Resoluções A. Combinatória 1 3 os anos Blaidi/Walter Ago/09. Nome: Nº: Turma:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Resoluções A. Combinatória 1 3 os anos Blaidi/Walter Ago/09. Nome: Nº: Turma:"

Transcrição

1 Matemática Resoluções A. Combinatória 3 os anos Blaidi/Walter Ago/09 Nome: Nº: Turma: Prezadísssimos alunos e alunas, Neste bimestre, aprenderemos a resolver questões de análise combinatória com o auílio de epressões. Geralmente o uso das relações a seguir possibilita resolver problemas mais rapidamente. Os GRUPOS serão chamados de COMBINAÇÕES, obtidos por meio da epressão: C n, p n p( n p) As FILAS serão chamadas de ARRANJOS, obtidas por meio da epressão: A n, p n ( n p) Eemplos: 8. Resolução: Devemos escolher 5 dos 9 produtos restantes para montar a cesta básica. Como não importa a ordem dos produtos, então se trata de um grupo ou combinação. Assim, podemos utilizar a relação para o cálculo do número de combinações da seguinte forma: C 9,5 6 maneiras 5(9 5)

2 3. Resolução: Teremos de escolher moça entre as 7 (C 7, ), e formar comissões (ou seja, grupos) com 3 rapazes entre os 0 (C 0,3 ), logo, C 7,. C0, comissões (7 ) 3(0 3) Resolução: Podemos separar os tipos de números pares em dois casos: Números que terminam com zero: Números que terminam com ou com 4: 4 4 A4,3 4 números (4 3) 3 3 = 36 números Portanto, o total de números é = 60 números. 0. Resolução: Nesta questão, teremos de somar os resultados de duas etapas em que a segunda se realiza apenas após uma única digitação correta na ª etapa. Como a ordem importa, trata-se de um caso de fila ou arranjo e podemos calcular da seguinte forma: A 0,3 A 6, (0 3) (6 ) tentativas Alternativa E

3 Agora, veja as resoluções das outras questões. Boa correção.. Resolução: Pelo Princípio Fundamental da Contagem, teremos,. Resolução: O º número da senha é o número 8 ( número). O º número da senha tem de ser par, sem o zero (4 números). O 3º número da senha é menor que 5 (4 números). O 4º número da senha é ímpar (5 números) Logo, pelo Princípio Fundamental da Contagem, teremos, = 80 Alternativa E 4. Resolução: O º número não pode ser o zero (9 possibilidades). O º número deve ser diferente do º (9 possibilidades). E assim por diante. Logo, pelo Princípio Fundamental da Contagem, teremos: = 9 5 possibilidades Alternativa E 6. Resolução: Neste problema, a ordem das visitas do fiscal às empresas importa; logo, trata-se de um problema envolvendo FILAS ou ARRANJOS. 5 0 Alternativa B 3

4 7. Resolução: Na palavra PROVA eistem vogais e 3 consoantes e não há letras repetidas; logo: Palavras que começam por vogal: 4 3 = 48 Palavras que começam e terminam por consoante: 3 3 = 36 Portanto, = 48 e y = Resolução: 4 = 48 possibilidades Alternativa E. Resolução: Como todos os valores devem constar na troca, o número máimo de cédulas de R$ 50,00 é igual a 3. Devemos, desse modo, analisar o número de maneiras de receber os R$ 50,00 restantes em notas de R$ 5,00 e de R$ 0,00. Temos as seguintes possibilidades: ª) 4 de R$ 0,00 e de R$ 5,00, num total de = 9 cédulas ª) 3 de R$ 0,00 e 4 de R$ 5,00, num total de = 0 cédulas 3ª) de R$ 0,00 e 6 de R$ 5,00, num total de = cédulas 4ª) de R$ 0,00 e 8 de R$ 5,00, num total de = cédulas Portanto, o número mínimo de cédulas é 9. Alternativa B. Resolução: Podemos ter as seguintes possibilidades: ª) par, par, ímpar, ímpar: = 40 números ª) par, ímpar, par, ímpar: = 40 números 3ª) par, ímpar, ímpar, par: = 40 números 4

5 4ª) ímpar, par, ímpar, par: = 40 números 5ª) ímpar, ímpar, par, par: = 40 números 6ª) ímpar, par, par, ímpar: = 40 números Portanto, o total é 40 6 = 440 números. 4. Resolução: A ordem do sorteio não importa, logo, os prêmios poderão ser sorteados para os 8 homens e as 7 mulheres de duas maneiras: homens e mulher 8 7 C8,. C7, maneiras.6.6 mulheres e homem 7 8 C7,. C8, maneiras.5.7 Portanto, o total é = 0449 maneiras 5. Resolução: Sequências com eatamente 3 zeros em posições consecutivas: 000, 000, 000, 0000, 0000 Sequências com eatamente 4 zeros em posições consecutivas: 0000, 0000 Sequências com 5 zeros: Portanto, o total é = 8 sequências. 5

6 6. Resolução: Considere que o bloco de 3 filmes de ficção científica é apenas filme; logo, os 7 filmes escolhidos passam a ser 5, o número de maneiras distintas de eibir estes 5 filmes é 5 = 0. Porém, os 3 filmes do bloco podem ser permutados entre si, num total de 3 = 6. Portanto, o número total é 0 6 = Resolução: Considere que amigos e poltronas formem um bloco de amigo e poltrona; logo, o grupo se reduz a 3 amigos e 3 poltronas, o número de maneiras distintas de os 3 amigos ocuparem essas 3 poltronas é 3 = 6. Porém, os amigos do bloco podem ser permutados entre si, num total de =. Portanto, o número total é 6 =. 8. Resolução: A conhecida fórmula do número de diagonais de um polígono deduzida. n( n 3) d pode ser assim O número de segmentos que podem ser construídos com etremidade em dos n vértices de um polígono é Desses n.( n ) C n, n n.( n ).( n ) n.( n ) ( n ) ( n ) segmentos, n deles representam os lados do polígono. Desse modo, o número de diagonais (d) é dado por: n.( n ) n d n n n n 3n n( n 3) d n( n 3) Assim, se d = 90, teremos, n 3n n 3n 80 0 n ( não convém) ou n 5 6

7 9. Resolução: Pelo Princípio Fundamental da Contagem: = 6 3 = 6.. Resolução: C5,3. C4,. C3, (5 3) (4 ) (3 ) 3... provas. Resolução: Observe que a palavra AMIGA possui duas letras A ; portanto, deveremos descontar esta repetição. 5 Total de anagramas da palavra AMIGA: 60 Anagramas da palavra AMIGA, nas quais aparece o bloco AA: 4 = 4 Total de anagramas da palavra AMIGA nas quais não aparece o grupo AA é 60 4 = Resolução: = (.0). (.9). (.8)..... (.). (.) = Resolução: C4, 6. C4, 6. C4,3 6. C4, (4 ) (4 ) 3(4 3) 4(4 4) opções Alternativa E 5. Resolução: 7

8 C C C C C opções 5, 5, 5,3 5,4 5,5 6. Resolução: A C n n,4 n, n ( n 4) ( n ) ( n ).( n 3).( n 4) ( n ).( n 3) 4 n ( n 4) ( n 4) ( n ) 5n 6 n 5n 6 0 n ( não convém) ou n 6 7. Resolução: As mães e seus respectivos filhos poderão sentar-se da seguinte maneira: Logo, o número de maneiras distintas é 3 = 6; porém, mãe e filho podem ser permutados entre si, num total de = 3 = 8. Portanto, o total é 6 8 = 48 maneiras. Alternativa E 8. Resolução: = 4 79 = 96 formas 8

9 9. Resolução: Anagramas que começam por E: 5 = 0 Anagramas que começam por F: 5 = 0 Até aqui já eistem 40 anagramas, verificaremos agora quantos anagramas começam por SE. Anagramas que começam por SE: 4 = 4. Isto significa que da 4ª posição até a 64ª posição, os anagramas começam com SE. 30. Resolução: Para uma das partes, o número de maneiras de selecionar os dois ases é C 4, = 6, e o número de maneiras de selecionar as outras quatro cartas é C 8,4 = 70, totalizando 6 70 = 40 possibilidades. Feita essa primeira partição, os elementos da segunda partição ficam determinados de maneira única. Logo, 40 = 40 possibilidades. 3. Resolução: C 7,3 - C 4,3 = 35 4 = 3 triângulos 3. Resolução: Total de anagramas da palavra VESTIBULANDO: Considere que o bloco de 5 vogais da palavra VESTIBULANDO forme apenas letra; logo, as letras da palavra passam a ser 8, o número de anagramas que podemos formar com 8 letras, sem repetições, é 8. Porém, as 5 vogais do bloco podem ser permutadas entre si, num total de 5. Portanto, o número total anagramas que não apresentam as cinco vogais juntas é Resolução: Palavras com letra: ( ou ) Palavras com letras: = = 4 9

10 Palavras com 3 letras: = 3 = 8 Palavras com 4 letras: = 4 = 6 Palavras com 5 letras: = 5 = 3 Portanto, o total de palavras é = Resolução: Fazendo C, = 66, estamos contando todas as possíveis maneiras de escolher dois pontos quaisquer para formar uma reta. Precisamos descontar as combinações dos pontos pertencentes à reta (r) que contém os 7 pontos alinhados, pois eles determinam sempre a mesma reta (r). Teremos C 7, = possibilidades. Não podemos, porém, esquecer de contar uma vez a reta (r). Portanto, teremos 66 + = 46 retas. 35. Resolução: Os dois estudantes menores que o estudante identificado por h 7 podem ser escolhidos de C 6, = 5 maneiras. Os dois estudantes maiores que o estudante identificado por h 7 podem ser escolhidos de C 3, = 3 maneiras. Logo, pelo Princípio Fundamental da Contagem, teremos 5 3 = 45 possibilidades. 36. Resolução: C 8,3 C 5,5 = 56 = 56, porém a sala com 3 pessoas pode ser qualquer uma das duas salas, logo: 56 = formas. 37. Resolução: Para pintar a ª face do cubo, teremos 6 possibilidades de cores e a face oposta à ª tem possibilidade. A próima face tem 5 possibilidades e a face oposta a ela, possibilidade. A penúltima face tem 4 possibilidades e a última e oposta e essa tem possibilidade, logo, = = 0 modos. 0

11 38. Resolução: Devemos escolher, efetivamente, 3 membros do 9 restantes para formar a comissão, visto que, 3 membros (Júnior, Daniela e Maria Eduarda) já estão presentes, logo: C 9,3 = 84 comissões. Alternativa B 39. Resolução: C6, C6, C6,3 C6,4 C6,5 C6, mod os 40. Resolução: ª parte: O candidato X responder e Y comentar é diferente de Y responder e X comentar. Assim, cada escolha do jornalista é um arranjo dos 5 candidatos tomados a, A 5, = 0 perguntas. ª parte: Seguindo o mesmo raciocínio, um determinado candidato deverá escolher, ordenadamente, dois dos quatro candidatos concorrentes, A 4, =. Como há 5 candidatos, teremos 5 = 60 perguntas. Reunindo as duas partes do debate, temos, ao todo, = 80 perguntas. Resoluções das questões que serão discutidas em aula. 5. Resolução: ( n ) ( n ) n 8 ( n ) ( n ). n.( n ) n.( n ) 8 ( n ). n n 8 8 n n n n 8 n 9 n 9 ( não convém) ou n 9

12 3. Resolução: P = n ) ( 0 ) ( ) ).(.( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (,, ou não convém P C A Bons estudos G:\Editoração\Ped009\Matemática\EM\Resoluções Análise Combinatória 0-3C.doc

Lista Análise Combinatória

Lista Análise Combinatória NOME: ANO: 2º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Lista Análise Combinatória Exercícios básicos 1. Quatro times de futebol (Vasco, Atlético, Corinthians e Internacional) disputam um torneio. Quantas

Leia mais

PERMUTAÇÃO, ARRANJO E COMBINAÇÃO Monitora Juliana

PERMUTAÇÃO, ARRANJO E COMBINAÇÃO Monitora Juliana PERMUTAÇÃO, ARRANJO E COMBINAÇÃO Monitora Juliana PERMUTAÇÕES SIMPLES Uma permutação de se denominarmos objetos distintos é qualquer agrupamento ordenado desses objetos, de modo que, o número das permutações

Leia mais

PREPARATÓRIO PROFMAT - UNIRIO PROFESSOR JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PREPARATÓRIO PROFMAT - UNIRIO PROFESSOR JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PREPARATÓRIO PROFMAT - UNIRIO PROFESSOR JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer a viagem

Leia mais

Análise Combinatória. Quantos números de três algarismos distintos existem no sistema decimal?

Análise Combinatória. Quantos números de três algarismos distintos existem no sistema decimal? 1. Questão Análise Combinatória Numa promoção feita por uma conhecida empresa fabricante de refrigerantes, em cada tampinha vinha um prognóstico com relação ao primeiro, segundo e terceiro colocados, respectivamente,

Leia mais

a) Marina tem 5 blusas e 2 saias. De quantos modos diferentes ela pode se vestir com essas roupas?

a) Marina tem 5 blusas e 2 saias. De quantos modos diferentes ela pode se vestir com essas roupas? 2 0 BIMESTRE INFORMÁTICA 3 0 ANO ANÁLISE COMBINATÓRIA Análise Combinatória é um conjunto de procedimentos que possibilita a construção de grupos diferentes formados por um número finito de elementos de

Leia mais

PRICÍPIO DA MULTIPLICAÇÃO: Podemos agora enunciar o princípio da multiplicação ou princípio fundamental da contagem, segue:

PRICÍPIO DA MULTIPLICAÇÃO: Podemos agora enunciar o princípio da multiplicação ou princípio fundamental da contagem, segue: ANÁLISE COMBINATÓRIA Prof. Aurimenes A análise combinatória é a parte da matemática que estuda os problemas de contagem, isto é, podemos calcular a quantidade de subconjuntos de um dado conjunto finito,

Leia mais

Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma:

Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma: Matemática Análise Combinatória 1 3 o ano Blaidi/Walter ago/09 Nome: Nº: Turma: 1. (U. F. Viçosa MG) Para controlar o estoque de um produto, uma empresa usa etiquetas formadas por uma parte literal e outra

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

ARRANJO E COMBINAÇÃO. n! n,p. =, com n p. (n - p)! 4! 4! 4,3 = = = 4! = 4.3.2.1 = 24 (4-3)! 1! Prof. Rivelino Matemática Básica TIPOS DE AGRUPAMENTOS

ARRANJO E COMBINAÇÃO. n! n,p. =, com n p. (n - p)! 4! 4! 4,3 = = = 4! = 4.3.2.1 = 24 (4-3)! 1! Prof. Rivelino Matemática Básica TIPOS DE AGRUPAMENTOS RRNJO E COMBINÇÃO TIPOS DE GRUPMENTOS Problema 01 n! n,p =, com n p. (n - p)! No problema 01, devemos contar quantas sequências de três seleções podemos formar com as quatro seleções semifinalistas. 4!

Leia mais

Análise e Resolução da prova do ICMS-PE Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento

Análise e Resolução da prova do ICMS-PE Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova do ICMS-PE Neste artigo, farei a análise das questões de Matemática

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

Análise Combinatória

Análise Combinatória Programa Institucional de Bolsas de Iniciação à Docência Projeto Matemática 1 Análise Combinatória Curitiba 2014 A preparação da sequência didática de Análise Combinatória se procedeu continuamente em

Leia mais

Faculdade de Engenharia de Ilha Solteira PROJETO TEIA DO SABER

Faculdade de Engenharia de Ilha Solteira PROJETO TEIA DO SABER Assunto: Análise Combinatória Professor: José Marcos Lopes Data: novembro de 2004 V - ARRANJOS COM REPETIÇÃO Objetivo: Sistematizar o conceito de arranjo com repetição. Da mesma forma que feito anteriormente,

Leia mais

Matemática Discreta - 08

Matemática Discreta - 08 Universidade Federal do Vale do São Francisco urso de Engenharia da omputação Matemática Discreta - 08 Prof. Jorge avalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Unidade 10 Análise combinatória. Introdução Princípio Fundamental da contagem Fatorial

Unidade 10 Análise combinatória. Introdução Princípio Fundamental da contagem Fatorial Unidade 10 Análise combinatória Introdução Princípio Fundamental da contagem Fatorial Introdução A escolha do presente que você deseja ganhar em seu aniversário, a decisão de uma grande empresa quando

Leia mais

Prova da FCC / Simulado

Prova da FCC / Simulado Prova da FCC / Simulado -- Sugiro que pense nas questões ANTES de estudar as resoluções! -- É assim que se aprende!! -- Vamos lá! Tenha fé! -- Qualquer dúvida...estou aqui! Técnico_Ministerial_FCC_2012

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 6ª Série / 7º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 6ª Série / 7º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 6ª Série / 7º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 Das figuras geométricas abaixo, qual delas não apresenta

Leia mais

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES Nome Nº Turma 3 EJAS Data / / Nota Disciplina Matemática Prof. Elaine e Naísa Valor 30 Instruções: TRABALHO DE

Leia mais

Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais

Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais Frente ula 0 GEOETRI NLÍTI oordenadas artesianas Ortogonais Sistema cartesiano ortogonal Sabemos que um sistema cartesiano ortogonal é formado por dois eios perpendiculares entre si com uma origem comum.

Leia mais

Onde usar os conhecimentos. os sobre Análise Combinatória e Probabilidade

Onde usar os conhecimentos. os sobre Análise Combinatória e Probabilidade VII ANÁLISE COMBINATÓRIA E PROBABILIDADE Por que aprender Análise Combinatória e Probabilidade obabilidade?... A teoria das probabilidades está diretamente ligada à vida moderna, pois estuda os métodos

Leia mais

O PENSAMENTO ALGÉBRICO

O PENSAMENTO ALGÉBRICO NOME: ANO: 8º ENSINO: FUNDAMENTAL TURMA: DATA: / / PROF(ª): GREGORIO TOMAS GONZAGA LÓGICA E MATEMÁTICA - APOSTILA (2º BIMESTRE) IMPORTANTE 1 Organize-se, guardando cada lista de exercícios que receber

Leia mais

POLÍGONOS. Definição Polígonos Convexos e não-convexos. Professor: Jarbas

POLÍGONOS. Definição Polígonos Convexos e não-convexos. Professor: Jarbas POLÍGONOS Definição Polígonos Convexos e não-convexos Professor: Jarbas Existem dois tipos de linhas: As linhas formadas por CURVAS: As linhas formadas por segmentos de RETAS: Linha Poligonal Linhas Poligonais:

Leia mais

Solução da prova da 2a fase OBMEP 2014 Nível 2. Questão 1. item a)

Solução da prova da 2a fase OBMEP 2014 Nível 2. Questão 1. item a) Questão 1 Cada nova pilha tem dois cubinhos a mais em sua base. Assim, como a terceira pilha tem 5 cubinhos em sua base, a quarta pilha tem 5 + 2 = 7 cubinhos e a quinta pilha tem 7 + 2 = 9 cubinhos em

Leia mais

Alguns Apontamentos Sobre Cálculo Combinatório

Alguns Apontamentos Sobre Cálculo Combinatório Alguns Apontamentos Sobre Cálculo Combinatório 1 O objectivo do Cálculo Combinatório é resolver problemas do tipo: quantas matriculas de carro é possível fazer em Portugal ; quantos números de telefone

Leia mais

Estruturas de Repetição

Estruturas de Repetição Estruturas de Repetição Lista de Exercícios - 04 Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior Estruturas de Repetição O que são e para que servem? São comandos que são utilizados

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 3

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 3 urso destinado à preparação para oncursos Públicos e RAIOÍNIO LÓGIO AULA RAIOÍNIO LÓGIO QUANTITATIVO ANÁLISE OMBINATÓRIA DEFINIAO: Analise ombinatória é a parte da Matemática que estuda o número de possibilidades

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Lista de Exercícios 04 Estruturas de Dados Homogêneas - Vetores

Lista de Exercícios 04 Estruturas de Dados Homogêneas - Vetores Instituto de Ciências Eatas e Biológicas ICEB Lista de Eercícios 04 Estruturas de Dados Homogêneas - Vetores 1) Escreva um programa que armazene em um vetor todos os números inteiros de 0 a 50. Após isso,

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA PRINCÍPIO MULTIPLICATIVO 1. ( FGV - SP ) Um restaurante oferece no cardápio 2 saladas distintas, 4 tipos de pratos de carne, 5 variedades de bebidas e 3 sobremesas diferentes. Uma

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta Questão São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite, 550 kcal; 00 g de manteiga,.00 kcal; kg de queijo,.00 kcal; uma banana, 80 kcal.

Leia mais

Questões utilizadas nas aulas de quinta (17/10)

Questões utilizadas nas aulas de quinta (17/10) Matemática Análise combinatória 3 os anos João/Blaidi out/13 Nome: Nº: Turma: Questões utilizadas nas aulas de quinta (17/10) 1. (Upe 2013) Seguindo a etiqueta japonesa, um restaurante tipicamente oriental

Leia mais

1. Quantos números de três algarismos diferentes se podem formar com os algarismos 1, 2, 3, 4, 5, 6?

1. Quantos números de três algarismos diferentes se podem formar com os algarismos 1, 2, 3, 4, 5, 6? ANÁLISE COMBINATÓRIA E PROBABILIDADES 1. Quantos números de três algarismos diferentes se podem formar com os algarismos 1, 2, 3, 4, 5, 6? (120) 2. Dos números formados nas condições do exercício anterior

Leia mais

Resolução da Prova de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015.

Resolução da Prova de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015. de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015. Considerando a proposição P: Se João se esforçar o bastante, então João conseguirá o que desejar, julgue os itens a seguir. 43 A proposição

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das 10 questões de Matemática da prova de Escrevente do Tribunal de Justiça de São Paulo. Em

Leia mais

Gabarito de Matemática do 6º ano do E.F.

Gabarito de Matemática do 6º ano do E.F. Gabarito de Matemática do 6º ano do E.F. Lista de Exercícios (L11) Querido(a) aluno(a), vamos retomar nossos estudos relembrando os conceitos de divisores, múltiplos, números primos, mmc e mdc. Divisor

Leia mais

1.2. PROBABILIDADE CLÁSSICA 7

1.2. PROBABILIDADE CLÁSSICA 7 1.2. PROBABILIDADE CLÁSSICA 7 1.2.3 Combinações e Permutações Esta seção explicam-se as noções básicas de análise combinatória e se desenvolve o fundo probabilística correspondente. Muitos problemas da

Leia mais

Estudando Função do 2º grau e Sistemas Lineares utilizando o Software Winplot

Estudando Função do 2º grau e Sistemas Lineares utilizando o Software Winplot Estudando Função do º grau e Sistemas Lineares utiliando o Software Winplot Silvia Cristina Freitas Batista Gilmara Teieira Barcelos Campos dos Gotacaes /RJ 008 Estudando Função do º grau e Sistemas Lineares

Leia mais

1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo

1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA IV 1 CLASSIFICAÇÃO De acordo com o gênero (número de lados), os polígonos podem receber as seguintes denominações: Na figura 2, o quadrilátero foi dividido em triângulos.

Leia mais

SUMÁRIO. 1. REVISÃO DE GINÁSIO Critérios de divisibilidade. 2. CONJUNTOS Introdução. Operações de conjuntos. Conjuntos numéricos

SUMÁRIO. 1. REVISÃO DE GINÁSIO Critérios de divisibilidade. 2. CONJUNTOS Introdução. Operações de conjuntos. Conjuntos numéricos SUMÁRIO 1. REVISÃO DE GINÁSIO Critérios de divisibilidade Reconhecimento de número primo Decomposição em fatores primos Aplicação Potência Expressão numérica 2. CONJUNTOS Introdução Representação de um

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

QUESTÃO 3 ALTERNATIVA E 24 é o maior número que aparece na figura. Indicamos abaixo a sequência de operações e seu resultado. 24 2 12 6 144.

QUESTÃO 3 ALTERNATIVA E 24 é o maior número que aparece na figura. Indicamos abaixo a sequência de operações e seu resultado. 24 2 12 6 144. OBMEP 009 Nível 1 1 QUESTÃO 1 Na imagem que aparece no espelho do Benjamim, o ponteiro dos minutos aponta para o algarismo, enquanto que o ponteiro das horas está entre o algarismo 6 e o traço correspondente

Leia mais

SÍNTESE DE ANÁLISE COMBINATÓRIA

SÍNTESE DE ANÁLISE COMBINATÓRIA SÍNTESE DE ANÁLISE COMBINATÓRIA 1) Princípio multiplicativo da contagem : Exemplo ilustrativo 1: Quantos numerais de três algarismos podemos formar usando apenas os algarismos 0,1,2,3,4,5 e 6 a) podendo

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 015 - Época especial Proposta de resolução GRUPO I 1. Como P A B = P A + P B P A B, substituindo os valores conhecidos, podemos calcular P A: 0,7 = P A + 0,4 0, 0,7

Leia mais

RESOLUÇÃO DAS QUESTÕES

RESOLUÇÃO DAS QUESTÕES RESOLUÇÃO DAS QUESTÕES Caro aluno, Disponibilizo abaixo a resolução das questões de Matemática e Raciocínio Lógico da prova de Perito Criminal da Polícia Científica de Goiás 2015. Note que as 3 primeiras

Leia mais

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data EXAME NACIONAL DO ENSINO BÁSICO Prova 23/ 1.ª Chamada/ 2008 Decreto-Lei n.º 6/2001, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Bilhete de Identidade n.º Emitido em (Localidade) Assinatura

Leia mais

MATEMÁTICA PROVA 3º BIMESTRE

MATEMÁTICA PROVA 3º BIMESTRE PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 3º BIMESTRE 9º ANO 2010 QUESTÃO 1 Na reta numérica abaixo, há

Leia mais

Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP

Aula de Matemática. Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Aula de Matemática Turma 1 28/03/13 e 05/04/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa do curso CURSINHO TRIU Conteúdo de Matemática (

Leia mais

Equação e Inequação do 2 Grau Teoria

Equação e Inequação do 2 Grau Teoria Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo

Leia mais

12 26, 62, 34, 43 21 37, 73 30 56, 65

12 26, 62, 34, 43 21 37, 73 30 56, 65 1 Questão 1 Solução a) Primeiro multiplicamos os algarismos de 79, obtendo 7 9 = 63, e depois somamos os algarismos desse produto, obtendo 6 + 3 = 9. Logo o transformado de é 79 é 9. b) A brincadeira de

Leia mais

Lista de Análise Combinatória.

Lista de Análise Combinatória. Lista de Análise Combinatória. Combinações e Permutações 1) O conjunto A possui 4 elementos e o conjunto B possui 7 elementos. Quantas são as funções f: A-> B? Quantas são as funções injetoras de f: A->B?

Leia mais

AULÃO DO CARECÃO NÃO TENHO MEDO DE CARA FEIA! E NEM DE PROVA TAMBÉM.

AULÃO DO CARECÃO NÃO TENHO MEDO DE CARA FEIA! E NEM DE PROVA TAMBÉM. AULÃO DO CARECÃO NÃO TENHO MEDO DE CARA FEIA! E NEM DE PROVA TAMBÉM. QUESTÕES Faço a fácil ou a difícil? Como controlar meu tempo? Como controlar a ansiedade? ESTOU COM MEDO!!!!! Fórmula da APROVAÇÃO Ser

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

PUC-Rio Desafio em Matemática 15 de novembro de 2008

PUC-Rio Desafio em Matemática 15 de novembro de 2008 PUC-Rio Desafio em Matemática 5 de novembro de 2008 Nome: Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão.0 2.0 3.0 4.0 5a.0 5b.0 6a.0 6b.0 7 2.0 Nota final 0.0 Instruções Mantenha seu celular

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 1 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Observe a

Leia mais

Brincando com operações de adição e subtração; unidade, dezena e centena; horas; números pares e ímpares e sequência numérica

Brincando com operações de adição e subtração; unidade, dezena e centena; horas; números pares e ímpares e sequência numérica PPGECE Brincando com operações de adição e subtração; unidade, dezena e centena; horas; números pares e ímpares e sequência numérica Contextualização Maria Madalena Dullius Adriana Belmonte Bergmann Fernanda

Leia mais

Programação Linear - Parte 4

Programação Linear - Parte 4 Mestrado em Modelagem e Otimização - CAC/UFG Programação Linear - Parte 4 Profs. Thiago Alves de Queiroz Muris Lage Júnior 1/2014 Thiago Queiroz (DM) Parte 4 1/2014 1 / 18 Solução Inicial O método simplex

Leia mais

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento

Leia mais

XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 1 6 o ou 7 o ano

XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 1 6 o ou 7 o ano XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 1 6 o ou 7 o ano Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES GO MG PA RS RN SC A duração

Leia mais

PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ. 8 100% 0,3 x% x = 3,75%. GABARITO: C. Classes D e E 2009 30,8% 2014 17% Taxa var.

PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ. 8 100% 0,3 x% x = 3,75%. GABARITO: C. Classes D e E 2009 30,8% 2014 17% Taxa var. PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ 6. ASSUNTO: MATEMÁTICA BÁSICA gotas ml 1 0, 5 5 ml em um minuto ml minutos 5 1 y 4 60 y 700 ml 7, litros 60per 7. ASSUNTO: MATEMÁTICA BÁSICA 60

Leia mais

PLANEJAMENTO 2016. Disciplina: Matemática Série: 6º Ano Ensino: Fundamental Prof.: Rafael

PLANEJAMENTO 2016. Disciplina: Matemática Série: 6º Ano Ensino: Fundamental Prof.: Rafael Disciplina: Matemática Série: 6º Ano Ensino: Fundamental Prof.: Rafael 1ª UNIDADE II ) Compreensão de fenômenos Contagem 1. Números pra quê? 2. Sistemas de numeração 3. O conjunto dos números naturais

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)

Leia mais

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento.

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. número de casos favoráveis probabilidade número de casos possíveis Nessa definição convém

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 2ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno.

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 2ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno. AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática ª Série do Ensino Médio Turma º bimestre de 5 Data / / Escola Aluno Questão Um projeto de pesquisa sobre dietas envolve adultos e crianças de ambos os sexos.

Leia mais

1 Análise combinatória

1 Análise combinatória Introdução Princípio fundamental da contagem Fatorial Arranjo e Permutação Arranjo com repetição Arranjo simples Permutação Combinação Exercícios de fixação Exercícios de vestibular 1 Análise combinatória

Leia mais

AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA

AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA Nome: nº Série: 3º ano Turma: Professora: Data: / / 1) A figura abaixo representa a planificação de um sólido geométrico. O sólido planificado é A) uma pirâmide de base

Leia mais

Lista de Exercícios - Subtração

Lista de Exercícios - Subtração Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 5 - Subtração - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=eedxautqdaa Gabaritos nas últimas páginas!

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

Canguru de Matemática Brasil 2016 Nível PE Respostas

Canguru de Matemática Brasil 2016 Nível PE Respostas Canguru de Matemática Brasil 2016 Nível PE Respostas Problemas de 3 pontos 1. Qual letra do quadro ao lado não está na palavra LAGOA? (A) B (B) L (C) G (D) N (E) O 1. Alternativa D A letra N não aparece

Leia mais

Características das Figuras Geométricas Espaciais

Características das Figuras Geométricas Espaciais Características das Figuras Geométricas Espaciais Introdução A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana e trata dos métodos apropriados para o estudo de objetos espaciais,

Leia mais

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) QUESTÃO 01. Um aluno da 5ª série do CMB saiu de casa e fez compras em quatro lojas, cada uma num bairro diferente. Em cada uma, gastou a metade

Leia mais

Projeto Jovem Nota 10 Análise Combinatória Lista A Professor Marco Costa

Projeto Jovem Nota 10 Análise Combinatória Lista A Professor Marco Costa 1 1. (Cesgranrio) Durante a Copa do Mundo, que foi disputada por 24 países, as tampinhas de Coca- Cola traziam palpites sobre os países que se classificariam nos três primeiros lugares (por exemplo: 1º

Leia mais

Nome: N.º: endereço: data: telefone: PARA QUEM CURSA O 6 Ọ ANO EM 2014. Disciplina:

Nome: N.º: endereço: data: telefone:   PARA QUEM CURSA O 6 Ọ ANO EM 2014. Disciplina: Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O Ọ ANO EM 0 Disciplina: MateMática Prova: desafio nota: QUESTÃO (PUC-0) Suponha que a professora Dona Marocas tenha pedido a seus alunos

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício

Leia mais

6 - PROVAS CESGRANRIO(CONCURSOS BANCO CENTRAL E OUROS)

6 - PROVAS CESGRANRIO(CONCURSOS BANCO CENTRAL E OUROS) 1 6 - PROVAS CESGRANRIO(CONCURSOS BANCO CENTRAL E OUROS) 01 - Em uma rua há 10 casas do lado direito e outras 10 do lado esquerdo. Todas as casas são numeradas de tal forma que, de um lado da rua, ficam

Leia mais

SIMULADO DO ENEM 2014

SIMULADO DO ENEM 2014 SIMULADO DO ENEM 2014 Para participar do Simulado do Enem 2014 não é necessário agendamento, antes feito pelo professor, para realização das provas. Os alunos participarão de forma independente e de acordo

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Matemática Financeira da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

PLANO DE AULA I. Escrito por Eliani Pereira de Souza Nascimento. Supervisionado por Rosana Silva Bonfim

PLANO DE AULA I. Escrito por Eliani Pereira de Souza Nascimento. Supervisionado por Rosana Silva Bonfim PLANO DE AULA I Escrito por Eliani Pereira de Souza Nascimento Funções no Geogebra 1 º Série do Ensino Médio (Matemática) Compreender a construção do gráfico de funções de 1o - grau, sabendo caracterizar

Leia mais

Ficha de Exercícios nº 2

Ficha de Exercícios nº 2 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 2 Matrizes, Determinantes e Sistemas de Equações Lineares 1 O produto de duas matrizes, A e B, é a matriz nula (mxn). O que pode

Leia mais

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO Provas 2º Bimestre 2012 MATEMÁTICA DESCRITORES DESCRITORES DO 2º BIMESTRE DE 2012

Leia mais

MATEMÁTICA ENSINO FUNDAMENTAL

MATEMÁTICA ENSINO FUNDAMENTAL MATEMÁTICA QUESTÃO 01 QUESTÃO 04 O mosaico é um desenho formado por uma ou mais formas geométricas que se encaixam perfeitamente ao cobrirem uma superfície O mosaico da figura abaixo é formado por octógonos

Leia mais

Matemática Prof.: Joaquim Rodrigues 1

Matemática Prof.: Joaquim Rodrigues 1 Matemática Prof.: Joaquim Rodrigues 1 NÁLISE COMBINTÓRI FTORIL: Sendo n um número natural maior que 1, definimos como fatorial de n e representamos por o número: n (n 1) (n ) (n )... 1 dotamos as seguintes

Leia mais

Resolução Numérica de Equações Parte I

Resolução Numérica de Equações Parte I Cálculo Numérico Resolução Numérica de Equações Parte I Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Aula de Matemática. Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP

Aula de Matemática. Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Aula de Matemática Semana do período zero Turma 2 28/03/13 Prof. Silvânia Alves de Carvalho Cursinho TRIU Barão Geraldo Campinas /SP Cursinho TRIU -Matemática Ementa Geometria plana Congruência de figuras

Leia mais

RESOLUÇÃO. O número inteiro mais próximo é 8.

RESOLUÇÃO. O número inteiro mais próximo é 8. 1 Marta quer comprar um tecido para forrar uma superfície de 10m. Quantos metros, aproximadamente, ela deve comprar de uma peça que tem 1,5m de largura e que, ao lavar, encolhe cerca de 4% na largura e

Leia mais

38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA

38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA 38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA Primeira Fase Nível 2 (8 o ou 9 o ano) Sexta-feira, 17 de junho de 2016. Caro(a) aluno(a): A duração da prova é de 3 horas. Você poderá, se necessário, solicitar

Leia mais

Raciocínio Lógico Matemático Cap. 8 Sequências Lógicas e Suas Leis de Formação

Raciocínio Lógico Matemático Cap. 8 Sequências Lógicas e Suas Leis de Formação Raciocínio Lógico Matemático Cap. 8 Sequências Lógicas e Suas Leis de Formação Sequências Lógicas e Suas Leis de Formação Estudaremos, neste capítulo, várias sequências lógicas e buscaremos explorar quais

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

Matemática. A probabilidade pedida é p =

Matemática. A probabilidade pedida é p = a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade

Leia mais

MANUAL DE CONCEITOS, REGRAS GERAIS E HIPÓTESES EXEMPLIFICATIVAS:

MANUAL DE CONCEITOS, REGRAS GERAIS E HIPÓTESES EXEMPLIFICATIVAS: Anexo Único à Portaria nº 055/11- SMT.GAB que refere-se à Conceitos, regras gerais e hipóteses exemplificativas contidas no Inciso XI do Artigo 4º da Portaria nº 055/11 SMT.GAB. MANUAL DE CONCEITOS, REGRAS

Leia mais

Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados?

Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados? o triângulo é uma das figuras mais importantes da Geometria, e também uma das mais interessantes. Na nossa vida diária, existem bons exemplos de aplicação de triângulos e de suas propriedades. Quer ver

Leia mais

NDMAT Núcleo de Desenvolvimentos Matemáticos

NDMAT Núcleo de Desenvolvimentos Matemáticos 01) Em um edifício residencial com 54 apartamentos, 36 condôminos pagam taxa de condomínio de R$ 180,00; para os demais, essa taxa é de R$ 240,00. Qual é o valor da taxa média de condomínio nesse edifício?

Leia mais

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Matemática Fascículo 05 Manoel Benedito Rodrigues

Matemática Fascículo 05 Manoel Benedito Rodrigues Matemática Fascículo 05 Manoel Benedito Rodrigues Índice Revisão de Tópicos do Ensino Fundamental Exercícios...1 Dicas...2 Resoluções... Revisão de Tópicos do Ensino Fundamental Exercícios 01. Sobre o

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Eperimentos de Bernoulli) Considere as seguintes eperimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na mosca

Leia mais

Polígonos e mosaicos

Polígonos e mosaicos A UUL AL A Polígonos e mosaicos A regularidade de formas encontradas na natureza tem chamado a atenção do ser humano há muitos séculos. Ao observar e estudar essas formas, o homem tem aprendido muitas

Leia mais