Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida"

Transcrição

1 27 de maio de 2014

2 O que é a Neural Networw Toolbox? A Neural Network Toolbox fornece funções e aplicativos para a modelagem de sistemas não-lineares complexos que não são facilmente modelados com uma equação de forma fechada. Suporta aprendizado supervisionado com feedforward, base radial e redes dinâmicas, além de aprendizado não supervisionado com mapas auto-organizáveis e camadas competitivos.

3 O que é a Neural Networw Toolbox? Com ela é possível projetar, treinar, visualizar e simular redes neurais. Pode ser usada para aplicações tais como montagem de dados, reconhecimento de padrões, clustering, a previsão de séries temporais e modelagem do sistema dinâmico e controle.

4 Objetivo deste curso O objeto desse curso é fazer uma breve panorama da toolbox e apresentar algumas formas de manipular algumas das ferramentas disponíveis. Serão apresentadas funcionalidades para redes do tipo Perceptron Multicamadas (Multilayer Perceptron) e para a rede de base radial (radial basis), iterfaces gráficas disponíveis e algumas particularidades em relação às versões mais recentes do Matlab uma vez que a versão utilizada para este curso é do ano de 2008.

5 Perceptron Multicamadas

6

7 Passos para implementação da rede: coleta e preparação dos dados criação da rede configuração da rede inicialização dos pesos e biases treinamento da rede validação da rede

8 Criação a rede O comando nome da rede = network cria uma rede e suas propriedades

9 Definindo as propriedades de Arquitetura As primeiras propriedades que aparecem da rede são as chamadas propriedades de arquitetura: número de entradas (Inputs) número de camdadas (Layers) pesos entre de entradas e entre camadas conexões de saída e tragets (outputs e targets)

10 número de inputs e camdas Definimos a quantidade de camadas de entrada que a rede terá Atenção: não estamos definindo ainda a quantidade de tipos de entrada (x1, x2,...xn) que a rede terá (tamanho do vetor de entradas) nome da rede.numinputs = x Definimos a quantidade de camadas que a rede terá nome da rede.numlayers = y

11 Bias Definimos agora, as camadas que terão bias associado. Essa atribuição pode ser feita através do comando: nome da rede.biasconnect(camada) = 1 ou na forma de matriz, atribuido 1 às camadas que tiverem bias e 0 às que não tiverem. Por exemplo: net.biasconnect(1) = 1 net.biasconnect(1) = 3 ou nome da rede.biasconnect = [1; 0; 1]

12 Conexões entre entradas e camadas Agora, vamos conectar as entradas às camdadas da rede. De maneira análoga aos biases, podemos especificar essas conexões através do comando nome da rede.inputconnect(i,j) = 1 que representa uma conexão de pesos entre a entrada j e a camada i Essa atrabuição também pode ser feita através de uma matriz n X m, onde onde n é o número de entradas e m é o número de camadas as camdadas. Por exemplo: net.inputconnect(1,1) = 1 net.inputconnect(2,1) = 1 net.inputconnect(2,2) = 1 ou net.biasconnect = [1 0; 1 1; 0 0]

13 Conexões de outputs e targets Definimos aqui as camadas que possuem saída (outputs) e a camada que terá os targets. Isso pode ser feito através da matriz 1xn, onde são as camadas da rede: net.outputconnect = [0 1 1] net.targetconnect = [0 0 1]

14 Inputs Agora, definiremos as características das entradas da rede. Para cada input que criamos, deve ser passado um vetor definindo os valores mínimo q máximo de cada tipo pode assumir. Passamos então, uma matriz 2xm onde m é o número de entradas da rede. nome da rede.inputs{entrada}.range = [x y; x y;...;x y] Por exemplo: net.inputs{1}.range = [0 10; 0 10] net.inputs{2}.range = [-2 2; -2 2; -2 2; -2 2; -2 2]

15 Camadas Quando definimos o número de camadas da rede, para cada camada algumas propriedades já são setadas por default. Se for necessário, podemos alterar algumas delas, como por exemplo o tamanho (quantidade de neurônios), a função de transição e a função de inicilização com os comandos abaixo: nome da rede.layers{camada}.size = x; nome da rede.layers{camada}.transferfcn = função nome da rede.layers{camada}.initfcn = função

16 Camadas As funções disponíveis no Matlab para função de transição são: tansig (tangente hiperbólica) logsig (sigmóide) purelin (linear) satlin () A função de inicilização mais comum é initnw

17 Funções da rede: inicialização O comando nome da rede.initfcn = initnw ; A função initnw inicializa pesos e desvios de uma camada de acordo com o algoritmo de inicialização Nguyen-Widrow. Este algoritmo escolhe valores, a fim de distribuir a região ativa de cada neurônio na camada de maneira uniforme ao longo do espaço de entrada da camada.

18 Funções da rede: performance e treinamento Definimos a performance como erro quadrático médio (mse) e o treinamento por retropropagação (backpropagation) nome da rede.performfcn = mse ; nome da rede.trainfcn =... ; Algumas opções para função de treinamento: trainlm :Levemberg-Marquardt (default) traingd : gradiente descendente traingdm : gradiente descendente com momentum traingda : gradiente descendente adaptativo) traingdx : gradiente descendente com taxa de aprendizagem variável trainrp : reslient backpropagation

19 Inicialização da rede Inicializamos a rede setando os valores devidos de acordo com as propriedades. Os pesos iniciais tem valor zero. nome da rede = init(nome da rede);

20 Treinamento É necessário separar o conjunto de dados em dois grupos básicos: uma parte das amostras será usada para o treinamento e outra para a validação. Da parte que será usada como treinamento, temos os valores de entrada (inputs) e os correspondentes resultados esperados (targets). Podemos armazenar os inputs na variável P e os targets na variável T, por exemplo. Dessa forma, podemos chamar a função de treinamento passando a rede criada, P e T como parâmetros: [nome da rede,tr] = train(nome da rede,p,t); onde tr é uma matriz que contém todos as informações a cerca do treinamento da rede

21

22 Paramêtros de treinamento É possível definir as condições de parada do treinamento (nome da rede.trainparam. condição = z;) : min g rad : magnitudemáximadogradiente max f ail : númeromáximodevalidações time : tempo máximo de treinamento goal: valor mínimo de performance epochs : número máximo de épocas

23 Análise de desempenho pós-treino Pode-se plotar gráficos para analisar o desempenho da rede. Os gráficos podem ser plotados por linhas no código ou através da janela que surge quando a rede é treinada.

24 Simulação da rede (validação) Após o treinamento, a parte restante dos dados de entrada que ainda não foi utilizada, é passada para a função de simulação. A saída da rede é então gerada (outputs) e pode ser comparada com os valores esperados para essas amostras. Y = sim(nome da rede, Pt); onde Pt é o conjunto de amostras restantes.

25 Outras formas de criar e manipular RNAs em Matlab

26 nntool

27 Nas versões mais recentes... A partir da versão (...) do Matlab, a clássica função newff ficou obsoleta e foi substituída. Para criação de redes do tipo Perceptron Multicamadas, uma alternativa é usar para criar a rede a função feedforwardnet Para esta função, caso não sejam passados parâmetros, será aplicado o default: - uma rede com 1 camada escondida composta de 10 neurônios, e uma camada de saída com apenas 1 neurônio. Além disso, já são definidos o método de Levemberg-Marquardt para treinamento e as funções de ativação tansig e purelin para a camada escondida e para a de saída respectivamente.

28 Rede de Base Radial

29 Redes de base radial podem ser usadas para aproximar funções. A função newrb acrescenta neurônios para a camada escondida de uma rede de base radial até encontrar a meta de erro quadrado médio especificado.

30 nome da rede = newrb(p,t,goal,spread,mn,df) onde: P é a matriz com os dados de entrada T é a matriz com os targets goal é o mse (default mse = 0) spread disseminação de funções de base radial MN número máximo de neurônios (default quantidade de amostras na entrada) DF número de neurônios para adicionar entre... (default 25)

31 Nas versões mais recentes... É possível também alterar essa configuração passando como primeiro argumento para a função o número de neurônios desejado na camada escondida, e como segundo argumento, o tipo de treinamento. A vantagem de usar a feedforwardnet é que não é necessário seguir todos esses passos para configurar a rede, e as modificações desejadas (como alterar as funções de ativação, por exemplo) podem ser feita apenas acrescentando os comandos apresentados anteriormente para definir as propriedades ao código.

Redes Neurais no MATLAB 6.1

Redes Neurais no MATLAB 6.1 Redes Neurais no MATLAB 6.1 Redes Neurais no MATLAB Duas formas de utilização: Linhas de comando, e m-files Interface gráfica (NNTool) 1 Redes Neurais no MATLAB Duas formas de utilização: Linhas de comando,,

Leia mais

Relatório de uma Aplicação de Redes Neurais

Relatório de uma Aplicação de Redes Neurais UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTACAÇÃO ESPECIALIZAÇÃO EM ENGENHARIA DE SISTEMAS DISCIPLINA: REDES NEURAIS PROFESSOR: MARCOS

Leia mais

Inteligência Artificial. Redes Neurais Artificiais

Inteligência Artificial. Redes Neurais Artificiais Curso de Especialização em Sistemas Inteligentes Aplicados à Automação Inteligência Artificial Redes Neurais Artificiais Aulas Práticas no Matlab João Marques Salomão Rodrigo Varejão Andreão Matlab Objetivos:

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Curso de Redes Neurais utilizando o MATLAB

Curso de Redes Neurais utilizando o MATLAB Curso de Redes Neurais utilizando o MATLAB Victoria Yukie Matsunaga Belém-Pará-Brasil 2012 Esta apostila tem como principal objetivo fornecer um material de auxílio ao Curso de Redes Neurais utilizando

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

Ambiente MATLAB. Redes Neurais. Tela Principal do MATLAB MATLAB 6.5. MATLAB MATrix LABoratory. Programação baseada em Matrizes

Ambiente MATLAB. Redes Neurais. Tela Principal do MATLAB MATLAB 6.5. MATLAB MATrix LABoratory. Programação baseada em Matrizes Redes Neurais MATLAB 6.5 Ambiente MATLAB MATLAB MATrix LABoratory Programação baseada em Matrizes Vetores e escalares também podem ser considerados matrizes, xn, Nx, x Tela Principal do MATLAB Tela Principal

Leia mais

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica João Paulo Teixeira*, José Batista*, Anildio Toca**, João Gonçalves**, e Filipe Pereira** * Departamento de Electrotecnia

Leia mais

Aula 2 RNA Arquiteturas e Treinamento

Aula 2 RNA Arquiteturas e Treinamento 2COP229 Aula 2 RNA Arquiteturas e Treinamento 2COP229 Sumário 1- Arquiteturas de Redes Neurais Artificiais; 2- Processos de Treinamento; 2COP229 1- Arquiteturas de Redes Neurais Artificiais -Arquitetura:

Leia mais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Elisângela Lopes de Faria (a) Marcelo Portes Albuquerque (a) Jorge Luis González Alfonso (b) Márcio Portes Albuquerque (a) José

Leia mais

Relatório da Aula Prática sobre Redes Neurais Artificiais

Relatório da Aula Prática sobre Redes Neurais Artificiais Relatório da Aula Prática sobre Redes Neurais Artificiais Instituto de Informática UFRGS Carlos Eduardo Ramisch Cartão: 134657 INF01017 Redes Neurais e Sistemas Fuzzy Porto Alegre, 16 de outubro de 2006.

Leia mais

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS Curso: Informática Disciplina: Redes Neurais Prof. Fernando Osório E-mail: osorio@exatas.unisinos.br EXEMPLO DE QUESTÕES DE PROVAS ANTIGAS 1. Supondo que

Leia mais

PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS

PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS Anais do XXXIV COBENGE. Passo Fundo: Ed. Universidade de Passo Fundo, Setembro de 2006. ISBN 85-7515-371-4 PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS Rejane de Barros Araújo rdebarros_2000@yahoo.com.br

Leia mais

3. REDES DE CAMADA ÚNICA

3. REDES DE CAMADA ÚNICA 3. REDES DE CAMADA ÚNICA Perceptron Forma mais simples de RN Utilizado para classificação de padrões (linearmente separáveis) Consiste em um único neurônio, com pesos sinápticos ajustáveis e bias 3.1 Funções

Leia mais

Redes Neurais. Profa. Flavia Cristina Bernardini

Redes Neurais. Profa. Flavia Cristina Bernardini Redes Neurais Profa. Flavia Cristina Bernardini Introdução Cérebro & Computador Modelos Cognitivos Diferentes Cérebro Computador Seqüência de Comandos Reconhecimento de Padrão Lento Rápido Rápido Lento

Leia mais

Modelos Pioneiros de Aprendizado

Modelos Pioneiros de Aprendizado Modelos Pioneiros de Aprendizado Conteúdo 1. Hebb... 2 2. Perceptron... 5 2.1. Perceptron Simples para Classificaçãod e Padrões... 6 2.2. Exemplo de Aplicação e Motivação Geométrica... 9 2.3. Perceptron

Leia mais

A metodologia utilizada neste trabalho consiste basicamente de três etapas: ensaio, pré-processamento e simulações.

A metodologia utilizada neste trabalho consiste basicamente de três etapas: ensaio, pré-processamento e simulações. SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCE 20 14 a 17 Outubro de 2007 Rio de Janeiro - RJ GRUPO XIV GRUPO DE ESTUDO DE CONSERVAÇÃO DE ENERGIA ELÉTRICA UTILIZAÇÃO DE REDES

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

COPPE/UFRJ. CPE 721 - Redes Neurais Feedforward Prof.: Luiz Calôba

COPPE/UFRJ. CPE 721 - Redes Neurais Feedforward Prof.: Luiz Calôba COPPE/UFRJ CPE 721 - Redes Neurais Feedforward Prof.: Luiz Calôba PROGRAMA PARA DEMONSTRAÇÃO DO PROCESSO DE APRENDIZADO DOS NEURÔNIOS DA CAMADA INTERMEDIÁRIA DE UMA REDE NEURAL FEEDFORWARD DE 2 CAMADAS,

Leia mais

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Tiago Mendes Dantas t.mendesdantas@gmail.com Departamento de Engenharia Elétrica,

Leia mais

Redes neurais aplicadas na identificação de variedades de soja

Redes neurais aplicadas na identificação de variedades de soja Redes neurais aplicadas na identificação de variedades de soja Fábio R. R. Padilha Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ Rua São Francisco, 5 - Sede Acadêmica, 987-,

Leia mais

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001 47 5 Redes Neurais O trabalho em redes neurais artificiais, usualmente denominadas redes neurais ou RNA, tem sido motivado desde o começo pelo reconhecimento de que o cérebro humano processa informações

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

OTIMIZAÇÃO DE REDES NEURAIS PARA PREVISÃO DE SÉRIES TEMPORAIS

OTIMIZAÇÃO DE REDES NEURAIS PARA PREVISÃO DE SÉRIES TEMPORAIS OTIMIZAÇÃO DE REDES NEURAIS PARA PREVISÃO DE SÉRIES TEMPORAIS Trabalho de Conclusão de Curso Engenharia da Computação Adélia Carolina de Andrade Barros Orientador: Prof. Dr. Adriano Lorena Inácio de Oliveira

Leia mais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais . O Mapa Auto-Organizável (SOM) Redes Neurais Mapas Auto-Organizáveis Sistema auto-organizável inspirado no córtex cerebral. Nos mapas tonotópicos do córtex, p. ex., neurônios vizinhos respondem a freqüências

Leia mais

Previsão de Falhas em Manutenção Industrial Usando Redes Neurais

Previsão de Falhas em Manutenção Industrial Usando Redes Neurais 1 Previsão de Falhas em Manutenção Industrial Usando Redes Neurais 2 Rubião Gomes Torres Júnior 1 Maria Augusta Soares Machado, Dsc,1 Jorge Muniz Barreto rubtor@attglobal.net mmachado@ibmecrj.br barreto@inf.ufsc.br

Leia mais

Previsão de Cheias do Rio Itajaí-Açu Utilizando Redes Neurais Artificiais

Previsão de Cheias do Rio Itajaí-Açu Utilizando Redes Neurais Artificiais Computer on the Beach 2015 - Artigos Completos 308 Previsão de Cheias do Rio Itajaí-Açu Utilizando Redes Neurais Artificiais Daniel Gomes Soares¹, Raimundo Celeste Ghizoni Teive² ¹Curso de Ciência da Computação

Leia mais

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS Alisson S. C. Alencar, Ajalmar R. da Rocha Neto Departamento de Computação, Instituto Federal do Ceará (IFCE). Programa

Leia mais

APARECIDO NARDO JUNIOR APLICAÇÃO DE REDES NEURAIS UTILIZANDO O SOFTWARE MATLAB

APARECIDO NARDO JUNIOR APLICAÇÃO DE REDES NEURAIS UTILIZANDO O SOFTWARE MATLAB FUNDAÇÃO DE ENSINO EURÍPIDES SOARES DA ROCHA CENTRO UNIVERSITÁRIO EURÍPIDES DE MARÍLIA - UNIVEM BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO APARECIDO NARDO JUNIOR APLICAÇÃO DE REDES NEURAIS UTILIZANDO O SOFTWARE

Leia mais

ESTIMAÇÃO DE PARÂMETROS DE UM MOTOR DE CORRENTE CONTÍNUA (MOTOR CC) POR MEIO DE REDES NEURAIS ARTIFICIAIS (RNA)

ESTIMAÇÃO DE PARÂMETROS DE UM MOTOR DE CORRENTE CONTÍNUA (MOTOR CC) POR MEIO DE REDES NEURAIS ARTIFICIAIS (RNA) XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Maturidade e desafios da Engenharia de Produção: competitividade das empresas, condições de trabalho, meio ambiente. São Carlos, SP, Brasil, 2 a5 de outubro

Leia mais

Do neurônio biológico ao neurônio das redes neurais artificiais

Do neurônio biológico ao neurônio das redes neurais artificiais Do neurônio biológico ao neurônio das redes neurais artificiais O objetivo desta aula é procurar justificar o modelo de neurônio usado pelas redes neurais artificiais em termos das propriedades essenciais

Leia mais

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

Leia mais

Apresentação MATLAB Simulink & Toolboxes

Apresentação MATLAB Simulink & Toolboxes Apresentação MATLAB Simulink & Toolboxes Tel: (011)816-3144 / Fax:(011)816-7864 Email: info.vendas@opencadd.com.br 24.08.1999. Programa da Apresentação MATLAB 5.3: conceitos Toolboxes Symbolic Math Toolbox;

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Introdução às Redes Neurais Artificiais Treinamento via Algoritmos Genéticos Prof. João Marcos Meirelles da Silva http://www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola

Leia mais

PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO

PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO HÉLITON PANDORFI 1 IRAN JOSÉ OLIVEIRA DA SILVA 2 JEFFERSON

Leia mais

Aplicação de Redes Neurais no reconhecimento de letras em placas de veículos automotores brasileiros

Aplicação de Redes Neurais no reconhecimento de letras em placas de veículos automotores brasileiros Aplicação de Redes Neurais no reconhecimento de letras em placas de veículos automotores brasileiros Herman P. Lima Jr Aline da Rocha Gesualdi Marcelo Portes de Albuquerque Márcio Portes de Albuquerque

Leia mais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Redes Neurais Artificiais Prof. Wilian Soares João Vitor Squillace Teixeira Ciência da Computação Universidade

Leia mais

PREVISÃO DE SÉRIES TEMPORAIS DE FALHAS EM MANUTENÇÃO INDUSTRIAL USANDO REDES NEURAIS

PREVISÃO DE SÉRIES TEMPORAIS DE FALHAS EM MANUTENÇÃO INDUSTRIAL USANDO REDES NEURAIS PREVISÃO DE SÉRIES TEMPORAIS DE FALHAS EM MANUTENÇÃO INDUSTRIAL USANDO REDES NEURAIS Rubião G. Torres Jr 1 Maria Augusta Soares Machado 2 Reinaldo Castro Souza 3 Resumo: A aplicação de dois modelos de

Leia mais

REDES NEURAIS APLICADAS À PREVISÃO DE SÉRIES TEMPORAIS

REDES NEURAIS APLICADAS À PREVISÃO DE SÉRIES TEMPORAIS REDES NEURAIS APLICADAS À PREVISÃO DE SÉRIES TEMPORAIS BATTAGELLO, Vinícius Antonio *, CORDEIRO, Marciso Xavier, DAL PINO Jr, Arnaldo Divisão de Ens. Fundamental - Instituto Tecnológico de Aeronáutica

Leia mais

Análise de Risco de Crédito em Correspondentes Bancários através de Redes Neurais

Análise de Risco de Crédito em Correspondentes Bancários através de Redes Neurais Análise de Risco de Crédito em Correspondentes Bancários através de Redes Neurais Marcelo França Corrêa, Marley Vellasco ICA: Applied Computational Intelligence Laboratory Department of Electrical Engineering

Leia mais

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Adriano Lima de Sá Faculdade de Computação Universidade Federal de Uberlândia 20 de junho de 2014 Adriano L. Sá (UFU)

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS COLEGIADO DO CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO - CECAU BRUNO MENDES DE TOLEDO CARGAS

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS COLEGIADO DO CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO - CECAU BRUNO MENDES DE TOLEDO CARGAS UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS COLEGIADO DO CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO - CECAU BRUNO MENDES DE TOLEDO CARGAS CONTROLE DE NÍVEL DE UM SISTEMA DE TANQUES ACOPLADOS UTILIZANDO

Leia mais

Relatório Iniciação Científica

Relatório Iniciação Científica Relatório Iniciação Científica Ambientes Para Ensaios Computacionais no Ensino de Neurocomputação e Reconhecimento de Padrões Bolsa: Programa Ensinar com Pesquisa-Pró-Reitoria de Graduação Departamento:

Leia mais

IC Inteligência Computacional Redes Neurais. Redes Neurais

IC Inteligência Computacional Redes Neurais. Redes Neurais Universidade Federal do Rio de Janeiro PÓS-GRADUAÇÃO / 2008-2 IC Inteligência Computacional Redes Neurais www.labic.nce.ufrj.br Antonio G. Thomé thome@nce.ufrj.br Redes Neurais São modelos computacionais

Leia mais

Redes Neurais Artificiais

Redes Neurais Artificiais Redes Neurais Artificiais Inteligência Artificial Prof. Cedric Luiz de Carvalho Instituto de Informática UFG 2006 2/164 Tópicos Introdução Redes Neurais Humanas O que são Redes Neurais Artificiais Características

Leia mais

TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS

TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS Trabalho de Conclusão de Curso Engenharia da Computação Nome do Aluno: Carolina Baldisserotto Orientador: Prof. Adriano

Leia mais

Computação Adaptativa

Computação Adaptativa Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2007/08 Computação Adaptativa TP2 OCR Optical Character Recognition Pedro Carvalho de Oliveira (MEI) Nº

Leia mais

DESENVOLVIMENTO DE FERRAMENTA COMPUTACIONAL PARA PROJETOS DE REDES NEURAIS ARTIFICIAIS

DESENVOLVIMENTO DE FERRAMENTA COMPUTACIONAL PARA PROJETOS DE REDES NEURAIS ARTIFICIAIS IFSP - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO DESENVOLVIMENTO DE FERRAMENTA COMPUTACIONAL PARA PROJETOS DE REDES NEURAIS ARTIFICIAIS HUGO DA SILVA BERNARDES GONÇALVES São Paulo

Leia mais

Revista Hispeci & Lema On Line ano III n.3 nov. 2012 ISSN 1980-2536 unifafibe.com.br/hispecielemaonline Centro Universitário UNIFAFIBE Bebedouro-SP

Revista Hispeci & Lema On Line ano III n.3 nov. 2012 ISSN 1980-2536 unifafibe.com.br/hispecielemaonline Centro Universitário UNIFAFIBE Bebedouro-SP Reconhecimento de face utilizando banco de imagens monocromáticas e coloridas através dos métodos da análise do componente principal (PCA) e da Rede Neural Artificial (RNA) [Recognition to face using the

Leia mais

Redes Neurais Construtivas. Germano Crispim Vasconcelos Centro de Informática - UFPE

Redes Neurais Construtivas. Germano Crispim Vasconcelos Centro de Informática - UFPE Redes Neurais Construtivas Germano Crispim Vasconcelos Centro de Informática - UFPE Motivações Redes Feedforward têm sido bastante utilizadas em aplicações de Reconhecimento de Padrões Problemas apresentados

Leia mais

Redes Neurais Artificiais. Professor: Juan Moises Villanueva

Redes Neurais Artificiais. Professor: Juan Moises Villanueva Redes eurais Artificiais Mestrando: Lucas icolau Email: lucasfnicolau@gmail.com Professor: Juan Moises Villanueva Sumário 1. Redes Adaline e Madaline 2. Redes eurais Diretas 3. Funções de Ativação Discreta

Leia mais

Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação

Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Eletrônica e de Computação Reconhecimento de Caracteres de Placa Veicular Usando Redes Neurais Autor: Orientador: Allan Almeida

Leia mais

FERRAMENTA COMPUTACIONAL PARA PROJETOS DE REDES NEURAIS ARTIFICIAIS UTILIZANDO LINGUAGEM GRÁFICA

FERRAMENTA COMPUTACIONAL PARA PROJETOS DE REDES NEURAIS ARTIFICIAIS UTILIZANDO LINGUAGEM GRÁFICA FERRAMENTA COMPUTACIONAL PARA PROJETOS DE REDES NEURAIS ARTIFICIAIS UTILIZANDO LINGUAGEM GRÁFICA Hugo da Silva Bernardes Gonçalves hugo.bernardes@gmail.com IFSP Instituto Federal de Ciência e Tecnologia

Leia mais

EXPERIÊNCIAS COM REDE MLP APRENDIZAGEM SUPERVISIONADA PROF. JÚLIO CESAR NIEVOLA, PHD. PPGIA PUCPR ESPECIALIZAÇÃO EM INTELIGÊNCIA COMPUTACIONAL

EXPERIÊNCIAS COM REDE MLP APRENDIZAGEM SUPERVISIONADA PROF. JÚLIO CESAR NIEVOLA, PHD. PPGIA PUCPR ESPECIALIZAÇÃO EM INTELIGÊNCIA COMPUTACIONAL EXPERIÊNCIAS COM REDE MLP APRENDIZAGEM SUPERVISIONADA PROF. JÚLIO CESAR NIEVOLA, PHD. PPGIA PUCPR ESPECIALIZAÇÃO EM INTELIGÊNCIA COMPUTACIONAL REDES NEURAIS ARTIFICIAIS Laboratório de MLP usando o Ambiente

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

REDES NEURAIS ARTIFICIAIS E MODELO DE MARKOWITZ: COMPARANDO TÉCNICAS QUE APÓIAM A TOMADA DE DECISÃO NOS INVESTIMENTOS EM AÇÕES.

REDES NEURAIS ARTIFICIAIS E MODELO DE MARKOWITZ: COMPARANDO TÉCNICAS QUE APÓIAM A TOMADA DE DECISÃO NOS INVESTIMENTOS EM AÇÕES. REDES NEURAIS ARTIFICIAIS E MODELO DE MARKOWITZ: COMPARANDO TÉCNICAS QUE APÓIAM A TOMADA DE DECISÃO NOS INVESTIMENTOS EM AÇÕES. Paulo Henrique Kaupa (Uninove) paulo.kaupa@gmail.com Renato Jose Sassi (Uninove)

Leia mais

1. Introdução... 2. 2. As origens da RNA... 3. 3. O nosso cérebro... 5. 3.1. Plasticidade e modulação sináptica... 5

1. Introdução... 2. 2. As origens da RNA... 3. 3. O nosso cérebro... 5. 3.1. Plasticidade e modulação sináptica... 5 Sumário 1. Introdução... 2 2. As origens da RNA... 3 3. O nosso cérebro... 5 3.1. Plasticidade e modulação sináptica... 5 4. As redes neurais artificiais... 7 4.1. Estrutura da RNA... 7 4.3. Modelos de

Leia mais

Técnicas de Mineração de Dados Aplicadas a Reservatórios visando à Gestão Ambiental na Geração de Energia

Técnicas de Mineração de Dados Aplicadas a Reservatórios visando à Gestão Ambiental na Geração de Energia Técnicas de Mineração de Dados Aplicadas a Reservatórios visando à Gestão Ambiental na Geração de Energia Aluno: Gabriel Leite Mariante Orientador: Marley Maria Bernardes Rebuzzi Vellasco Introdução e

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 20 - Backpropagation

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 20 - Backpropagation Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 20 - Backroagation Introdução Redes de uma camada resolvem aenas roblemas linearmente searáveis Solução: utilizar mais de uma camada Camada 1: uma

Leia mais

Figura 1 - Arquitetura multi-camadas do SIE

Figura 1 - Arquitetura multi-camadas do SIE Um estudo sobre os aspectos de desenvolvimento e distribuição do SIE Fernando Pires Barbosa¹, Equipe Técnica do SIE¹ ¹Centro de Processamento de Dados, Universidade Federal de Santa Maria fernando.barbosa@cpd.ufsm.br

Leia mais

Desenvolvendo para WEB

Desenvolvendo para WEB Nível - Básico Desenvolvendo para WEB Por: Evandro Silva Neste nosso primeiro artigo vamos revisar alguns conceitos que envolvem a programação de aplicativos WEB. A ideia aqui é explicarmos a arquitetura

Leia mais

ESTUDO DE PROTEÇÃO, MEDIÇÃO E CONTROLE EM SISTEMAS DE POTÊNCIA

ESTUDO DE PROTEÇÃO, MEDIÇÃO E CONTROLE EM SISTEMAS DE POTÊNCIA GPC/001 21 a 26 de Outubro de 2001 Campinas - São Paulo - Brasil GRUPO V ESTUDO DE PROTEÇÃO, MEDIÇÃO E CONTROLE EM SISTEMAS DE POTÊNCIA UMA ABORDAGEM BASEADA EM REDES NEURAIS ARTIFICIAIS PARA IDENTIFICAÇÃO

Leia mais

MODELAGEM DO CUSTO MARGINAL DA ENERGIA ELÉTRICA EM FUNÇÃO DO NÍVEL DE ARMAZENAMENTO NOS RESERVATÓRIOS

MODELAGEM DO CUSTO MARGINAL DA ENERGIA ELÉTRICA EM FUNÇÃO DO NÍVEL DE ARMAZENAMENTO NOS RESERVATÓRIOS SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GOP - 17 16 a 21 Outubro de 2005 Curitiba - Paraná GRUPO IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP MODELAGEM DO

Leia mais

Engenharia de Software I

Engenharia de Software I Engenharia de Software I Curso de Desenvolvimento de Software Prof. Alessandro J de Souza ajdsouza@cefetrn.br 1 Rational Unified Process RUP Fase Construção 2 VISÃO GERAL Fase Construção. Visão Geral 3

Leia mais

MÉTODOS DE PREVISÃO USANDO A SÉRIE ECONOMÉTRICA DE NELSON-PLOSSER: UM ESTUDO COMPARATIVO

MÉTODOS DE PREVISÃO USANDO A SÉRIE ECONOMÉTRICA DE NELSON-PLOSSER: UM ESTUDO COMPARATIVO MÉTODOS DE PREVISÃO USANDO A SÉRIE ECONOMÉTRICA DE NELSON-PLOSSER: UM ESTUDO COMPARATIVO Pedro Paulo Balestrassi EFEI Escola Federal de Engenharia de Itajubá - e-mail: pedro@eps.ufsc.br Robert Wayne Samohyl

Leia mais

PREVISÃO DO PREÇO DA SOJA UTILIZANDO REDES NEURAIS

PREVISÃO DO PREÇO DA SOJA UTILIZANDO REDES NEURAIS PREVISÃO DO PREÇO DA SOJA UTILIZANDO REDES NEURAIS 1 William Hajime Yonenaga e 2 Reginaldo Santana Figueiredo 1 Programa de Pós-Graduação em Engenharia de Produção, 2 Departamento de Engenharia de Produção

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

Redes Neurais Artificiais na Engenharia Nuclear 2 Aula-1 Ano: 2005

Redes Neurais Artificiais na Engenharia Nuclear 2 Aula-1 Ano: 2005 Redes Neurais Artificiais na Engenharia Nuclear 1 - Apresentação do Professor: dados, lista de E-mail s, etc. - Apresentação da Turma: Estatística sobre origem dos alunos para adaptação do curso - Apresentação

Leia mais

UM ESTUDO COMPARATIVO PARA PREVISÃO DA COTAÇÃO DE AÇÕES DA BM&FBOVESPA UTILIZANDO REDES NEURAIS ARTIFICIAIS

UM ESTUDO COMPARATIVO PARA PREVISÃO DA COTAÇÃO DE AÇÕES DA BM&FBOVESPA UTILIZANDO REDES NEURAIS ARTIFICIAIS UM ESTUDO COMPARATIVO PARA PREVISÃO DA COTAÇÃO DE AÇÕES DA BM&FBOVESPA UTILIZANDO REDES NEURAIS ARTIFICIAIS Trabalho de Conclusão de Curso Engenharia da Computação Igor Menezes Marinho de Souza Orientador:

Leia mais

RNAs, Classificação de Padrões e Motivação Geométrica. Conteúdo

RNAs, Classificação de Padrões e Motivação Geométrica. Conteúdo RNAs, Classificação de Padrões e Motiação Geométrica Conteúdo. O problema do OU-eclusio.... Um problema mais geral de mapeamento não-linear... 0 3. Mapeamentos não-lineares genéricos... 4 4. Redes neurais

Leia mais

Redes Neurais. A IA clássica segue o paradigma da computação simbólica

Redes Neurais. A IA clássica segue o paradigma da computação simbólica Abordagens não simbólicas A IA clássica segue o paradigma da computação simbólica Redes Neurais As redes neurais deram origem a chamada IA conexionista, pertencendo também a grande área da Inteligência

Leia mais

REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE- AÇÚCAR

REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE- AÇÚCAR REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE- AÇÚCAR THIAGO RAMOS TRIGO 1 PAULO CESAR DA SILVA BATISTA JÚNIOR 1 FERNANDO BUARQUE DE LIMA NETO 2 RESUMO Este artigo apresenta um maneira de implementar

Leia mais

Previsão do Preço de Ações Usando Redes Neurais

Previsão do Preço de Ações Usando Redes Neurais Previsão do Preço de Ações Usando Redes Neurais O mercado de ações é um dos principais mecanismos para o desenvolvimento econômico, porque é um meio importante de captação de capitais. Assim sendo, a tentativa

Leia mais

Curso de Introdução ao SIMULINK

Curso de Introdução ao SIMULINK 4.3 - Modelando Sistemas Não Lineares O SIMULINK fornece uma variedade de blocos para a modelagem de sistemas não lineares. Esses blocos estão na biblioteca Nonlinear. O comportamento destes blocos não

Leia mais

REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE-AÇÚCAR RESUMO

REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE-AÇÚCAR RESUMO REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE-AÇÚCAR THIAGO RAMOS TRIGO 1 PAULO CESAR DA SILVA BATISTA JÚNIOR 1 FERNANDO BUARQUE DE LIMA NETO 2 RESUMO Este artigo apresenta um maneira de implementar

Leia mais

Uma abordagem computacional para preenchimento de falhas em dados micro meteorológicos

Uma abordagem computacional para preenchimento de falhas em dados micro meteorológicos Uma abordagem computacional para preenchimento de falhas em dados micro meteorológicos A computational approach for gap filling in micrometeorological data RESUMO Estações micro meteorológicas utilizam

Leia mais

Ajuste da generalização em Redes de Base Radial: uma abordagem multi-objetivo para a estimação de parâmetros

Ajuste da generalização em Redes de Base Radial: uma abordagem multi-objetivo para a estimação de parâmetros Ajuste da generalização em Redes de Base Radial: uma abordagem multi-objetivo para a estimação de parâmetros D. H. D. Carvalho ½¾, M. A. Costa ½ e A. P. Braga ½ dhdc@ufmg.br, azevedo@est.ufmg.br e apbraga@cpdee.ufmg.br

Leia mais

Programação Orientada a Objetos - 3º semestre AULA 08 Prof. André Moraes

Programação Orientada a Objetos - 3º semestre AULA 08 Prof. André Moraes Pág 50 Programação Orientada a Objetos - 3º semestre AULA 08 Prof. André Moraes 10 CORREÇÃO DE QUESTÕES DE AVALIAÇÃO 1 PARTE I - AVALIAÇÃO TEÓRICA 11 RESPONDA AS QUESTÕES ABAIXO: A) Qual a diferença entre

Leia mais

UNIVERSIDADE FEDERAL DE JUIZ DE FORA PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM COMPUTACIONAL. Luciana Gomes

UNIVERSIDADE FEDERAL DE JUIZ DE FORA PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM COMPUTACIONAL. Luciana Gomes UNIVERSIDADE FEDERAL DE JUIZ DE FORA PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM COMPUTACIONAL Luciana Gomes Modelagem de variáveis qualitativas por meio de redes neurais artificiais: Avaliação do uso de Análise

Leia mais

Hardware (Nível 0) Organização. Interface de Máquina (IM) Interface Interna de Microprogramação (IIMP)

Hardware (Nível 0) Organização. Interface de Máquina (IM) Interface Interna de Microprogramação (IIMP) Hardware (Nível 0) Organização O AS/400 isola os usuários das características do hardware através de uma arquitetura de camadas. Vários modelos da família AS/400 de computadores de médio porte estão disponíveis,

Leia mais

Classificador de cédulas de Real: Duas abordagens, linear e não-linear

Classificador de cédulas de Real: Duas abordagens, linear e não-linear Classificador de cédulas de Real: Duas abordagens, linear e não-linear Lais C. R. S. Lopes 1 1 Instituto de Informática Universidade Federal de Goiás (UFG) Abstract. Real notes classification problem is

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron.

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron. 1024 UMA ABORDAGEM BASEADA EM REDES PERCEPTRON MULTICAMADAS PARA A CLASSIFICAÇÃO DE MASSAS NODULARES EM IMAGENS MAMOGRÁFICAS Luan de Oliveira Moreira¹; Matheus Giovanni Pires² 1. Bolsista PROBIC, Graduando

Leia mais

Simulador de Redes Neurais Multiplataforma

Simulador de Redes Neurais Multiplataforma Simulador de Redes Neurais Multiplataforma Lucas Hermann Negri 1, Claudio Cesar de Sá 2, Ademir Nied 1 1 Departamento de Engenharia Elétrica Universidade do Estado de Santa Catarina (UDESC) Joinville SC

Leia mais

Eduardo Bezerra. Editora Campus/Elsevier

Eduardo Bezerra. Editora Campus/Elsevier Princípios de Análise e Projeto de Sistemas com UML 2ª edição Eduardo Bezerra Editora Campus/Elsevier Capítulo 11 Arquitetura do sistema Nada que é visto, é visto de uma vez e por completo. --EUCLIDES

Leia mais

5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS

5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS 5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS TÍTULO DO TRABALHO: REDES NEURAIS APLICADAS EM INDÚSTRIAS PETROQUÍMICAS DE FABRICAÇÃO DE FIBRAS DE POLIÉSTER. AUTORES: Lívia Maciel

Leia mais

RENATO DE FREITAS LARA. Departamento de Ciência da Computação - Universidade Presidente Antônio Carlos (UNIPAC) - Barbacena - MG Brasil

RENATO DE FREITAS LARA. Departamento de Ciência da Computação - Universidade Presidente Antônio Carlos (UNIPAC) - Barbacena - MG Brasil RECONHECIMENTO DE CADEIAS DE NÚMEROS NAS ETIQUETAS IDENTIFICADORAS DOS BLOCOS DE AÇO, UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E REDES NEURAIS ARTIFICIAIS RENATO DE FREITAS LARA Departamento de Ciência

Leia mais

ALESSANDRO RODRIGO FRANCO FERNANDO MARTINS RAFAEL ALMEIDA DE OLIVEIRA

ALESSANDRO RODRIGO FRANCO FERNANDO MARTINS RAFAEL ALMEIDA DE OLIVEIRA ALESSANDRO RODRIGO FRANCO FERNANDO MARTINS RAFAEL ALMEIDA DE OLIVEIRA INTRODUÇÃO O projeto de um banco de dados é realizado sob um processo sistemático denominado metodologia de projeto. O processo do

Leia mais

Predição de links em redes sociais utilizando Extreme Learning Machines

Predição de links em redes sociais utilizando Extreme Learning Machines UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO Predição de links em redes sociais utilizando Extreme Learning Machines TRABALHO DE GRADUAÇÃO Aluno: Hugo Neiva

Leia mais

Previsão de Carga em Médio Prazo via Redes Neurais Artificiais e Algoritmos Genéticos UFPE UFPE UFPE UFPE UFPE CELPE

Previsão de Carga em Médio Prazo via Redes Neurais Artificiais e Algoritmos Genéticos UFPE UFPE UFPE UFPE UFPE CELPE 21 a 25 de Agosto de 2006 Belo Horizonte - MG Previsão de Carga em Médio Prazo via Redes Neurais Artificiais e Algoritmos Genéticos Nóbrega Neto, O. Aquino, R. R. B. Ferreira, A. A. Lira, M. M. S. Silva,

Leia mais

[1] Na terceira sessão, analisamos o Perceptron de Múltiplas Camadas inclusive um problema típico como o XOR.

[1] Na terceira sessão, analisamos o Perceptron de Múltiplas Camadas inclusive um problema típico como o XOR. Deolinda M. P. Aguieiras de Lima Nilton Alves Jr. naj@cat.cbpf.br [1] Resumo Este trabalho tem como finalidade servir de primeira leitura para aqueles alunos que desejam iniciar se no estudo de Redes Neurais.

Leia mais

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011 Revisão Inteligência Artificial ENADE Prof a Fabiana Lorenzi Outubro/2011 Representação conhecimento É uma forma sistemática de estruturar e codificar o que se sabe sobre uma determinada aplicação (Rezende,

Leia mais

Análise de Tendências de Mercado por Redes Neurais Artificiais

Análise de Tendências de Mercado por Redes Neurais Artificiais Análise de Tendências de Mercado por Redes Neurais Artificiais Carlos E. Thomaz 1 e Marley M.B.R. Vellasco 2 1 Departamento de Engenharia Elétrica (IAAA), FEI, São Paulo, Brasil 2 Departamento de Engenharia

Leia mais

O cursor se torna vermelho e uma Paleta de Edição contendo as instruções mais utilizadas é apresentada.

O cursor se torna vermelho e uma Paleta de Edição contendo as instruções mais utilizadas é apresentada. Editor de Ladder para VS7 Versão Teste O editor de ladder é um software de programação que permite que o VS7 e o µsmart sejam programados em linguagem de contatos. Esse editor está contido na pasta Público

Leia mais

GUIA BÁSICO DA SALA VIRTUAL

GUIA BÁSICO DA SALA VIRTUAL Ambiente Virtual de Aprendizagem - MOODLE GUIA BÁSICO DA SALA VIRTUAL http://salavirtual.faculdadesaoluiz.edu.br SUMÁRIO 1. Acessando Turmas 4 2. Inserindo Material 4 3. Enviando Mensagem aos Alunos 6

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 02 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 02 Comandos de Repetição - O Comando FOR - O comando IF com o comando

Leia mais

MODELAGEM DE UMA ESTAÇÃO DE TRATAMENTO DE ESGOTOS UTILIZANDO REDES NEURAIS: CONCEITUAÇÃO E AVALIAÇÃO PRELIMINAR

MODELAGEM DE UMA ESTAÇÃO DE TRATAMENTO DE ESGOTOS UTILIZANDO REDES NEURAIS: CONCEITUAÇÃO E AVALIAÇÃO PRELIMINAR MODELAGEM DE UMA ESTAÇÃO DE TRATAMENTO DE ESGOTOS UTILIZANDO REDES NEURAIS: CONCEITUAÇÃO E AVALIAÇÃO PRELIMINAR Werner Siegfried Hanisch () Engenheiro Químico pela Universidade Federal de São Carlos, Mestre

Leia mais

5 Framework para coordenação e mediação de Web Services para ambientes de aprendizado à distância

5 Framework para coordenação e mediação de Web Services para ambientes de aprendizado à distância 5 Framework para coordenação e mediação de Web Services para ambientes de aprendizado à distância O capítulo anterior apresentou uma discussão sobre a inclusão dos chamados learning services no processo

Leia mais

MÉTODOS DE PREVISÃO DE CONSUMO DE ENERGIA ELÉTRICA REGRESSÃO E REDES NEURAIS ARTIFICIAIS

MÉTODOS DE PREVISÃO DE CONSUMO DE ENERGIA ELÉTRICA REGRESSÃO E REDES NEURAIS ARTIFICIAIS ISSN 1984-9354 MÉTODOS DE PREVISÃO DE CONSUMO DE ENERGIA ELÉTRICA REGRESSÃO E REDES NEURAIS ARTIFICIAIS Roberta Mendiondo, Paulo Sergio Sousa Oliveira (Universidade Veiga de Almeida) Resumo: Políticas

Leia mais

PREDIÇÃO DE SÉRIES TEMPORAIS PARA ANÁLISE DINÂMICA DE ESTRUTURAS OFFSHORE. Nelson Antonio Fernandes de Matos

PREDIÇÃO DE SÉRIES TEMPORAIS PARA ANÁLISE DINÂMICA DE ESTRUTURAS OFFSHORE. Nelson Antonio Fernandes de Matos PREDIÇÃO DE SÉRIES TEMPORAIS PARA ANÁLISE DINÂMICA DE ESTRUTURAS OFFSHORE Nelson Antonio Fernandes de Matos TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA

Leia mais