Utilização de redes neurais artificiais na classificação de níveis de degradação em pastagens

Tamanho: px
Começar a partir da página:

Download "Utilização de redes neurais artificiais na classificação de níveis de degradação em pastagens"

Transcrição

1 Revista Brasileira de Engenharia Agríola e Ambiental v.3, n.3, p , 2009 Campina Grande, PB, UAEA/UFCG Protoolo /05/2007 Aprovado em 29/0/2008 Utilização de redes neurais artifiiais na lassifiação de níveis de degradação em pastagens César S. Chagas, Carlos A. O. Vieira 2, Elpídio I. Fernandes Filho 3 & Waldir de C. Júnior 4 RESUMO Este trabalho teve por objetivo avaliar a efiiênia dos lassifiadores redes neurais artifiiais (RNA) e o de máxima verossimilhança (Maxver) na lassifiação do uso da terra no muniípio de Viçosa, MG, a partir de imagens do sensor ASTER, om ênfase nos níveis de degradação das pastagens. Neste estudo, foram identifiados três níveis de degradação das pastagens (moderado, forte e muito forte) e avaliada uma omposição da imagem do sensor ASTER ontendo as 3 bandas do visível e infravermelho próximo, om resolução espaial de 5 m. O simulador de redes neurais empregado foi o Java Neural Network Simulator e o algoritmo de aprendizado, o bakpropagation. Os resultados mostram que a lassifiação por redes neurais, embora apresente resultado ligeiramente superior, teve desempenho estatistiamente semelhante ao obtido pela lassifiação pelo Maxver, obtendo um índie Kappa de 0,80, ontra 0,79, respetivamente. Nas lassifiações realizadas a lasse que apresentou maior erro de lassifiação foi a pastagem no nível de degradação forte, enquanto a maior exatidão na lassifiação foi obtida pelo afé, para ambos os lassifiadores, om 00 e 96%, respetivamente. Palavras-have: aster, sensoriamento remoto, lassifiação supervisionada Use of artifiial neural networks in the lassifiation of degradation levels of pastures ABSTRACT The aim of this work is to evaluate the artifiial neural networks and the maximum likelihood lassifiation performanes to lassify land uses at Viçosa, Minas Gerais State, using ASTER images in order to verify degradation levels of pastures. In this study, three different levels of pasture degradation have been identified (moderate, strong and very strong) and an image omposition of 3 bands was tested (overing the visible and the near infra-red) with 5 m of spatial resolution. The neural networks simulator used was the Neural Java Network Simulator, with a feed forward model and the learning algorithm of bak propagation. The obtained results show that the lassifiation using neural networks, while presenting a slightly superior result, had a statistially similar performane ompared to the maximum likelihood, getting a Kappa index of 0.80, against 0.79, respetively. In relation to individual performanes, the lass that presented the greatest error of lassifiation was pasture in the level of very strong degradation, while the largest auray in the lassifiation was obtained for offee, for both lassifiers, with 00 and 96% (respetively, Maxver and neural networks). Key words: aster, remote sensing, supervised lassifiation Embrapa Solos. Rua Jardim Botânio 024, Jardim Botânio, CEP , Rio de Janeiro, RJ. Fone (2) DEC/UFV, CEP , Viçosa, MG. Fone (3) DPS/UFV. Fone (3) Embrapa Solos. Fone (2)

2 320 César S. Chagas et al. INTRODUÇÃO Verifia-se, na Zona da Mata Mineira, um predomínio quase total da utilização das terras om pastagens. O manejo inadequado e as defiiênias nutriionais do solo são os fatores que mais onorrem para a degradação das pastagens, nesta região (Carvalho, 998). A análise de dados de sensores remotos, devido ao seu baixo usto, periodiidade e esala ompatível, pode ontribuir muito para a identifiação de níveis de degradação em pastagens (Sano et al., 2000); no entanto, as tentativas para mapear pastagens em regiões tropiais e subtropiais freqüentemente têm suesso limitado, devido a grande onfusão om outras feições. Várias ténias vêm sendo apliadas na análise e lassifiação do uso da terra, através de dados de sensoriamento remoto. Neste sentido, vários autores têm ressaltado que diferentes algoritmos de lassifiação produzem diferentes resultados, até mesmo quando se utiliza o mesmo onjunto de amostras de treinamento (Benediktsson et al., 990; Hepner et al., 990; Bishof et al., 992; Kanellopoulos et al., 992; Civo, 993; Skidmore et al., 997). As apliações do algoritmo de máxima verossimilhança (Maxver) são bastante onheidas na literatura de sensoriamento remoto, estando este algoritmo presente em vários softwares de proessamento de imagens; e frequentemente, é usado omo rotina de lassifiação padrão ontra o qual outros algoritmos de lassifiação são omparados. Este algoritmo identifia a forma, o tamanho e a orientação das amostras de treinamento (Vieira, 2000). Se a hipótese assumida de uma distribuição normal para ada lasse da área de treinamento está orreta, então a lassifiação tem uma probabilidade mínima de erro e o algoritmo é uma esolha aertada (Paola & Showengerdt, 994). Neste sentido, Nasimento et al. (2006) utilizaram imagens do sensor ASTER na identifiação de níveis de degradação em pastagens, na região de Viçosa, MG, usando o algoritmo de lassifiação distânia de Mahalanobis (que possui formulação similar ao lassifiador Maxver). A exatidão global obtida para a lassifiação realizada foi de 85,07% e o índie Kappa de 0,83, usando-se as bandas do visível e infravermelho próximo que possuem resolução espaial de 5 m. Na última déada, as redes neurais artifiiais têm experimentado um grande interesse e têm sido apliadas om suesso no reonheimento de padrões de imagens de satélite. Uma das prinipais vantagens das redes neurais é a possibilidade de manipulação efiiente de grandes quantidades de dados, mas a prinipal razão para o seu uso na lassifiação de dados de sensoriamento remoto e dados geográfios, é que as redes neurais não assumem nenhuma distribuição, diferentemente da estatístia paramétria tradiional, que pressupõe que as lasses informaionais apresentam distribuição normal (Atkinson & Tatnall, 997). Segundo Yool (998), os resultados alançados até o momento sugerem que as redes neurais podem ser robustas quando dados espetrais são indistintos ou esparsos, e que as redes são apazes de produzir exatidões que exedem a maioria dos métodos de reonheimento de padrão que utilizam a estatístia onvenional. Hepner et al. (990) utilizaram redes neurais para lassifiar a obertura do terreno a partir de imagens do Landsat TM e onluíram que abordagem de redes neurais foi mais efiiente que a lassifiação estatístia tradiional. Bishof et al. (992) utilizaram uma rede neural para lassifiar imagens multiespetrais e ompararam os resultados om aqueles obtidos pelo lassifiador Maxver. Esses autores relataram, ainda, uma exatidão global de 93,% ontra 89,7% obtidos om o uso do Maxver. Venkatesh & Raja (2003) também utilizaram redes neurais artifiiais na lassifiação de imagens de satélites multiespetrais. As lasses de obertura identifiadas foram: florestas, agriultura, montanhas, estradas, terrenos rohosos e orpos d água. A abordagem empregada resultou em uma exatidão de mais de 99% na disriminação das lasses itadas. Embora se tenha utilizado em vários estudos, redes neurais na lassifiação de diversas lasses informaionais a partir de dados de sensores remotos, o presente estudo se destaa omo uma primeira tentativa na lassifiação de uma mesma lasse informaional (pastagem) em diferentes níveis de degradação, a partir de dados do sensor ASTER empregando-se a abordagem por redes neurais; assim, este estudo tem omo objetivo omparar a efiiênia de redes neurais artifiiais om o lassifiador Maxver para a lassifiação do uso das terras, om ênfase nos níveis de degradação das pastagens, em Viçosa, Minas Gerais. MATERIAL E MÉTODOS Área de estudo A área estudada ompreende a baia do ribeirão São Bartolomeu, no Muniípio de Viçosa, Minas Gerais, loalizada entre as oordenadas UTM e m N e e m E, fuso 23S (Figura ). O ribeirão São Bartolomeu é responsável por parte do abasteimento de água da idade de Viçosa e parte da água utilizada na Universidade Federal de Viçosa. Assim omo toda a região da Zona da Mata de Minas Gerais, a área da baia é araterizada por uma topografia bastante aidentada. São enontrados, ainda, na baia, vales ujos fundos orrespondem ao leito maior, periodiamente inundável, seguido de terraços assimétrios onde é mais freqüente a prátia de agriultura e habitações (Vilela, 998). Os proessos de expansão urbana e de implantação de pastagens e, em menor esala, ultivos agríolas, provoaram a substituição de grande parte da vegetação nativa que, atualmente, é onstituída de vegetação seundária loalizada, de maneira dispersa nos topos de morros. Material Foi utilizada, neste estudo, uma imagem do sensor AS- TER (Advaned Spaeborne Thermal Emission and Refletion Radiometer), obtida em 05/04/200, que oinide om o iníio da estação sea na região. As bandas usadas foram as do visível e infravermelho próximo (3) om resolução espaial de 5 m. R. Bras. Eng. Agrí. Ambiental, v.3, n.3, p , 2009.

3 Utilização de redes neurais artifiiais na lassifiação de níveis de degradação em pastagens 32 Figura. Loalização da área estudada O simulador de redes neurais empregado foi o Java Neural Network Simulator desenvolvido pelo Instituto Wilhem-Shikard para Ciênia da Computação (WSI) em Tübingen, Alemanha. Este simulador é baseado no Stuttgart Neural Network Simulator 4.2 Kernel (Zell et al., 996), om uma nova interfae gráfia. O algoritmo de aprendizado foi o bakpropagation desenvolvido nos anos 80, que é um algoritmo usado para lassifiação supervisionada. Nas etapas de oleta de amostras de treinamento e validação, preparação dos dados e geração dos arquivos utilizados na lassifiação da imagem pelos dois lassifiadores e preparação dos dados após a lassifiação da imagem propriamente dita, foram utilizados os seguintes exeutáveis desenvolvidos por Vieira (2000): Funpow e Gerapat; além desses, se utilizaram o software de SIG ArGIS 9.0 e o software de proessamento de imagens digitais ERDAS Imagine 8.5. Levando-se em onsideração as araterístias das pastagens da região da Zona da Mata de Minas Gerais, om predominânia da espéie Melinis minutiflora, Beauv, e os indiadores visuais de degradação, foram onsiderados os níveis de degradação identifiados por Nasimento et al. (2006) que são: pastagem no nível de degradação moderado (pastagem 2), pastagem no nível de degradação forte (pastagem 3) e pastagem no nível de degradação muito forte (pastagem 4), onforme apresentado na Tabela. Tabela. Níveis de degradação de pastagens utilizados Níveis de degradação Pastagem Pastagem 2 Pastagem 3 Pastagem 4 Parâmetros limitantes Deterioração B om vigor e boa qualidade Leve (não identifiado ) Baixo vigor, qualidade e baixa população Baixo vigor, qualidade e baixa população, assoiado om a presença de invasoras e/ou upins Baixo vigor, qualidade e baixa população, assoiado om a presença de invasoras, upins e solo desoberto Fonte: Adaptado de Spain & Gualdrón (988) e Moreira & Assad (2000) Moderado Forte Muito forte Metodologia A lassifiação da imagem pelos dois lassifiadores foi realizada om os mesmos onjuntos de dados; assim, foram oletados dois onjuntos de amostras independentes, um para treinamento e outro para validação. O número de amostras para treinamento foi estipulado em 250 para ada lasse e o tamanho do onjunto de validação em ; além das lasses referentes aos níveis de degradação das pasta- R. Bras. Eng. Agrí. Ambiental, v.3, n.3, p , 2009.

4 322 César S. Chagas et al. gens, desritas anteriormente, onsideraram-se também as lasses mata (floresta primária ou seundária), afé e área urbana/solo exposto, totalizando 6 lasses informaionais. As urvas de respostas espetrais médias dos onjuntos de dados de treinamento dessas lasses são mostradas na Figura 2. Média das amostras de treinamento a b d e f Banda Banda 2 Banda 3 Figura 2. Distribuição das variáveis disriminantes entre as lasses avaliadas. a mata; b afé; pastagem 2; d pastagem 3; e pastagem 4 e f área urbana/solo exposto Segundo Vieira (2000), a seleção do onjunto de dados de treinamento requer algum uidado. Alguns pesquisadores onsideram que um onjunto seleionado aleatoriamente é a melhor opção; entretanto, o onjunto ideal de treinamento não é aleatório, mas aquele no qual ada exemplo pode ser usado pelo modelo para reforçar um prinípio diferente da relação de entrada-saída, assim, a amostragem utilizada foi a do tipo aleatória estratifiada. Para tanto, e om base nos padrões das lasses informaionais obtidos no ampo om GPS (Ground Position System), foram oletadas, aleatoriamente, amostras dentro de ada uma das lasses onsideradas. Uma vez definidos os onjuntos de amostras ontendo as informações relativas à imagem utilizada, todos os dados da imagem do sensor ASTER foram reesalonados entre os valores de 0 e, para failitar o proesso de treinamento da rede e simplifiar sua estrutura; isto foi feito para evitar a saturação da rede, primeiro porque valores grandes poderiam impedir a solução do problema e, segundo, para prevenir que grandes variações de uma variável pouo importante esondam pequenas, porém importantes variações em outras variáveis. Embora não existam limites teórios sobre os valores de entrada das redes neurais, sua estabilidade é usualmente melhorada quando se usam limites omparáveis entre variáveis (Master, 993). Realizaram-se, após este proedimento, o treinamento e a validação das amostras pelo lassifiador Maxver. Esta etapa foi implementada no exeutável denominado Funpow desenvolvido por Vieira (2000). A opção pelo emprego deste exeutável se deve à possibilidade de utilização dos mesmos formatos de arquivos de treinamento e validação que foram usados para a lassifiação pelas redes neurais; em seguida, esses mesmos onjuntos de amostras foram utilizados no treinamento e validação das redes neurais. Diferentes arquiteturas foram testadas, todas om o mesmo número de neurônios na amada de entrada (3 bandas do ASTER), variando o número de neurônios na amada interna e/ou números de amadas internas e todas tendo o mesmo número de neurônios na amada de saída (6 lasses de uso terra). O número de neurônios da amada(s) interna(s) foi determinado através de tentativa e erro, onforme proedimento estabeleido por Hirose et al. (99). O erro do treinamento mede a diferença entre os valores estimados e os valores desejados para o onjunto de treinamento. O treinamento das redes utilizando-se um aprendizado supervisionado, onsistiu dos seguintes proedimentos: i) aloação aleatória dos pesos interneurônios. Os pesos foram iniializados om pequenos valores aleatórios (entre -0,5 e 0,5) para evitar o problema de que a rede neural seja saturada om valores grandes ou a difiuldade da rede em aprender devido à presença de valores homogêneos (Vieira, 2000); ii) determinação da taxa de aprendizado. Esta determinação para um problema espeífio não é tarefa simples. Valores típios de η estão na faixa de 0, a,0. Pouos são os exemplos em que o treinamento é mais rápido om valores aima de,0; algumas vezes, o valor de η apropriado para omeçar o treinamento é inapropriado quando uma rede alança pontos mais próximos ao seu mínimo global, ao término do treinamento (Cauldill, 99). A taxa de aprendizado utilizada foi de 0,2, onsiderando-se ilos de aprendizagem. Ao final de todo o proesso de treinamento, as redes que apresentaram os menores valores de MSE (Mean Square Error, erro médio quadrátio) foram submetidas a validação para esolha daquela(s) que seria(m) utilizada(s) na lassifiação do uso da terra da área estudada em omparação om a imagem lassifiada pelo algoritmo Maxver. A avaliação onstou da determinação do nível de exatidão ou onfiança da lassifiação (índie Kappa) e da exatidão global da lassifiação de ada rede onsiderada e do algoritmo Maxver, através da análise da matriz de onfusão (Congalton, 99). A matriz de onfusão tem sido reonheida omo a mais importante ténia de estimativa da exatidão de produtos de dados de sensores remotos (Story & Congalton, 986; Skidmore & Turner, 989). A exatidão global (P o ) foi omputada pela divisão da soma da diagonal prinipal (número de lassifiações orretas ou onordânia real) pelo número total de amostras tomadas, segundo a Equação: P o = donde N representa o número total de amostras ontempladas pela matriz de onfusão; n ii representa os elementos da diagonal prinipal e m, o número de lasses presentes na matriz. O Coefiiente Kappa foi obtido segundo a Equação: Ka = n i= m i= x ii N i= n ii n 2 x x i= x i x i i i i () (2) R. Bras. Eng. Agrí. Ambiental, v.3, n.3, p , 2009.

5 Utilização de redes neurais artifiiais na lassifiação de níveis de degradação em pastagens 323 donde Ka é uma estimativa do oefiiente Kappa; x ii é o valor na linha i e oluna i; linhas totais x i é a soma de linhas i e olunas totais x é a soma das olunas i da matriz de onfusão; n é o número total de amostras e, o número total de lasses. Por sua vez, o teste estatístio para testar a signifiânia de uma matriz de onfusão individual é dado pela Equação: Z é padronizado e distribuído normalmente e var é variânia do oefiiente de Kappa (Ka), que pode ser omputada usandose o método Delta (Bishop et al., 975; Kalkhan et al., 997). Uma matriz de signifiânia de Kappa foi gerada para verifiar a existênia de diferenças signifiativas ou não, entre os resultados obtidos pelas diferentes redes neurais testadas, de modo a permitir a esolha da melhor arquitetura de rede para a lassifiação final da imagem; além disso, outra matriz de signifiânia de Kappa foi gerada para testar a signifiânia das diferenças entre dois lassifiadores, onforme Congalton & Mead (986). Um teste estatístio para verifiar a signifiânia das diferenças entre dois ou mais lassifiadores (representado pelas suas respetivas matrizes de onfusão) usando-se a análise do oefiiente de Kappa é proposta omo uma abordagem alternativa para omparação de matrizes de onfusão independentes; desta forma, os resultados da análise de Kappa podem ser sumarizados na forma de uma matriz de signifiânia na qual os elementos da diagonal prinipal indiam se o resultado da respetiva lassifiação é estatistiamente diferente de uma lassifiação randômia. Na matriz de signifiânia os valores de Z podem ser omputados usando-se a Equação 3 e a variânia do oefiiente Kappa obtida através da Equação 4. Var(K ) a = donde: θ = θ = 2 n n 2 n i= i= Z = Ka var(ka) 2 2 θ( θ) 2( θ)(2 θ θ 2 θ3) ( θ) ( θ 4 42) ( θ 2 ) ( θ 2 ) ( θ 2 ) x ii x x i i (3) (4) (5) (6) θ = 3 θ 4 = n 2 n 3 i= x(x + x ) i= j= ii i i 2 x(x + x ) j ij j Por outro lado, os elementos fora da diagonal indiam, mais uma vez, se Z Z α/2, que dois lassifiadores independentes são signifiativamente diferentes. A fórmula usada para testar a signifiânia entre dois oefiientes Kappa independentes é dada pela equação a seguir: Z = K K var(k ) + var(k ) a em que K a e K a2 são os dois oefiientes Kappa que estão sendo omparados (Congalton & Mead, 986). a RESULTADOS E DISCUSSÃO Classifiação pelo Maxver Primeiro, fez-se a lassifiação das amostras da imagem ASTER onsiderada, utilizando-se o lassifiador Maxver. Os resultados desta lassifiação, obtidos om base nas amostras de validação, estão apresentados na Tabela 2 e mostraram uma exatidão global de 82,8% e índie Kappa de 0,793, om variânia de 0, Nesta avaliação, a lasse que apresentou o maior erro na lassifiação foi a lasse pastagem 3 (pastagem no nível de degradação forte), om 40,7% dos pixels que deveriam ser assinalados à esta lasse, sendo assinalados a outras, prinipalmente à lasse pastagem 4, om a qual apresentou a maior onfusão (24%), e à lasse pastagem 2 (3,33%). Esta onfusão também foi verifiada por Nasimento et al. (2006). Por sua vez, a maior onfusão onstatada para a lasse pastagem 4 (pastagem no nível de degradação muito forte) foi om a lasse área urbana/solo exposto, om 2,67% dos pixels sendo assinalados erroneamente a esta última. Situação semelhante foi notada para a lasse área urbana/solo exposto, que também teve 2,67% dos seus pixels assinalados erroneamente à lasse pastagem 4. Por outro lado, mata, afé e pastagem 2 (pastagem no nível de degradação moderado, respetivamente, om exatidão de 93,3, 00 e 94% dos pixels orretamente lassifiados) a2 a2 (7) (8) (9) Tabela 2. Matriz de onfusão da lassifiação pelo Maxver Classes Mata Café Pastagem 2 Pastagem 3 Pastagem 4 Área Urbana/Solo exposto Total Exatidão do usuário Mata , 2 59,2 Café , 7 88,956 Pastagem , 6 20,285 Pastagem , 6,339 Pastagem , 9 4,79 Área Urbana/solo exposto , 4 20,348 Total 900 Exatidão do Produtor 93, 3 00, 0 94, 0 59, 3 74, 0 76, 0 Exatidão global = 82,8; Kappa = 0,793; Variânia = 0,000227; Z alulado = 52,68 e Z tabelado =,96 Z R. Bras. Eng. Agrí. Ambiental, v.3, n.3, p , 2009.

6 324 César S. Chagas et al. foram as lasses que apresentaram os melhores resultados, onforme a Tabela 2. Classifiação pelas Redes Neurais Realizou-se a lassifiação da imagem ASTER pelas redes neurais, om o mesmo onjunto de amostras de treinamento e validação utilizado na lassifiação pelo Maxver. A omparação iniial onstou da verifiação do MSE após ilos de aprendizado. Nesta avaliação foram testadas várias arquiteturas de redes para esolha daquelas que seriam submetidas a validação final, ujos resultados são mostrados na Figura 3. MSE 0,250 0,200 0, 0,00 0, nº de neurônios na amada interna Figura 3. Resultados do treinamento das redes após ilos de aprendizado O aumento da omplexidade da rede om a adição de neurônios na amada interna não melhorou substanialmente o desempenho da lassifiação (Figura 3); desta forma, se seleionaram om base nesta avaliação, 6 arquiteturas de redes, ontendo uma amada interna (5, 6, 7, 8, 9 e 0 neurônios, respetivamente), as quais foram então validadas e uma matriz de signifiânia de Kappa foi gerada para avaliar a existênia de diferenças ou não entre as redes, além de possibilitar a esolha de uma arquitetura que permitisse uma exatidão melhor da lassifiação (Tabela 3). Segundo Foody & Arora (997), a arquitetura de uma rede neural artifiial pode ter influênia signifiativa em sua habilidade para lassifiar dados de sensores remotos. Nesta Tabela 3. Matriz de signifiânia de Kappa para as arquiteturas de redes neurais testadas Redes Exatidão global 82, 4 83, 3 79, 9 8, 3 82, 84, 2 Kappa 0,789 0,800 0,759 0,776 0,785 0,8 Variânia 0,23 0,222 0,256 0,243 0,235 0,22 5 5,9 6 0,52 53,69 7,36,86 47,44 8 0,60, 0,76 49,78 9 0,9 0,70,7 0,4 5,2 0,05 0,53 2,40*,64,23 55,70 * existe diferença signifiativa a nível de 95% valores multipliados por 000 avaliação, os maiores valores de exatidão global e índie Kappa e, onseqüentemente, os menores de variânia, foram obtidos om uma arquitetura de rede om apenas uma amada interna ontendo 0 neurônios, seguida da rede om 6 neurônios na amada interna. A Tabela 3 mostra, ainda, que todos os valores da diagonal são maiores que Z tabelado (,96), indiando que a lassifiação de todas as redes é signifiativamente melhor que uma lassifiação randômia. O melhor desempenho foi obtido om a utilização da rede om uma amada interna ontendo 0 neurônios (Z alulado de 55,70); no entanto, esta é signifiativamente diferente apenas da rede om 7 neurônios na amada interna. Uma vez que redes menores generalizam melhor, a rede om 6 neurônios, por ser mais simples, foi utilizada para lassifiação da imagem ASTER. A matriz de onfusão obtida para esta rede neural é apresentada na Tabela 4. Nesta avaliação, a lasse que apresentou o maior erro na lassifiação, tal omo oorreu para a lassifiação pelo Maxver, foi a lasse pastagem 3 (pastagem no nível de degradação forte), om 29,30% dos pixels que deveriam ser assinalados a esta lasse, mas o foram a outras lasses, prinipalmente à lasse pastagem 4, om a qual apresentou a maior onfusão (7,33%) e à lasse área urbana/solo exposto (8%). Por sua vez, a maior onfusão verifiada para a lasse pastagem 4 (pastagem no nível de degradação muito forte) foi om a lasse área urbana/solo exposto, om 5 (0%) dos pixels sendo assinalados erroneamente a esta última. Situação semelhante também foi verifiada para a lasse área urbana/solo exposto, Tabela 4. Matriz de onfusão da lassifiação pela rede neural Classes Mata Café Pastagem 2 Pastagem 3 Pastagem 4 Área Urbana/Solo exposto Total Exatidão do usuário Mata , 5 52,668 Café , 5 39,77 Pastagem , 2,759 Pastagem , 6 5,925 Pastagem , 7 7,877 Área Urbana/solo exposto , 3 20,446 Total 900 Exatidão do Produtor 92, 7 96, 0 78, 7 70, 7 80, 7 8, 3 Exatidão global = 83,3; Kappa = 0,80; Variânia = 0,000222; Z alulado = 53,672 e Z tabelado =,96 Z R. Bras. Eng. Agrí. Ambiental, v.3, n.3, p , 2009.

7 Utilização de redes neurais artifiiais na lassifiação de níveis de degradação em pastagens 325 que também teve 0% dos seus pixels assinalados erroneamente à lasse pastagem 4. A lasse pastagem 2 (pastagem no nível de degradação moderado) que na lassifiação pelo Maxver apresentou baixa onfusão om outras lasses, teve onfusão signifiativa om a lasse pastagem 3, om 5,33% dos pixels assinalados erroneamente a esta última lasse. Por outro lado, mata e afé, respetivamente om 92,7 e 96% dos pixels orretamente lassifiados, foram as lasses que apresentaram os melhores resultados, onforme a Tabela 4. Comparação entre a Rede Neural e o Maxver Um número onsiderável de trabalhos tem omparado a lassifiação de imagens de satélites por redes neurais om os métodos de lassifiação onvenionais (Benediktsson et al., 990; Bishof et al., 992; Civo, 993). De maneira geral, a utilização de redes neurais na lassifiação de dados de sensores remotos tem mostrado desempenho superior àquele obtido om o algoritmo Maxver. Segundo Kanellopoulos & Wilkinson (997), um aspeto que tem sido negligeniado nas omparações entre lassifiadores estatístios e redes neurais, é a existênia de diferenças signifiativas entre o desempenho desses lassifiadores, quando se onsideram as lasses, individualmente; então, para algumas lasses a abordagem por redes neurais fornee maior exatidão, enquanto para outras os métodos onvenionais são superiores. Este efeito resulta dos modelos matemátios muito distintos assumidos nos diferentes lassifiadores e do modo omo eles dividem o espaço araterístio. Dentre as lasses avaliadas, a menor exatidão foi obtida para a lasse pastagem 3 (pastagem no nível de degradação forte) para ambos os lassifiadores, om 59,3% (Maxver) e 70,7% (redes neurais) (Tabelas 2 e 4, respetivamente). Por outro lado, a maior exatidão individual foi obtida para a lasse afé, para a lassifiação realizada pelo algoritmo Maxver (00%). Na lassifiação pela rede neural, a maior exatidão individual também foi obtida para a lasse afé, om 96% de exatidão (Tabela 4). As lasses avaliadas tiveram omportamento difereniado entre os lassifiadores utilizados. Mata, afé e pastagem 2, foram as lasses mais bem lassifiadas pelo lassifiador Maxver, que produziu uma exatidão de 93,3, 00 e 94%, respetivamente; por outro lado, as lasses pastagem 3, pastagem 4 e área urbana/solo exposto, foram mais bem identifiadas pelo lassifiador por redes neurais, om 78,7, 70,7 e 8,3% de exatidão, respetivamente. A análise da matriz de signifiânia de Kappa (Tabela 5) india não haver diferença signifiativa entre a lassifiação Tabela 5. Matriz de signifiânia de Kappa para os lassifiadores avaliados Imagens appa ariânia axver ede Neural Maxver,79, ,6,33 Rede Neural 0,80 0,00022 K V M R ,69 Figura 4. Mapas temátios obtidos pelos lassifiadores R. Bras. Eng. Agrí. Ambiental, v.3, n.3, p , 2009.

8 326 César S. Chagas et al. por redes neurais e a lassifiação Maxver. Os resultados obtidos indiam que, apesar das redes neurais apresentarem desempenho superior, em valores absolutos, para a lassifiação de dados de sensores remotos em relação ao algoritmo Maxver, os resultados (performanes) não diferem estatistiamente para um nível de signifiânia de 95%. Embora os lassifiadores não tenham apresentado diferenças signifiativas (0,80 e 0,79, respetivamente redes neurais e Maxver), há que se destaar que o lassifiador por redes neurais teve desempenho superior ao Maxver na lassifiação de duas das três lasses de pastagem onsideradas (pastagem 3 e pastagem 4), objetivo prinipal deste estudo. Outrossim, há de se onsiderar que a abordagem por redes neurais requer mais tempo e mais reursos omputaionais para treinar o sistema om as diferentes onfigurações de parâmetros testadas que a abordagem lássia pelo algoritmo Maxver; no entanto, para Yool (998), a abordagem por redes neurais leva vantagem sobre os métodos onvenionais de lassifiação supervisionada, omo o algoritmo Maxver, porque estes se mostram inadequados e impratiáveis para o mapeamento de grandes áreas, o que não é o aso da área estudada. O resultado da lassifiação final das imagens pelos lassifiadores testados é apresentado na Figura 4, na qual se verifia, visualmente, que a lassifiação pelo algoritmo Maxver e a lassifiação pela rede neural apresentam resultados muito próximos para todas as lasses, om as disordânias verifiadas, basiamente, nos limites entre as lasses. A análise da onordânia entre as lassifiações mostra que a onordânia entre a lassifiação pela rede neural e pelo algoritmo MAXVER foi de 66,50% (Figura 5). No geral, os resultados alançados pelos lassifiadores são semelhantes àqueles obtidos por Nasimento et al. (2006) que utilizaram a distânia de Mahalanobis (formulações similares ao Maxver) para a lassifiação dos níveis de degradação em pastagens em uma mirobaia na região de Viçosa, utilizando também uma imagem do sensor ASTER. CONCLUSÕES. Os resultados alançados neste estudo omprovam, mais uma vez, a efiiênia da utilização de redes neurais artifiiais para lassifiação do uso e obertura do solo, podendo este lassifiador ser onsiderado uma alternativa viável para a lassifiação de níveis de degradação de pastagens, prinipalmente em grandes áreas, omo no aso da Zona da Mata Mineira. 2. O lassifiador, baseado nas redes neurais, produziu uma exatidão na lassifiação geral em valores absolutos superior porém estatistiamente semelhante, omprovada através dos testes estatístios utilizados, ao lassifiador lássio da máxima verossimilhança. 3. A exatidão geral da lassifiação baseada nas redes neurais, mostrou-se bastante influeniada pela arquitetura de rede utilizada. 4. Em todas as análises realizadas a lasse que apresentou o maior erro para ambos os lassifiadores, foi a lasse pastagem no nível de degradação forte, bastante onfundida om a lasse pastagem no nível de degradação muito forte. LITERATURA CITADA Figura 5. Comparação entre os mapas temátios produzidos pelos lassifiadores Atkinson, P. M.; Tatnall, A. R. L. Neural networks in remote sensing. International Journal of Remote Sensing, v.8, n.4, p , 997. Benediktsson, J. A.; Swain, P. H.; Ersoy, O. K. Neural network approahes versus statistial methods in lassifiation of multisoure remote sensing data. Transations on Geosiene and Remote Sensing, v.28, p , 990. Bishof, H.; Shneider, W.; Pinz, A. J. Multi-spetral lassifiation of Landsat images using neural network. Transations on Geosiene and Remote Sensing, v.30, p , 992. Bishop, Y.; Fienberg, Y. S.; Holland, P. Disrete multivariate analysis: Theory and pratie. Cambridge: MIT Press p. Carvalho, M. M. Reuperação de pastagens degradadas em áreas de relevo aidentado. In: Dias, L. E.; Mello, J. W. V. (eds.). Reuperação de áreas degradadas. Viçosa: UFV-DPS/Soiedade Brasileira de Reuperação de Áreas Degradadas, 998. p Cauldill, M. Neural network: Training tips and tehniques. AI Experts, v.6, p.56-6, 99. R. Bras. Eng. Agrí. Ambiental, v.3, n.3, p , 2009.

9 Utilização de redes neurais artifiiais na lassifiação de níveis de degradação em pastagens 327 Civo, D. L. Artifiial neural networks for land-over lassifiation and mapping. International Journal of Geographial Information System, v.7, n.2, p.73-86, 993. Congalton, R. G. A review of assessing the auray of lassifiations of remotely sensed data. Remote Sensing of Environment, v.49, n.2, p , 99. Congalton, R. G.; Mead, R. A. A review of disrete multivariate analysis tehniques used in assessing the auray of remotely sensed data from error matries. IEEE Transations on Geosiene and Remote Sensing, v.24, p.69-74, 986. Foody, G. M.; Arora, M. K. An evaluation of some fators affeting the auray of lassifiation by an artifiial neural network. International Journal of Remote Sensing, v.8, n.4, p , 997. Hepner, G. F.; Logan, T.; Ritter, N.; Bryant, N. Artifiial neural network lassifiation using a minimal training set: omparison to onventional supervised lassifiation. Photogrammetri Engineering and Remote Sensing, v.56, p , 990. Hirose, Y.; Yamashita, K.; Hijiya, S. Bak-propagation algorithm whih varies the number of hidden units. Neural Networks, v.4, p.6-66, 99. Kalkhan, M. A.; Reih, R. M.; Czaplewski, R. L. Variane estimates and onfidene interval for Kappa measure of lassifiation auray. Canadian Journal of Remote Sensing, v.23, n.3, p.20-26, 997. Kanellopoulos, I.; Varfis, A.; Wilkinson, G. G.; Mégier, J. Landover disrimination in SPOT HRV imagery using an artifiial neural network: A 20-lass experiment. International Journal of Remote Sensing, v.3, p , 992. Kanellopoulos, I.; Wilkinson, G. G. Strategies and best pratie for neural network image lassifiation. International Journal of Remote Sensing, v.8, n.4, p.7-725, 997. Master, T. Pratial neural network reipes in C++. San Diego: Aademi, p. Monserud, R. A.; Leemans, R. Comparing global vegetation maps with the Kappa statisti. Eologial Modelling, v.62, p , 992. Moreira, L.; Assad, E. D. Segmentação e lassifiação supervisionada para identifiar pastagens degradadas. Workshop Brasileiro de Geoinformátia, 2, 2000, São Paulo. Anais... São Paulo: Soiedade Brasileira de Computação, p. Nasimento, M. C.; Riva, R. D. D.; Chagas, C. S.; Oliveira, H.; Dias, L. E.; Fernandes Filho, E. I.; Soares, V. P. Uso de imagens do sensor ASTER na identifiação de níveis de degradação em pastagens. Revista Brasileira de Engenharia Agríola e Ambiental, v.0, p , Paola, J. D.; Showengerdt, R. A. Comparisons of neural networks to standard tehniques for image lassifiation and orrelation. Proeedings of the International Geosiene and Remote Sensing Symposium IGARSS 94, Pasadena, 994, Pasadena: Institute of Eletrial and Eletronis Engineers, Pisataway, p Sano, E. E.; Chaves, J. M.; Bezerra, H. S.; Feitoza, L. Identifiação dos prinipais tipos de pastagens ultivadas do Cerrado a partir de Sensoriamento Remoto. International Symposium: Soil Funtioning under Pastures in Intertropial Areas, 2000, Brasília. Anais... Brasília: Embrapa Cerrados IRD, CD-Rom. Skidmore, A. K.; Bijker, W.; Shmidt, K.; Kumar, L. Use of remote sensing and GIS for sustainable land management. ITC Journal, v.3/4, p , 997. Skidmore, A.; Turner, B. Assessing the auray of resoure inventory maps. Proeedings for Global Natural Resoure Monitoring and Assessments: Preparing for the 2 th Century. Venie, v.2, p , 989. Spain, J. M.; Gualdrón, R. Degradaión e rehabilitaión de pasturas. In: Lasano, C.; Spain, J. M. (eds.). Estableimiento y renovaión de pasturas. Cali: CIAT, p. Story, M.; Congalton, R. G. Auray assessment: A user s perspetive. Photogrammetri Engineering and Remote Sensing, v.6, p.39-40, 986. Venkatesh, Y. V.; Raja, S. On the lassifiation of multispetral satellite images using the multilayer pereptron. Pattern Reognition, v.36, p , Vieira, C. A. O. Auray of remotely sensing lassifiation of agriultural rops: A omparative study. Nottingham: University of Nottingham, p. PhD Thesis Vilela, M. Uso de diferentes métodos de retifiação geométria e lassifiação digital de uma imagem TM/LANDSAT 5. Viçosa: UFV, p. Dissertação Mestrado Yool, S. R. Land over lassifiation in rugged areas using simulated moderate-resolution remote sensor data and an artifiial neural network. International Journal of Remote Sensing, v.9, p.85-96, 998. Zell, A.; Mamier, G.; Vogt, M.; Mahe, N.; Hübner, R.; Döring, S.; Herrmann, K.; Soyez, T.; Shmalzl, M.; Sommer, T.; Hatzigeorgiou, A.; Posselt, D.; Shreiner, T.; Kett, B.; Clemente, G.; Wieland, J.; Gatter, J. Stuttgart Neural Network Simulator v4.2. Stuttgart: University of Stuttgart/Institute for Parallel and Distributed High Performane Systems/University of Tübingen Wilhelm-Shikard-Institute for Computer Siene/Department of Computer Arhiteture p. R. Bras. Eng. Agrí. Ambiental, v.3, n.3, p , 2009.

Integrando Textura e Forma para a Recuperação de Imagens por Conteúdo

Integrando Textura e Forma para a Recuperação de Imagens por Conteúdo Integrando Textura e Forma para a Reuperação de Imagens por Conteúdo André G. R. Balan 1, Agma J. M. Traina, Caetano Traina Jr. 3, Paulo M. Azevedo-Marques 4 1,,3 Grupo de Base de Dados e Imagens (GBDI),

Leia mais

Utilização de redes neurais artificiais para predição de classes de solo em uma bacia hidrográfica no Domínio de Mar de Morros

Utilização de redes neurais artificiais para predição de classes de solo em uma bacia hidrográfica no Domínio de Mar de Morros Utilização de redes neurais artificiais para predição de classes de solo em uma bacia hidrográfica no Domínio de Mar de Morros César da Silva Chagas 1 Elpídio Inácio Fernandes Filho 2 Carlos Antônio Oliveira

Leia mais

AUTOMATIZAÇÃO DA CALIBRAÇÃO DE CÂMERAS DE BAIXO CUSTO PARA USO EM VISÃO COMPUTACIONAL

AUTOMATIZAÇÃO DA CALIBRAÇÃO DE CÂMERAS DE BAIXO CUSTO PARA USO EM VISÃO COMPUTACIONAL AUTOMATIZAÇÃO DA CALIBRAÇÃO DE CÂMERAS DE BAIXO CUSTO PARA USO EM VISÃO COMPUTACIONAL Fábio Santos Lobão lobao@ene.unb.br ENE FT UNB Caixa Postal 4386 CEP 70919-970 - Brasília DF Adolfo Bauhspiess adolfo@ene.unb.br

Leia mais

VARIAÇÕES SAZONAIS DO EVI E NDVI EM ÁREAS DO SEMI-ÁRIDO BRASILEIRO EVI AND NDVI SAZONAL CHANGES IN BRAZILIAN SEMI-ARID AREAS

VARIAÇÕES SAZONAIS DO EVI E NDVI EM ÁREAS DO SEMI-ÁRIDO BRASILEIRO EVI AND NDVI SAZONAL CHANGES IN BRAZILIAN SEMI-ARID AREAS VARIAÇÕES SAZONAIS DO EVI E NDVI EM ÁREAS DO SEMI-ÁRIDO BRASILEIRO EVI AND NDVI SAZONAL CHANGES IN BRAZILIAN SEMI-ARID AREAS Silvana Andreoli Espig 1, João Vianei Soares 2, João Roberto dos Santos 2 Instituto

Leia mais

Dica : Para resolver esse exercício pegue o arquivo pontosm.txt, na página do professor.

Dica : Para resolver esse exercício pegue o arquivo pontosm.txt, na página do professor. Colégio Ténio Antônio Teieira Fernandes Disiplina ICG Computação Gráfia - 3º Anos (Informátia) (Lista de Eeríios I - Bimestre) Data: 10/03/2015 Eeríios 1) Elabore um proedimento em C++ que passe os pares

Leia mais

Models for prevision of the modulus of elasticity of concrete: NBR- 6118 versus CEB

Models for prevision of the modulus of elasticity of concrete: NBR- 6118 versus CEB Teoria e Prátia na Engenharia Civil, n.12, p.81-91, Outubro, 08 Modelos para previsão do módulo de deformação longitudinal do onreto: NBR-6118 versus Models for prevision of the modulus of elastiity of

Leia mais

APLICAÇÃO DO CLASSIFICADOR NAIVE BAYES PARA IDENTIFICAÇÃO DE FALHAS DE UM MANIPULADOR ROBÓTICO

APLICAÇÃO DO CLASSIFICADOR NAIVE BAYES PARA IDENTIFICAÇÃO DE FALHAS DE UM MANIPULADOR ROBÓTICO ABCM Symposium Series in Mehatronis - Vol. 6 Setion I Apliações de Inteligênia Artifiial APLICAÇÃO DO CLASSIFICADOR NAIVE BAYES PARA IDENTIFICAÇÃO DE FALHAS DE UM MANIPULADOR ROBÓTICO Bruna dos Santos

Leia mais

ATIVIDADES PRÁTICAS SUPERVISIONADAS

ATIVIDADES PRÁTICAS SUPERVISIONADAS ATIVIDADES PRÁTICAS SUPERVISIONADAS Engenharia de Controle e Automação 9ª Série Controle e Servomeanismos I A atividade prátia supervisionada (ATPS) é um proedimento metodológio de ensino-aprendizagem

Leia mais

APROXIMAÇÕES PARA MEDIDAS DE DESEMPENHO EM SISTEMAS DE FILAS COM SERVIDORES HETEROGÊNEOS

APROXIMAÇÕES PARA MEDIDAS DE DESEMPENHO EM SISTEMAS DE FILAS COM SERVIDORES HETEROGÊNEOS APROXIMAÇÕES PARA MEDIDAS DE DESEMPENHO EM SISTEMAS DE FILAS COM SERVIDORES HETEROGÊNEOS Frederio Samartini Queiroz Alves Universidade Federal de Minas Gerais Av. Antônio Carlos 6627Belo Horizonte-MG CEP

Leia mais

Curso de Data Mining

Curso de Data Mining Aula 7 - Os algoritmos SPIRIT Curso de Data Mining Sandra de Amo O esquema geral dos algoritmos SPIRIT é o seguinte: ETAPA 1 : Etapa do relaxamento R Calula-se o onjunto L das sequênias frequentes que

Leia mais

Comparação entre classificadores por pixel e por região com imagem SPOT-5 para o estado de Minas Gerais

Comparação entre classificadores por pixel e por região com imagem SPOT-5 para o estado de Minas Gerais Comparação entre classificadores por pixel e por região com imagem SPOT-5 para o estado de Minas Gerais Fernanda Rodrigues Fonseca 1 Thiago Duarte Pereira 1 Luciano Vieira Dutra 1 Eliana Pantaleão 1 Corina

Leia mais

Análise do potencial de classificação do uso e cobertura do solo por meio de rede neural. Claudio Gelelete 1 Carlos Frederico de Sá Volotão 2

Análise do potencial de classificação do uso e cobertura do solo por meio de rede neural. Claudio Gelelete 1 Carlos Frederico de Sá Volotão 2 Análise do potencial de classificação do uso e cobertura do solo por meio de rede neural Claudio Gelelete 1 Carlos Frederico de Sá Volotão 2 1 Instituto Militar de Engenharia - IME Pça Gen Tibúrcio, 80

Leia mais

PROCESSAMENTO DOS DADOS DE DIFRAÇÃO DE RAIOS X PARA MEDIÇÃO DE TENSÕES

PROCESSAMENTO DOS DADOS DE DIFRAÇÃO DE RAIOS X PARA MEDIÇÃO DE TENSÕES PROCESSAMENTO DOS DADOS DE DIFRAÇÃO DE RAIOS X PARA MEDIÇÃO DE TENSÕES J.T.Assis joaquim@iprj.uerj.br V.I.Monin monin@iprj.uerj.br Souza, P. S. Weidlih, M. C. Instituto Politénio IPRJ/UERJ Caixa Postal

Leia mais

15º Congresso Brasileiro de Geologia de Engenharia e Ambiental

15º Congresso Brasileiro de Geologia de Engenharia e Ambiental 15º Congresso Brasileiro de Geologia de Engenharia e Ambiental Comparação da temperatura de brilho de superfície do período seco com o chuvoso no Distrito Federal calculada a partir de imagens do Landsat

Leia mais

COMPARAÇÃO DA PRODUÇÃO DE ENERGIA COM DIESEL E BIODIESEL ANALISANDO TODOS OS CUSTOS ENVOLVIDOS

COMPARAÇÃO DA PRODUÇÃO DE ENERGIA COM DIESEL E BIODIESEL ANALISANDO TODOS OS CUSTOS ENVOLVIDOS COMPARAÇÃO DA PRODUÇÃO DE ENERGIA COM DIESEL E BIODIESEL ANALISANDO TODOS OS CUSTOS ENVOLVIDOS Miguel Edgar Morales Udaeta Riardo Laerda Baitelo Geraldo Franiso Burani José Aquiles Baesso Grimoni GEPEA-USP

Leia mais

Sistema de Armazenamento de Imagens Comprimidas Através da Transformada Wavelet

Sistema de Armazenamento de Imagens Comprimidas Através da Transformada Wavelet Campus de Ilha Solteira PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Sistema de Armazenamento de Imagens Comprimidas Através da Transformada Wavelet JAQUELINE FERREIRA DA SILVA Orientador: Prof. Dr.

Leia mais

MundoGEOXperience - Maratona de Ideias Geográficas 07/05/2014

MundoGEOXperience - Maratona de Ideias Geográficas 07/05/2014 MundoGEOXperience - Maratona de Ideias Geográficas 07/05/2014 ANÁLISE DE TÉCNICAS PARA DETECÇÃO DE MUDANÇA UTILIZANDO IMAGENS DO SENSORIAMENTO REMOTO DESLIZAMENTOS EM NOVA FRIBURGO/RJ EM 2011 Trabalho

Leia mais

DOSAGEM DE TRAÇOS DE CONCRETO PARA OBRAS DE PEQUENO PORTE, PELO MÉTODO ACI/ABCP E MODELO PROPOSTO POR CAMPITELI. Junio de Matos Torres

DOSAGEM DE TRAÇOS DE CONCRETO PARA OBRAS DE PEQUENO PORTE, PELO MÉTODO ACI/ABCP E MODELO PROPOSTO POR CAMPITELI. Junio de Matos Torres 0 DOSAGE DE TRAÇOS DE ONRETO PARA OBRAS DE PEQUENO PORTE, PELO ÉTODO AI/ABP E ODELO PROPOSTO POR APITELI. Junio de atos Torres Garanhuns setembro de 2015 1 ONRETO DEFINIÇÃO onreto é basiamente o resultado

Leia mais

A escolha do consumidor sob incerteza

A escolha do consumidor sob incerteza UNIVERSIDADE FEDERAL DE PELOTAS - UFPEL Departamento de Eonomia - DECON A esolha do onsumidor sob inerteza Professor Rodrigo Nobre Fernandez Pelotas 2015 1 Introdução A inerteza faz parte da vida, nos

Leia mais

COMPARAÇÃO ENTRE CLASSIFICADOR ESTATÍSTICO (MAXIMA VEROSSIMILHANÇA) E NÃO ESTATÍSTICO (REDES NEURAIS) VARIANDO O NÚMERO DE CLASSES INFORMACIONAIS

COMPARAÇÃO ENTRE CLASSIFICADOR ESTATÍSTICO (MAXIMA VEROSSIMILHANÇA) E NÃO ESTATÍSTICO (REDES NEURAIS) VARIANDO O NÚMERO DE CLASSES INFORMACIONAIS COMPARAÇÃO ENTRE CLASSIFICADOR ESTATÍSTICO (MAXIMA VEROSSIMILHANÇA E NÃO ESTATÍSTICO (REDES NEURAIS VARIANDO O NÚMERO DE CLASSES INFORMACIONAIS Leonardo Campos de Assis Giuliano Sant Anna Marotta Rômulo

Leia mais

USO E COBERTURA DAS TERRAS NA ÁREA DE ENTORNO DO RESERVATÓRIO DA USINA HIDRELÉTRICA DE TOMBOS (MG)

USO E COBERTURA DAS TERRAS NA ÁREA DE ENTORNO DO RESERVATÓRIO DA USINA HIDRELÉTRICA DE TOMBOS (MG) USO E COBERTURA DAS TERRAS NA ÁREA DE ENTORNO DO Calderano Filho, B. 1 ; Carvalho Junior, W. 2 ; Prado, R.B. 3 ; Calderano, S.B. 4 ; 1 EMBRAPA - CNPS Email:braz.calderano@embrapa.br; 2 EMBRAPA- CNPS Email:waldir.carvalho@embrapa.br;

Leia mais

Redes Neurais Artificiais

Redes Neurais Artificiais Redes Neurais Artifiiais Thomas Walter Rauber epartamento de Informátia Universidade Federal do Espírito Santo Av. F. Ferrari, 29065-900 Vitória - ES, BRASIL Tel.: (+55)(27) 3352654 Fax: (+55)(27) 3352850

Leia mais

Detecção de Mudanças da Cobertura Terrestre na Ilha do Formoso, Município de Lagoa da Confusão-TO

Detecção de Mudanças da Cobertura Terrestre na Ilha do Formoso, Município de Lagoa da Confusão-TO Detecção de Mudanças da Cobertura Terrestre na Ilha do Formoso, Município de Lagoa da Confusão-TO VICENTE PAULO SOARES 1 ALAN KARDEC ELIAS MARTINS 2 RICARDO SEIXAS BRITES 3 ELPÍDIO INÁCIO FERNANDES FILHO

Leia mais

Renzo Joel Flores Ortiz e Ilka Afonso Reis

Renzo Joel Flores Ortiz e Ilka Afonso Reis ESTIMAÇÃO DE POPULAÇÕES HUMANAS VIA IMAGENS DE SATÉLITE: COMPARANDO ABORDAGENS E MODELOS Renzo Joel Flores Ortiz e Ilka Afonso Reis Laboratório de Estatística Espacial (LESTE) Departamento de Estatística

Leia mais

ESTUDO DO ACOPLAMENTO DE GRUPOS MOTOR-GERADOR COM UNINTERRUPTIBLE POWER SUPPLY APLICANDO WAVELETS E REDES NEURAIS ARTIFICIAIS

ESTUDO DO ACOPLAMENTO DE GRUPOS MOTOR-GERADOR COM UNINTERRUPTIBLE POWER SUPPLY APLICANDO WAVELETS E REDES NEURAIS ARTIFICIAIS UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA ESTUDO DO ACOPLAMENTO DE GRUPOS MOTOR-GERADOR COM UNINTERRUPTIBLE POWER SUPPLY APLICANDO

Leia mais

custo/volume/lucro para multiprodutos

custo/volume/lucro para multiprodutos Artigo 1. Introdução; 2. O onjunto de possibilidade de equlhbrio; 3. Margem de segurança; 4. Alavanagem operaional; 5. Conlusões. Relação usto/volume/luro para multiprodutos Magnus Amaral da Costa Professor

Leia mais

O emprego do Geoprocessamento na Análise Espacial da Bacia Hidrográfica do Córrego Guariroba, Campo Grande MS

O emprego do Geoprocessamento na Análise Espacial da Bacia Hidrográfica do Córrego Guariroba, Campo Grande MS O emprego do Geoprocessamento na Análise Espacial da Bacia Hidrográfica do Córrego Guariroba, Campo Grande MS Raony Moreira Gomes Yamaciro Geógrafo raony.shiro@gmail.com Abstract. The present study aimed

Leia mais

COEFICIENTES DE ATRITO

COEFICIENTES DE ATRITO Físia Geral I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protoolos das Aulas Prátias 003 / 004 COEFICIENTES DE ATRITO 1. Resumo Corpos de diferentes materiais são deixados, sem veloidade iniial, sobre um plano

Leia mais

VARIABILIDADE ESPAÇO TEMPORAL DO IVDN NO MUNICIPIO DE ÁGUAS BELAS-PE COM BASE EM IMAGENS TM LANDSAT 5

VARIABILIDADE ESPAÇO TEMPORAL DO IVDN NO MUNICIPIO DE ÁGUAS BELAS-PE COM BASE EM IMAGENS TM LANDSAT 5 VARIABILIDADE ESPAÇO TEMPORAL DO IVDN NO MUNICIPIO DE ÁGUAS BELAS-PE COM BASE EM IMAGENS TM LANDSAT 5 Maurílio Neemias dos Santos 1, Heliofábio Barros Gomes 1,, Yasmim Uchoa da Silva 1, Sâmara dos Santos

Leia mais

Caracterização Banda Larga do Canal Rádio em Ambientes Urbanos através da TD-UTD

Caracterização Banda Larga do Canal Rádio em Ambientes Urbanos através da TD-UTD XX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES-SBT 3, -8 DE OUTUBRO DE 23, RIO DE JANEIRO, RJ Caraterização Banda Larga do Canal Rádio em Ambientes Urbanos através da TD-UTD Kleber L. Borges e Fernando J.

Leia mais

Potencial do uso da banda do infravermelho próximo na classificação de imagens adquiridas por câmaras digitais

Potencial do uso da banda do infravermelho próximo na classificação de imagens adquiridas por câmaras digitais Potencial do uso da banda do infravermelho próximo na classificação de imagens adquiridas por câmaras digitais Lauriana Rúbio Sartori Nilton Nobuhiro Imai Antônio Maria Garcia Tommaselli Roberto da Silva

Leia mais

Zimermann, H.R 1 ; Moraes, O.L.L 2 ; Acevedo, O.C 3.Fitzjarrald D.R 4 ; Sakai, R.K 5

Zimermann, H.R 1 ; Moraes, O.L.L 2 ; Acevedo, O.C 3.Fitzjarrald D.R 4 ; Sakai, R.K 5 COMPORTAMENTO DA UTILIZAÇÃO DE FILTRO DIGITAL NA ESTIMATIVA DA DENSIDADE ESPECTRAL DE ENERGIA TURBULENTA EM SÉRIES DE TEMPERATURA E COMPONENTE VERTICAL DO CAMPO DE VENTO. Zimermann, H.R 1 ; Moraes, O.L.L

Leia mais

Nathalie Portugal Vargas

Nathalie Portugal Vargas Nathalie Portugal Vargas 1 Introdução Trabalhos Relacionados Recuperação da Informação com redes ART1 Mineração de Dados com Redes SOM RNA na extração da Informação Filtragem de Informação com Redes Hopfield

Leia mais

PROVA DE CARGA ESTÁTICA EM ESTACA HÉLICE CONTÍNUA NO DF: COMPARAÇÃO COM OS MÉTODOS DE PREVISÃO DE CAPACIDADE DE CARGA.

PROVA DE CARGA ESTÁTICA EM ESTACA HÉLICE CONTÍNUA NO DF: COMPARAÇÃO COM OS MÉTODOS DE PREVISÃO DE CAPACIDADE DE CARGA. POVA DE CAGA ESTÁTICA EM ESTACA HÉLICE COTÍUA O DF: COMPAAÇÃO COM OS MÉTODOS DE PEVISÃO DE CAPACIDADE DE CAGA. enato Cabral Guimarães 1 ; eusa Maria Bezerra Mota 2 ; Paulo Sérgio Barbosa Abreu 3 ; José

Leia mais

Departamento de Engenharia Química e de Petróleo UFF

Departamento de Engenharia Química e de Petróleo UFF Departamento de Engenharia Químia e de Petróleo UFF Outros Aula Proessos 08 de Separação Malhas de Controle Realimentado (Feed-Bak) Diagrama de Bloos usto Prof a Ninoska Bojorge Controlador SUMÁRIO Bloo

Leia mais

CLASSIFICAÇÃO DE IMAGENS

CLASSIFICAÇÃO DE IMAGENS CLASSIFICAÇÃO DE IMAGENS SIG Profa.. Dra. Maria Isabel Castreghini de Freitas ifreitas@rc.unesp.br Profa. Dra. Andréia Medinilha Pancher medinilha@linkway.com.br O que é classificação? É o processo de

Leia mais

Detecção de mudanças em imagens oriundas de sensoriamento remoto, usando conjuntos fuzzy.

Detecção de mudanças em imagens oriundas de sensoriamento remoto, usando conjuntos fuzzy. Detecção de mudanças em imagens oriundas de sensoriamento remoto, usando conjuntos fuzzy. Marcelo Musci Baseado no artigo: Change detection assessment using fuzzy sets and remotely sensed data: an application

Leia mais

Classificação digital do uso do solo comparando os métodos pixel a pixel e orientada ao objeto em imagem QuickBird

Classificação digital do uso do solo comparando os métodos pixel a pixel e orientada ao objeto em imagem QuickBird Classificação digital do uso do solo comparando os métodos pixel a pixel e orientada ao objeto em imagem QuickBird Henriqueta Veloso Ferreira Bernardi 1 Maíra Dzedzej 1 Luis Marcelo Tavares de Carvalho

Leia mais

GESTÃO DE INTERSECÇÕES RODOVIÁRIAS FUNCIONAMENTO EM MODELOS DE ROTUNDA

GESTÃO DE INTERSECÇÕES RODOVIÁRIAS FUNCIONAMENTO EM MODELOS DE ROTUNDA GESTÃO DE INTERSECÇÕES RODOVIÁRIAS FUNCIONAMENTO EM MODELOS DE ROTUNDA PAULO MATOS MARTINS PROF. ADJUNTO, ISEL. EDUARDO NABAIS ENCARREGADO DE TRABALHOS, ISEL RUI CABRAL TÉCNICO SUPERIOR, IEP - SANTARÉM

Leia mais

Osmometria de Membrana. Ricardo Cunha Michel sala J-210 e J-126 (LAFIQ) 2562-7228 rmichel@ima.ufrj.br

Osmometria de Membrana. Ricardo Cunha Michel sala J-210 e J-126 (LAFIQ) 2562-7228 rmichel@ima.ufrj.br Osmometria de Membrana Riardo Cunha Mihel sala J-210 e J-126 (LAFIQ) 2562-7228 rmihel@ima.ufrj.br O Fenômeno da Osmose * A osmose pode ser desrita omo sendo o resultado da tendênia do solvente em meslar-se

Leia mais

Figura 1: Localização geográfica da área de estudo com a composição colorida do sensor TM (R3, G2 e B1).

Figura 1: Localização geográfica da área de estudo com a composição colorida do sensor TM (R3, G2 e B1). MUDANÇA DA PAISAGEM AMAZÔNICA NA ÁREA DO PROJETO DE ASSENTAMENTO DIRIGIDO SANTA LUZIA, EM CRUZEIRO DO SUL, AC Rafael C. DELGADO 1, Leonardo P. de SOUZA 1, Ian W. R. da SILVA 1, Evaldo de P. LIMA 2, Ricardo

Leia mais

OBTENÇÃO DE IMAGEM DO GOOGLE EARTH PARA CLASSIFICAÇÃO DE USO E OCUPAÇÃO DO SOLO

OBTENÇÃO DE IMAGEM DO GOOGLE EARTH PARA CLASSIFICAÇÃO DE USO E OCUPAÇÃO DO SOLO OBTENÇÃO DE IMAGEM DO GOOGLE EARTH PARA CLASSIFICAÇÃO DE USO E OCUPAÇÃO DO SOLO ROGER TORLAY 1 ; OSVALDO T. OSHIRO 2 N 10502 RESUMO O sensoriamento remoto e o geoprocessamento trouxeram importantes avanços

Leia mais

Bancos de Dados Distribuídos

Bancos de Dados Distribuídos Espeialização em Engenharia de Software Marta Mattoso Banos de Dados Distribuídos Bibliografia Utilizada Î Özsu, M.T. Valduriez, P. "Priniples of Distributed Database Systems", Prentie Hall, 1991. Elmasri,

Leia mais

Geografia. e Observe a tabela apresentada abaixo.

Geografia. e Observe a tabela apresentada abaixo. Geografia 61 Dentre os 50 países mais pobres do mundo, lassifiados segundo o Índie de Desenvolvimento Humano (IDH) do Programa das Nações Unidas para o Desenvolvimento (PNUD), 33 estão situados nessa região.

Leia mais

Avaliação do potencial produtivo em montados de sobro com recurso a redes neuronais artificiais

Avaliação do potencial produtivo em montados de sobro com recurso a redes neuronais artificiais Avaliação do potencial produtivo em montados de sobro com recurso a redes neuronais artificiais Susana Dias (Investigadora/Colaboradora da Universidade de Évora e Docente do Instituto Politécnico de Elvas)

Leia mais

EXTRACÇÃO DE SOMBRA A PARTIR DE IMAGENS DE SATÉLITE DE ALTA RESOLUÇÃO

EXTRACÇÃO DE SOMBRA A PARTIR DE IMAGENS DE SATÉLITE DE ALTA RESOLUÇÃO EXTRACÇÃO DE SOMBRA A PARTIR DE IMAGENS DE SATÉLITE DE ALTA RESOLUÇÃO Classificação Não Supervisionada, Reclassificação de Imagem e Classificação Orientada a Segmento Morna Nandaia Ricardo Silva SUMÁRIO

Leia mais

ESTUDO DE CASO: ÍNDICE DE UMIDADE DO SOLO UTILIZANDO IMAGENS DO SENSOR MODIS PARA O MUNICÍPIO DE BELEM DO SÃO FRANCISCO, PE

ESTUDO DE CASO: ÍNDICE DE UMIDADE DO SOLO UTILIZANDO IMAGENS DO SENSOR MODIS PARA O MUNICÍPIO DE BELEM DO SÃO FRANCISCO, PE ESTUDO DE CASO: ÍNDICE DE UMIDADE DO SOLO UTILIZANDO IMAGENS DO SENSOR MODIS PARA O MUNICÍPIO DE BELEM DO SÃO FRANCISCO, PE Pabrício Marcos Oliveira Lopes 1, Glawber Spíndola Saraiva de Moura 2 1 Prof.

Leia mais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Redes Neurais Artificiais Prof. Wilian Soares João Vitor Squillace Teixeira Ciência da Computação Universidade

Leia mais

PAPER 1/6. Micro central hidrelétrica com turbina hidrocinética (Estudo de caso no Rio Caçadorzinho)

PAPER 1/6. Micro central hidrelétrica com turbina hidrocinética (Estudo de caso no Rio Caçadorzinho) PAPE 1/6 itle Miro entral hidrelétria om turbina hidroinétia (Estudo de aso no io Caçadorzinho) egistration Nº: (Abstrat) AWLC6774 Universidade enológia Federal do Paraná UFP (Campus Pato Brano) Via do

Leia mais

FUNCIONAL FACHADA SUDOESTE. esc. 1/100 FACHADA SUDESTE. esc. 1/100 ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS

FUNCIONAL FACHADA SUDOESTE. esc. 1/100 FACHADA SUDESTE. esc. 1/100 ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS PARÂMETRO DESRIÇÃO IMAGEM SÍNTESE FUNIONAL ENTORNO IDENTIFIAR A RELAÇÃO DO EDIFÍIO OM OS ELEMENTOS DE ENTORNO, ONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS EDIFIADAS, RELAÇÕES DE PROXIMIDADE, DIÁLOGO, INTEGRAÇÃO

Leia mais

Exame II. Citações e Notificações CURSO DE EMPREGADOS FORENSES DE AGENTE DE EXECUÇÃO. A preencher pelo formando:

Exame II. Citações e Notificações CURSO DE EMPREGADOS FORENSES DE AGENTE DE EXECUÇÃO. A preencher pelo formando: CURSO DE EMPREGADOS FORENSES DE AGENTE DE EXECUÇÃO Exame II Citações e Notifiações Duração: 1 hora 4 de Maio A preenher pelo formando: Nome do formando (ompleto e legível): Identifiação do Agente de Exeução:

Leia mais

PROGRAMA DE ENRIQUECIMENTO INSTRUMENTAL (PEI)

PROGRAMA DE ENRIQUECIMENTO INSTRUMENTAL (PEI) Um momento... deixe-me pensar! PROGRAMA DE ENRIQUECIMENTO INSTRUMENTAL (PEI) O que é o PEI O PEI é um programa de intervenção ognitiva que tem omo objetivo desenvolver no indivíduo as habilidades básias

Leia mais

Determinação de data de plantio da cultura da soja no estado do Paraná por meio de composições decendiais de NDVI

Determinação de data de plantio da cultura da soja no estado do Paraná por meio de composições decendiais de NDVI Determinação de data de plantio da cultura da soja no estado do Paraná por meio de composições decendiais de NDVI Gleyce K. Dantas Araújo 1, Jansle Viera Rocha 2 1 Tecª Construção Civil, Mestranda Faculdade

Leia mais

Anais XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, 25 a 29 de abril de 2015, INPE

Anais XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, 25 a 29 de abril de 2015, INPE Uso de técnicas de geoprocessamento aplicadas ao mapeamento da cultura de canade-açúcar com imagens Landsat-8 no estado do Paraná Clóvis Cechim Júnior 1 Rennan Andres Paloschi 1 Jerry Adriani Johann 1

Leia mais

Utilização de Redes Neurais do tipo Extreme Learning Machine na classificação da cobertura de solo do Município de Novo Progresso-PA

Utilização de Redes Neurais do tipo Extreme Learning Machine na classificação da cobertura de solo do Município de Novo Progresso-PA Utilização de Redes Neurais do tipo Extreme Learning Machine na classificação da cobertura de solo do Município de Novo Progresso-PA Helder Araujo Louzada 1 Ana Carolina Quintão Siravenha 1 Evaldo Gonçalves

Leia mais

Redes Neurais Artificiais (RNA) aplicadas à classificação de áreas cafeeiras na região de Três Pontas-MG

Redes Neurais Artificiais (RNA) aplicadas à classificação de áreas cafeeiras na região de Três Pontas-MG Anais XV Simpósio Brasileiro de Sensoriamento Remoto - SBSR, Curitiba, PR, Brasil, 30 de abril a 05 de maio de 2011, INPE p.7603 Redes Neurais Artificiais (RNA) aplicadas à classificação de áreas cafeeiras

Leia mais

Análise do trade-off na produção de açúcar e álcool nas usinas da região Centro-Sul do Brasil

Análise do trade-off na produção de açúcar e álcool nas usinas da região Centro-Sul do Brasil ANÁLISE DO TRADE-OFF NA PRODUÇÃO DE AÇÚCAR E ÁLCOOL NAS USINAS DA REGIÃO CENTRO-SUL DO BRASIL WAGNER MOURA LAMOUNIER; MÁRIO FERREIRA CAMPOS FILHO; AURELIANO ANGEL BRESSAN; UNIVERSIDADE FEDERAL DE MINAS

Leia mais

Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão

Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão 01 Sistemas de Informação Geográfica (SIG) para Agricultura de Precisão Rodrigo G. Trevisan¹; José P. Molin² ¹ Eng. Agrônomo, Mestrando em Engenharia de Sistemas Agrícolas (ESALQ-USP); ² Prof. Dr. Associado

Leia mais

Classificação em Imagens de Satélite e o Monitoramento de Hidrelétricas. Mestrando: Rafael Walter de Albuquerque Orientador: José Alberto Quintanilha

Classificação em Imagens de Satélite e o Monitoramento de Hidrelétricas. Mestrando: Rafael Walter de Albuquerque Orientador: José Alberto Quintanilha Classificação em Imagens de Satélite e o Monitoramento de Hidrelétricas Mestrando: Rafael Walter de Albuquerque Orientador: José Alberto Quintanilha Introdução Mapeamento da cobertura e uso do solo: importante

Leia mais

O ENSINO DA ADMINISTRAÇÃO EM ENFERMAGEM: PERCEPÇÃO DIANTE DA VIVÊNCIA PROFISSIONAL* TEACHING NURSING ADMINISTRATION: THE NURSE'S COMPREHENSION

O ENSINO DA ADMINISTRAÇÃO EM ENFERMAGEM: PERCEPÇÃO DIANTE DA VIVÊNCIA PROFISSIONAL* TEACHING NURSING ADMINISTRATION: THE NURSE'S COMPREHENSION O ENSINO DA ADMINISTRAÇÃO EM ENFERMAGEM: PEREPÇÃO DIANTE DA VIVÊNIA PROFISSIONAL* TEAHING NURSING ADMINISTRATION: THE NURSE'S OMPREHENSION Raquel Rapone Gaidzinski ** Maria Madalena Januário Leite** Regina

Leia mais

TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR O TEMPO DA MINERAÇÃO DE DADOS: Uma análise de Tipos de Coberturas Florestais

TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR O TEMPO DA MINERAÇÃO DE DADOS: Uma análise de Tipos de Coberturas Florestais UNIVERSIDADE ESTADUAL DE PONTA GROSSA PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO APLICADA CRISTIAN COSMOSKI RANGEL DE ABREU TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR

Leia mais

Sumário do Volume. Linguagens e Códigos Digitais

Sumário do Volume. Linguagens e Códigos Digitais Linguagens e ódigos igitais Sumário do Volume 1. Gráfios de geografia 05 2. Homotetia 08 3. ivisão Áurea 13 4. Sequênia de Fionai 14 5. Fratais 18 6. álulo de área de figuras planas 28 7. Semana de arte

Leia mais

JOSÉ CONSTANTINO SILVEIRA JÚNIOR DIÓGENES SALAS ALVES MARIA ISABEL ESCADA

JOSÉ CONSTANTINO SILVEIRA JÚNIOR DIÓGENES SALAS ALVES MARIA ISABEL ESCADA Utilização de Técnicas de Análise Espacial no Estudo da Correlação entre Expansão das Áreas Desflorestadas e da Fronteira Agropecuária no Estado do Mato Grosso JOSÉ CONSTANTINO SILVEIRA JÚNIOR DIÓGENES

Leia mais

19. SUSPENSÃO TRASEIRA

19. SUSPENSÃO TRASEIRA 19. SUSPENSÃO TRASEIRA INFORMAÇÕES DE SERVIÇO 19-1 DIAGNÓSTICO DE DEFEITOS 19-1 DESCRIÇÃO DOS SISTEMAS 19-2 ES 19-7 GARFO TRASEIRO 19-11 ARTICULAÇÕES DA SUSPENSÃO PRÓ-LINK 19-11 INFORMAÇÕES DE SERVIÇO

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

Notas de Aula de Algoritmos e Programação de Computadores

Notas de Aula de Algoritmos e Programação de Computadores Notas de Aula de Algoritmos e Programação de Computadores FÁO KED MYAZAWA om a olaboração de TOMASZ KOWATOWSK nstituto de Computação - UNCAMP ersão 20001 Estas notas de aula não devem ser usadas omo únia

Leia mais

Universidade do Estado do Rio de Janeiro Campus Regional de Resende

Universidade do Estado do Rio de Janeiro Campus Regional de Resende Universidade do Estado do io de Janeiro ampus egional de esende Tratamentos ísio-químios de Águas Prof. esar Pereira MÓULO I 1. ALEIAS No estudo dos tratamento de águas para aldeiras, onentraremos nossa

Leia mais

Estudo do comportamento dos índices de Exatidão Global, Kappa e Tau, comumente usados para avaliar a classificação de imagens do sensoriamento remoto

Estudo do comportamento dos índices de Exatidão Global, Kappa e Tau, comumente usados para avaliar a classificação de imagens do sensoriamento remoto Estudo do omportamento dos índies de Exatidão Global, Kappa e Tau, omumente usados para avaliar a lassifiação de imagens do sensoriamento remoto Geíza Coutinho Figueiredo Carlos Antonio Oliveira Vieira

Leia mais

COMPONENTES DO BALANÇO DE ENERGIA ESTIMADOS PELO SEBAL-SURFACE ENERGY BALANCE ALGORITHM FOR LAND - E MEDIDOS EM CAMPO RESUMO

COMPONENTES DO BALANÇO DE ENERGIA ESTIMADOS PELO SEBAL-SURFACE ENERGY BALANCE ALGORITHM FOR LAND - E MEDIDOS EM CAMPO RESUMO COMPONENTES DO BALANÇO DE ENERGIA ESTIMADOS PELO SEBAL-SURFACE ENERGY BALANCE ALGORITHM FOR LAND - E MEDIDOS EM CAMPO 1 José Ferreira da Costa Filho, 2 Bernardo Barbosa da Silva e 2 Pedro Vieira de Azevedo

Leia mais

Fabiano Pagliosa Branco

Fabiano Pagliosa Branco UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA ÁREA DE CONCENTRAÇÃO EM CIÊNCIAS TÉRMICAS ANÁLISE TERMOECONÔMICA

Leia mais

Rem: Revista Escola de Minas ISSN: 0370-4467 editor@rem.com.br Escola de Minas Brasil

Rem: Revista Escola de Minas ISSN: 0370-4467 editor@rem.com.br Escola de Minas Brasil Rem: Revista Esola de Minas ISSN: 0370-4467 editor@rem.om.br Esola de Minas Brasil Ando, Eunie Sumie; Lopes Moreno Junior, Armando; Reis de Oliveira, Clayton Reforço à flexão de vigas em onreto armado

Leia mais

Utilização de Support Vector Machine para classificação multiclasses de imagens Landsat TM +

Utilização de Support Vector Machine para classificação multiclasses de imagens Landsat TM + Utilização de Support Vector Machine para classificação multiclasses de imagens Landsat TM + Gabriel Henrique de Almeida Pereira Jorge Antonio Silva Centeno Universidade de Federal do Paraná UFPR Centro

Leia mais

26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia

26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia Universidade ederal de São João Del-Rei MG 26 a 28 de maio de 200 Assoiação rasileira de Métodos Computaionais em Engenharia Aoplamento entre o Método dos Elementos de Contorno e o Método dos Elementos

Leia mais

Fabiano Pagliosa Branco

Fabiano Pagliosa Branco UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA ÁREA DE CONCENTRAÇÃO EM CIÊNCIAS TÉRMICAS ANÁLISE TERMOECONÔMICA

Leia mais

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica João Paulo Teixeira*, José Batista*, Anildio Toca**, João Gonçalves**, e Filipe Pereira** * Departamento de Electrotecnia

Leia mais

Sensoriamento Remoto

Sensoriamento Remoto Sensoriamento Remoto É a utilização conjunta de modernos sensores, equipamentos para processamento de dados, equipamentos de transmissão de dados, aeronaves, espaçonaves etc, com o objetivo de estudar

Leia mais

Comportamento Inter-temporal de Consumo

Comportamento Inter-temporal de Consumo Comportamento Inter-temporal de Consumo... 1 A Restrição Orçamental do Consumidor... 2 As Preferênias Inter-temporais do Consumidor... 5 O Equilíbrio Inter-temporal do Consumidor... 6 O Estudo de Consequênias

Leia mais

Diagnóstico Ambiental do Município de Alta Floresta - MT

Diagnóstico Ambiental do Município de Alta Floresta - MT Diagnóstico Ambiental do Município de Alta Floresta - MT Paula Bernasconi Ricardo Abad Laurent Micol Maio de 2008 Introdução O município de Alta Floresta está localizado na região norte do estado de Mato

Leia mais

Padrões para Controle de Fluxo e sua Execução em Grade

Padrões para Controle de Fluxo e sua Execução em Grade e-siene 2007 e-siene Workshop Padrões para Controle de Fluxo e sua Exeução em Grade Alexandre R. Nardi 1, João E. Ferreira 2 1 Mirosoft Brasil 12901, Nações Unidas 04578-000 São Paulo SP Brasil 2 Instituto

Leia mais

3 Estado da arte em classificação de imagens de alta resolução

3 Estado da arte em classificação de imagens de alta resolução 37 3 Estado da arte em classificação de imagens de alta resolução Com a recente disponibilidade de imagens de alta resolução produzidas por sensores orbitais como IKONOS e QUICKBIRD se tornou-se possível

Leia mais

Cabos Coaxiais, Guias de Ondas, Circuladores e Derivadores

Cabos Coaxiais, Guias de Ondas, Circuladores e Derivadores 4. Cabos Coaxiais, Guias de Ondas, Ciruladores e Derivadores 4.1. INTRODUÇÃO E ste apítulo apresenta as araterístias básias dos abos oaxiais, guias de ondas, iruladores e derivadores. O onheimento do funionamento

Leia mais

Cerrado Online: Plataforma de Distribuição de Informações Geográficas Produzidas pelo Programa de Monitoramento de Desmatamentos do Bioma Cerrado

Cerrado Online: Plataforma de Distribuição de Informações Geográficas Produzidas pelo Programa de Monitoramento de Desmatamentos do Bioma Cerrado Cerrado Online: Plataforma de Distribuição de Informações Geográficas Produzidas pelo Programa de Monitoramento de Desmatamentos do Bioma Cerrado Levindo Cardoso de Medeiros 1 Nilson Clementino Ferreira

Leia mais

thomasmcz@hotmail.com 2 Doutor Prof. Instituto de Ciências Atmosféricas, ICAT/UFAL, email: dimas.barros91@hotmail.com

thomasmcz@hotmail.com 2 Doutor Prof. Instituto de Ciências Atmosféricas, ICAT/UFAL, email: dimas.barros91@hotmail.com ANÁLISE PRELIMINAR DA ESTIMATIVA DA TEMPERATURA E ALBEDO DE SUPERFÍCIE PARA MICRORREGIÃO DO BAIXO SÃO FRANCISCO NOS ESTADOS DE ALAGOAS E SERGIPE, UTILIZANDO O SENSOR TM DO LANDSAT 5 E O ALGORITMO SEBAL.

Leia mais

ESTUDO DA EXPANSÃO DO DESMATAMENTO DO BIOMA CERRADO A PARTIR DE CENAS AMOSTRAIS DOS SATÉLITES LANDSAT

ESTUDO DA EXPANSÃO DO DESMATAMENTO DO BIOMA CERRADO A PARTIR DE CENAS AMOSTRAIS DOS SATÉLITES LANDSAT ESTUDO DA EXPANSÃO DO DESMATAMENTO DO BIOMA CERRADO A PARTIR DE CENAS AMOSTRAIS DOS SATÉLITES LANDSAT Elaine Barbosa da SILVA¹ Laerte Guimarães FERREIRA JÚNIOR¹ Antonio Fernandes dos ANJOS¹ Genival Fernandes

Leia mais

SENSORIAMENTO REMOTO NO USO DO SOLO

SENSORIAMENTO REMOTO NO USO DO SOLO SENSORIAMENTO REMOTO NO USO DO SOLO Ana Luiza Bovoy Jônatas de Castro Gonçalves Thiemi Igarashi Vinicius Chequer e Silva LEVANTAMENTO DA COBERTURA VEGETAL ATRAVÉS DE PRODUTOS DE SENSORIAMENTO REMOTO NAS

Leia mais

Discriminação de áreas cafeeiras de imagens multiespectrais da região de Três Pontas MG através de Redes Neurais Artificiais e Extratores de Textura

Discriminação de áreas cafeeiras de imagens multiespectrais da região de Três Pontas MG através de Redes Neurais Artificiais e Extratores de Textura Discriminação de áreas cafeeiras de imagens multiespectrais da região de Três Pontas MG através de Redes Neurais Artificiais e Extratores de Textura Alexsandro Cândido de Oliveira Silva¹ Wilian Soares

Leia mais

Aula 3 - Registro de Imagem

Aula 3 - Registro de Imagem 1. Registro de Imagens Aula 3 - Registro de Imagem Registro é uma transformação geométrica que relaciona as coordenadas da imagem (linha e coluna) com as coordenadas geográficas (latitude e longitude)

Leia mais

CONSTRUÇÃO DE BANCOS DE DADOS ESPACIAIS COM IMAGENS DE SATÉLITE

CONSTRUÇÃO DE BANCOS DE DADOS ESPACIAIS COM IMAGENS DE SATÉLITE CONSTRUÇÃO DE BANCOS DE DADOS ESPACIAIS COM IMAGENS DE SATÉLITE Renzo Joel Flores Ortiz e Ilka Afonso Reis Laboratório de Estatística Espacial (LESTE) Departamento de Estatística Universidade Federal de

Leia mais

Avaliação de Modelos Digital de Elevação para aplicação em mapeamento digital de solos na região do município de Quatá/SP

Avaliação de Modelos Digital de Elevação para aplicação em mapeamento digital de solos na região do município de Quatá/SP Embrapa Informática Agropecuária/INPE, p. 793-799 Avaliação de Modelos Digital de Elevação para aplicação em mapeamento digital de solos na região do município de Quatá/SP Jonas de Assis Cinquini 1 Jener

Leia mais

Metodologia de Cálculo da Inércia Inflacionária e dos Efeitos do Choque dos Preços Administrados

Metodologia de Cálculo da Inércia Inflacionária e dos Efeitos do Choque dos Preços Administrados Metodologia de Cálulo da Inéria Inflaionária e dos Efeitos do Choque dos Preços Administrados I. Introdução Esta nota apresenta a metodologia usada atualmente para quantifiar o efeito, via inéria, da inflação

Leia mais

APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS (RNA) NA ANÁLISE E CLASSIFICAÇÃO DE ÁREAS CAFEEIRAS DA REGIÃO DE MACHADO-MG

APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS (RNA) NA ANÁLISE E CLASSIFICAÇÃO DE ÁREAS CAFEEIRAS DA REGIÃO DE MACHADO-MG 1 IX Congreso Latinoamericano y del Caribe de Ingeniería Agrícola - CLIA 2010 XXXIX Congresso Brasileiro de Engenharia Agrícola - CONBEA 2010 Vitória - ES, Brasil, 25 a 29 de julho 2010 Centro de Convenções

Leia mais

Processamento de Imagem. Prof. Herondino

Processamento de Imagem. Prof. Herondino Processamento de Imagem Prof. Herondino Sensoriamento Remoto Para o Canada Centre for Remote Sensing - CCRS (2010), o sensoriamento remoto é a ciência (e em certa medida, a arte) de aquisição de informações

Leia mais

PROJETO DO EJETOR DE UM SISTEMA DE REFRIGERAÇÃO POR JATO COMPRESSÃO DE VAPOR

PROJETO DO EJETOR DE UM SISTEMA DE REFRIGERAÇÃO POR JATO COMPRESSÃO DE VAPOR PROJETO DO EJETOR DE UM SISTEMA DE REFRIGERAÇÃO POR JATO COMPRESSÃO DE VAPOR Luiz Carlos Pereira VARGAS (1); Cleiton Rubens Formiga BARBOSA, (); Franiso de Assis Oliveira FONTES (3); Igor Marel Gomes ALMEIDA

Leia mais

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Tiago Mendes Dantas t.mendesdantas@gmail.com Departamento de Engenharia Elétrica,

Leia mais

LEVANTAMENTO DO USO DAS TERRAS DO MUNICÍPIO DE SÃO JOÃO DO CARIRI-PB COM BASE EM IMAGENS DO TM/LANDSAT 5

LEVANTAMENTO DO USO DAS TERRAS DO MUNICÍPIO DE SÃO JOÃO DO CARIRI-PB COM BASE EM IMAGENS DO TM/LANDSAT 5 LEVANTAMENTO DO USO DAS TERRAS DO MUNICÍPIO DE SÃO JOÃO DO CARIRI-PB COM BASE EM IMAGENS DO TM/LANDSAT 5 MADSON T. SILVA 1, VICENTE DE P. R. DA SILVA 2, RONILDO A. PEREIRA 3, JOSÉ A. B. DO AMARAL 4 1 Meteorologista,

Leia mais

Palavras-chave: Sistema neuro-fuzzy, Sistemas de avaliação, Sistemas Adaptativos.

Palavras-chave: Sistema neuro-fuzzy, Sistemas de avaliação, Sistemas Adaptativos. ANÁLISE DO CURSO DE ENGENHARIA ELÉTRICA NA UERJ A PARTIR DE INDICADORES CONSTRUÍDOS BASEADOS NO EXAME NACIONAL DE CURSOS: UM SISTEMA NEBULOSO DE AVALIAÇÃO Maria Luiza F. Velloso mlfv@centroin.com.br Universidade

Leia mais

Universidade Federal do Ma Pós-Graduação em Eng. Elétrica

Universidade Federal do Ma Pós-Graduação em Eng. Elétrica Universidade Federal do Ma Pós-Graduação em Eng. Elétrica Computação Gráfica II Sistemas de Informação Geográfica Prof. Anselmo C. de Paiva Depto de Informática Introdução aos Sistemas de Informação Geografica

Leia mais

ANÁLISE DE MÉTODOS DE CLASSIFICAÇÃO SUPERVISIONADA APLICADA AO DESMATAMENTO NO MUNICÍPIO DE MARABÁ UTILIZANDO IMAGENS CCD - CBERS

ANÁLISE DE MÉTODOS DE CLASSIFICAÇÃO SUPERVISIONADA APLICADA AO DESMATAMENTO NO MUNICÍPIO DE MARABÁ UTILIZANDO IMAGENS CCD - CBERS V Co ló qu i o B ra si l ei ro d e Ci ên ci a s Geo d ési ca s ISSN 1981-6251, p. 910-914 ANÁLISE DE MÉTODOS DE CLASSIFICAÇÃO SUPERVISIONADA APLICADA AO DESMATAMENTO NO MUNICÍPIO DE MARABÁ UTILIZANDO IMAGENS

Leia mais

DESENVOLVIMENTO DE UM MANIPULADOR DIDÁTICO COM CONTROLADOR EMBARCADO OPERADO NO ESPAÇO ORTONORMAL POR JOYSTICK

DESENVOLVIMENTO DE UM MANIPULADOR DIDÁTICO COM CONTROLADOR EMBARCADO OPERADO NO ESPAÇO ORTONORMAL POR JOYSTICK CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Campus DIVINÓPOLIS GRADUAÇÃO EM ENGENHARIA MECATRÔNICA DESENVOLVIMENTO DE UM MANIPULADOR DIDÁTICO COM CONTROLADOR EMBARCADO OPERADO NO ESPAÇO ORTONORMAL

Leia mais