Leia mais

Seminário. Teoria de Ligação de Valência - TLV UMA ABORDAGEM MECÂNICO QUÂNTICA DAS LIGAÇÕES COVALENTES

Seminário. Teoria de Ligação de Valência - TLV UMA ABORDAGEM MECÂNICO QUÂNTICA DAS LIGAÇÕES COVALENTES Seminário Teoria de Ligação de Valência - TLV UMA ABORDAGEM MECÂNICO QUÂNTICA DAS LIGAÇÕES COVALENTES Autor: Marcelo Alves de Souza Mestrando UFABC 2015 Disciplina Química Integrada 1 O modelo de repulsão

Leia mais

Princípios Gerais da Mecânica Quântica

Princípios Gerais da Mecânica Quântica Princípios Gerais da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ)

Leia mais

Valores esperados. ψ (x)xψ(x)dx. ψ ψ dx. xp(x)dx P(x)dx. Vimos que: x = = ψ xψ dx. No caso geral de uma função de x: f (x) = f (x) =

Valores esperados. ψ (x)xψ(x)dx. ψ ψ dx. xp(x)dx P(x)dx. Vimos que: x = = ψ xψ dx. No caso geral de uma função de x: f (x) = f (x) = Vimos que: x = + Valores esperados ψ (x)xψ(x)dx xp(x)dx P(x)dx = ψ xψ dx ψ ψ dx No caso geral de uma função de x: f (x) = f (x) = + ψ (x) ˆf (x)ψ(x)dx Para o momento e a energia: ˆp = i x e Ê = i t. 4300375

Leia mais

Revisão das observações experimentais, modelo de Bohr e Princípios da Mecânica Quântica by Pearson Education. Capítulo 06

Revisão das observações experimentais, modelo de Bohr e Princípios da Mecânica Quântica by Pearson Education. Capítulo 06 Revisão das observações experimentais, modelo de Bohr e Princípios da Mecânica Quântica Natureza ondulatória da luz A teoria atômica moderna surgiu a partir de estudos sobre a interação da radiação com

Leia mais

Como Entender a Física Quântica em 8 Passos! Passos

Como Entender a Física Quântica em 8 Passos! Passos Como Entender a Física Quântica em 8 Passos! A física quântica (também chamada de teoria quântica ou mecânica quântica) é um ramo da física que permite uma descrição do comportamento e interação da matéria

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de janeiro de 2010 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução 6.2- Equação

Leia mais

Deus não joga dados com o Universo. calcular o futuro não é a conclusão que está errada,

Deus não joga dados com o Universo. calcular o futuro não é a conclusão que está errada, Deus não joga dados com o Universo Se conhecermos S h o presente t eatamente, t t podemos d calcular o futuro não é a conclusão que está errada, mas a premissa. premissa Heisenberg 9. Aplicações da equação

Leia mais

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTRODUÇÃO AO CÁLCULO VETORIAL Gil da Costa Marques TÓPICO Fundamentos da Matemática II.1 Introdução. Funções vetoriais de uma variável. Domínio e conjunto imagem.4 Limites de funções vetoriais de uma

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENO OSCILAÓRIO Força proporcional ao deslocamento Movimento periódico ou oscilatório Conservação da energia mecânica Movimento harmónico simples MOVIMENO HARMÓNICO SIMPLES (MHS) Um movimento diz-se

Leia mais

Física Quântica. Aula 5: Princípio de Incerteza, Função de Onda. Pieter Westera

Física Quântica. Aula 5: Princípio de Incerteza, Função de Onda. Pieter Westera Física Quântica Aula 5: Princípio de Incerteza, Função de Onda Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/quantica.html Supondo que uma partícula/onda pode

Leia mais

A teoria dos orbitais moleculares

A teoria dos orbitais moleculares A teoria dos orbitais moleculares Qualitativamente, indica regiões do espaço (entre os átomos que formam uma molécula) nas quais a probabilidade de encontrar os elétrons é máxima. Na mecânica quântica,

Leia mais

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA Prof. Carlos R. A. Lima CAPÍTULO 11 MOLÉCULAS Primeira Edição junho de 2005 CAPÍTULO 11 MOLÉCULAS ÍNDICE 11-1- Introdução 11.2- Ligação por Tunelamento e a Molécula

Leia mais

Instituto de Física USP. Física V - Aula 28. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 28. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 28 Professora: Mazé Bechara Aula 28 Princípio de incerteza de Heisenberg interpretação e consequências 1. O princípio de incerteza de Heisenberg e suas consequências

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Para calcular o número de códigos diferentes, de acordo com as restrições impostas, podemos começar por escolher a posição

Leia mais

Mecânica Quântica:

Mecânica Quântica: Mecânica Quântica: 2016-2017 5 a Série 1. Considere o movimento de uma partícula, no caso unidimensional, em que esta é sujeita a um potencial que é nulo na região x a e innito em x > a. Num determinado

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Fundamentos da Mecânica Quântica

Fundamentos da Mecânica Quântica Fundamentos da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) Rio

Leia mais