LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I

Documentos relacionados
Axiomas e Proposições

CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles.

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.

MA13 Geometria AV1 2014


ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

Propriedades do ortocentro

Triângulos classificação

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

MAT-230: Geometria e Desenho Geométrico I

Equilátero Isósceles Escaleno

Teorema do ângulo externo e sua consequencias

Polígonos PROFESSOR RANILDO LOPES 11.1

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,

Conceitos básicos de Geometria:

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade

AVF - MA Gabarito

Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff

Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105

MAT-230 Diurno 1ª Folha de Exercícios

4. Saber a relação entre o número de lados e diagonais em polígonos convexos.

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas

MATEMÁTICA 2 Ângulos PROFESSOR: TÚLIO 1. b) 52º10 25 d) 127º12 15

Capítulo 4. Geometria Euclideana

Quadrilátero convexo

Figura 1: Questão 8. (a) Pode-se dizer que ABC DEF? (b) Pode-se dizer que ABC EDF? (c) Determine o valor de m(ef ).

NOME: ANO: 3º Nº: PROFESSOR(A):

BC Geometria Analítica. Lista 4

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

GAAL: Exercícios 1, umas soluções

Objetivos da aula. 1. Saber usar o ângulo externo de um polígono. 2. Saber que ângulos alternos internos têm a mesma medida.

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Classificac a o segundo os lados. Geometria plana e analı tica. Congrue ncia de tria ngulos. Tria ngulo reta ngulo. Tria ngulos

Objetivos. em termos de produtos internos de vetores.

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO

Congruência de triângulos

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014

Lugares geométricos básicos I

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC.

RETAS E CIRCUNFERÊNCIAS

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira

Geometria 8 Ano A/B/C/D Prof. Israel Lopes

PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Revisional 1º Bim - MARCELO

1 a Lista de Exercícios MAT 105 Geometria Analitica

LISTA DE EXERCÍCIOS 3º ANO

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado.

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA

Lista 3 com respostas

DESENHO GEOMÉTRICO ETECVAV

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas

Coordenadas Cartesianas

Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff

PONTOS NOTAVEIS NO TRIANGULO

(R. 2 3 ) a) 243 b) 81 c) 729 d) 243 e) 729

Lista 3 com respostas

Programa de MAT 240, bibliografia e Datas das Provas

Turma preparatória para Olimpíadas.

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015

CADERNO DE EXERCÍCIOS 10

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

META Introduzir os axiomas de medição de segmentos e ângulos. OBJETIVOS Determinar o comprimento de um segmento e a distância entre

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros

Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart. Teorema de Menelaus. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Geometria Plana - Aula 05

Exercícios de Geometria Analítica - CM045

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

Revisional 3 Bim - MARCELO

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

Lista 11. Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329).

As referências que seguem serão as nossas fontes principais de apoio:

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

a) 15º b) 16º c) 15º15 d) 16º15 e) 17º30 b) 53º e 2º c) 40º e 45º d) 42º e 45º b) suplementares c) replementares d) congruentes b) 60º c) 65º d) 70º

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

Como ler Saccheri. Ricardo Bianconi

Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

Transcrição:

LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência com 7 pontos e 7 retas. 3. Usando quatro pontos, todos distintos e tres deles colineares, quantas retas podemos construir? 4. São dadas 3 réguas f, g e h de uma reta r e tres pontos A, B, C de r. Sabendo que: a) f(a) = 1, f(b) = 5, g(b) = 0, g(c) = -2, h(a) = 101, h(c) = 104 b) f(b) = 7, f(c) = 1, g(a) =30, g(b) = 33, h(a) = 30, h(c) = 33 Obter o valor que falta em cada régua. 5. Seja r uma reta e f, g duas réguas para r. Qual é a relação que existe entre f e g? É verdade que f+g 2 é uma régua? E f g 2? 6. Mostre que se no ABC tivermos B C D e A E C, então existe F DE tal que A F B. 7. Sejam A, B, C três pontos não colineares no plano π. Prove que qualquer ponto P π pertence a uma reta que intersecta o ABC em dois pontos. 8. Em um segmento AB, considere um ponto P móvel e seja M o ponto médio de AP e N o ponto médio de P B. Quanto vale MN? 9. Decida se as afirmações a seguir são verdadeiras ou falsas: (a) Por um ponto passam infinitas retas. (b) Quatro pontos, todos distintos, determinam duas retas. (c) Dois segmentos consecutivos são colineares. (d) Dois segmentos adjacentes são consecutivos. (e) Dois ângulos consecutivos são adjacentes. (f) Dois ângulos opostos pelo vértice são adjacentes. (g) Dois ângulos suplementares são adjacentes. (h) Uma reta pode intersectar um ABC em três pontos. (i) Existem dois conjuntos convexos e não vazios H 1 e H 2 tais que para toda reta r, um ponto fora de r está em H 1 ou em H 2. (j) Se A, B, C são não colineares e A C B, B A C, C B A, então A, B, C são não colineares 1

(k) Se uma reta intersecta um triângulo mas não intersecta dois de seus lados então a reta contém um vértice do triângulo. 10. Mostre que se uma reta r não contém nenhum dos vértices do ABC, então r não pode intersectar os três lados do ABC. 11. Se A, B, C são três pontos não colineares e uma reta r intersecta AB, é verdade que r intersecta BC ou AC? 12. Dados o ABCD, E = AB CD, F = AD BC e G = AC BD, prove que E, F, G são não colineares. 13. Na geometria do taxista, encontre duas possíveis réguas f : r R para a reta y = 5x + 2 de forma que f(0, 2) = 2. 14. No plano de Moulton determine o ponto de interseção da reta que contém A e B, com a reta que contém C e D, sendo A = (-1,-1), B = (1,1), C = (-1,1), D = (1,-1). 15. No plano rasgado, determine a distância do ponto A = (-1,1) ao ponto B = (5,7). 16. No plano rasgado considere os pontos não colineares A = (-1,0), B = (2,0) e C = (2,3n), com n natural. Determine o menor n a partir do qual BA + AC < BC. 17. No plano hiperbólico mostre que A-B-C, sendo A = (2, 15), B= (3,4), C = (6, 7). 18. Decida se as afirmações a seguir são verdadeiras ou falsas: (a) Duas retas são paralelas se, e somente se, cada uma está num mesmo lado da outra. (b) Se C int ( AUB), então UA UC é um ângulo. (c) O exterior de um ângulo pode ser um conjunto convexo. (d) Um quadrilátero convexo é um conjunto convexo. 19. Mostre que se uma reta r não intersecta o ABC, então o ABC está em um mesmo lado de r. 20. Dados quatro pontos distintos A, B, C e D, três a três não colineares, então ou A, B, C, D são vértices de um quadrilátero convexo ou A, B, C, D são vértices de três quadriláteros, nenhum deles convexo. 21. Mostre que se r e s são retas paralelas, então um semi-plano de r está contido num semi-plano de s. 22. Decida se as afirmações a seguir são verdadeiras ou falsas: (a) π = 180. 2

(b) 0 < m( ABC) < 180. (c) Se m( AUB) < m( AUC), então B int( AUC). (d) A união de dois ângulos retos é um subconjunto da união de duas retas. 23. (a) O que significa, pra você, a frase Os pontos A e C estão em lados opostos da semirreta V B. (b) Prove que se AUB é ângulo reto, os pontos A e C estão em lados opostos de UB se, e somente se, AUC é obtuso ou A U C. 24. Sejam A = ( 1, 1), B = (0, 0) e C = (1, 1) pontos no plano de Moulton. Determine a medida de cada ângulo do ABC. 25. Dê uma definição razoável para UB está entre UA e UC. 26. Dê uma definição razoável para A reta r está entre as retas s e t. 27. Prove que se os pontos A e C estão em lados opostos da reta UB e m( AUB) + m( BUC) = 180, então A U C 28. Mostre que se P r, existe uma única reta s, com P s e s perpendicular a r. 29. Mostre que se P / r, existe uma única reta s com P s e s perpendicular a r. 30. Qual é a medida do ângulo formada pelos ponteiros de um relógio que marca 13 : 33 horas? 31. Os ponteiros de um relógio formam um ângulo de 90. Quinze minutos depois formam um ângulo de medida x. Determine os dois possíveis valores de x. 32. O ângulo formado pelos ponteiros de um relógio mede 151,5 graus. Sabendo que isto acontece depois do meio dia e antes das 14 horas, determine a hora exata. 33. Determine a medida de um ângulo que vale o dobro de seu complemento. 34. Calcule a medida de um ângulo sabendo que um quarto de seu complemento vale 36. 35. O complemento de um ângulo está para seu suplemento como 2 está para 7. Determine a medida deste ângulo. 36. No ABC temos que AB = 8, BC = 21 e AC é um inteiro múltiplo de 6. Determine AC. 37. No ABC, sabemos que AB é inteiro, que AC = 27, que BC = 16 e que medida do ângulo de vértice C é menor que a medida do ângulo de vértice A e que por sua vez é menor que a medida do ângulo de vértice B. Determine o valor máximo que AB pode assumir. 3

38. Seja ABCD um quadrilátero tal que m( BAD) = m( ADC) = 90 e AB = CD. Mostre que ele é convexo. (Obs.: Este quadrilátero é chamado de quadrilátero de Saccheri). 39. No plano hiperbólico H, considere o quadrilátero ABCD, onde A = (1,5), B = (1,10), C = (7,8), D = (4,4). Calcule os valores de todos os lados e dos ângulos internos e conclua que ABCD é um quadrilátero de Saccheri. 40. Encontre as coordenadas do ponto B, sabendo que ABCD é um quadrilátero de Saccheri no plano hiperbólico e que A = (4,7), C = (7,4), D = (4,5). 41. No plano hiperbólico, determine a equação da reta r p,r que passa no ponto (0,2) e é perpendicular a r 0. Determine também a equação da reta que passa em (0,2) forma um ângulo de medida 45 com r p,r. 42. No plano de Moulton, calcule a soma das medidas dos ângulos internos do ABC, sendo A = (2,0), B = (0,0), C = (2,1). 43. Seja ABC com AB = BC. Mostre que a bissetriz do ângulo ABC e as duas bissetrizes dos ângulos externos aos ângulos BAC e BCA se cortam em um ponto O. 44. Mostre que Lado-Lado-Ângulo (L.L.A.) não é um critério de congruência de triângulos.( Sugestão: Considere um ABC, com BC < AC e tome A-D-C com BC = BD.) 45. (Exercício 54 da apostila.) Na geometria analítica, sejam A = (a 1, a 2 ), B = (b 1, b 2 ) e C = (c 1, c 2 ) não colineares. Definimos m( ABC) como o arco α entre 0 e 180 que tem cosseno cos α = (A B) (C B) A B C B = (a 1 b 1 )(c 1 b 1 ) + (a 2 b 2 )(c 2 b 2 ) (a1 b 1 ) 2 + (a 2 b 2 ) 2 (c 1 b 1 ) 2 + (c 2 b 2 ) 2 Mostre que m é medida de ângulo. (Para isso, tem que satisfazer as três condições do postulado do transferidor. Se necessário, consulte um livro de Vetores e Geometria Analítica.) 46. (Exercício 55 da apostila.) Na geometria do taxista, mostre que a medida m da geometria analítica é medida de ângulo. 47. (Exercício 57 da apostila.) No plano de Moulton, definimos m( ABC) como sendo a medida da geometria analítica de P BQ, se B não está no eixo O y e P e Q estão no mesmo lado que B em relação ao eixo O y ; se B está no eixo O y, dados b R e P = (x, y) R 2 um ponto, definimos o ponto P b por 4

{ (x, 2y b) se x > 0 e y > b, P b = (x, y) caso contrário. Definimos, então, m( ABC) = m E ( A b BC b ), sendo m E a medida euclideana de ângulo. Observe que nesta medida de ângulo nós desentortamos as retas rm,b que suportam as semirretas BA BC que definem o ângulo ABC. Verifique que esta medida satisfaz os três itens do postulado do transferidor. 48. (Exercício 62 da apostila.) Na geometria hiperbólica, dada a reta r 0,5 = {(x, y) H : x 2 + y 2 = 25} e o ponto B = (3, 4) r 0,5, ache a reta r contendo B e perpendicular à reta r 0,5. 49. (Exercício 70 da apostila) No plano hiperbólico H, sejam A = (-1,1), B = (0,0), C = (1,1), D = (-2,2), E = (2,2), F = (2,2). Use LAL para mostrar que ABC DEF. 50. (Exercício 75 da apostila) Dado o quadrilátero convexo ABCD, mostre que, se AB CD BC DA e AC BD, então DAB BCD ABC CDA. 51. (Exercício 79 da apostila) Mostre que dada uma reta r e um ponto P fora dsta reta, existe uma reta paralela à reta r e que contém o ponto P. 52. ( Exercício 80 da apostila) Mostre que as retas r 0 = {(0, y)/y > 0} e r 0,1 = {(x, y)/x 2 +y 2 = 1} contêm o ponto P = (0,1) e são paralelas à reta r 1 = {(1, y)/y > 0}, no plano hiperbólico H.(Compare o que acontece neste exercício, com o que é exigido no postulado das paralelas). 53. Dada uma reta r e um ponto P fora dela, mostre que existe uma única perpendicular à reta r e que contém o ponto P.(Neste exercício, o postulado LAL é suficiente para a unicidade. Sem ele, não existe unicidade). 54. (Exercícios 87, 88 da apostila) a) Mostre que as tres bissetrizes dos ângulos internos de um triângulo se encontram em um ponto interno do triângulo. b) Mostre que se duas mediatrizes se encontram em um ponto P, então a terceira mediatriz passa por P. O que acontece com as medianas? 55. ( Exercício 89 da apostila) No plano hiperbólico, considere o triângulo de vértices A = (0,4), B = (-6,4), C = (6,4).Verifique que as mediatrizes são paralelas. 56. (Exercícios 93 da apostila) Mostre que num triângulo isósceles, cujos ângulos internos não sejam maiorees que 90, as tres alturas se encontram num ponto interior do triângulo. 57. No plano hiperbólico H, considere o triângulo de vértices A = (0,2), B = (-1,1), C = (1,1). Mostre que as alturas deste triângulo não têm ponto em comum. 5

58. Dado o quadrilátero convexo ABCD tal que AB AD e BC CD, mostre que AC é perpendicular a BD. 59. (Exercícios 98 da apostila) Mostre que se dois lados de um triângulo não são congruentes, então os dois ângulos opostos a estes lados também não são congruentes. 60. a)use produto escalar para provar que o teorema de Pitágoras é verdadeiro na geometria analítica. b) Use o triângulo de vértices A = (0,5), B = (0,7), C = (3,4) para verificar que o teorema de Pitágoras não é verdadeiro na geometria hiperbólica. 61. Esboce cada uma das circunferências: a) Circunferência de centro (0,3) e raio ln3, no plano hiperbólico H. b) Circunferência de cento (0,0) e raio 1, na geometria do taxista. c) Circunferência de centro (-1,0) e raio 2, no plano de Moulton. Nos ítens a) e b) que tipo de reta e de compasso você usaria par traçar as circunferências? Os exercícios que seguem dependem do postulado das paralelas. 62. Seja ABC com a medida do ângulo no vértice maior que 90 e a altura relativa ao lado BC é o dobro da altura relativa ao lado AB. Prove que AB = 2BC. 63. Prove que as tres medianas de um triângulo se intersectam em um ponto no interior do triângulo, chamado de baricentro. Prove que as paralelas a dois lados, traçadas pelo baricentro, dividem o terceiro lado em tres partes iguais. 64. Um paralelogramo tem perímetro igual a 14 e diagonais de medidas 4 e 6. Calcule o valor de seus lados. 65. Mostre que o postulado das paralelas equivale a dizer que a soma das medidas dos ângulos internos de um triângulo é 180. 66. Prove que a soma das medidas dos ângulos internos de um triângulo é 180 se e somente se dada uma circunferência de centro O e 3 pontos A, B, C nesta circunferência, de modo que os pontos O e C estão de um mesmo lado da reta AB, então m(< AOB) = 2m(< ACB) 67. ( ) Porque na geometria euclidiana um ângulo de 3 graus pode ser construido com régua e compasso, enquanto um ângulo de 2 graus não pode? Construa o ângulo de 3 graus! 6